首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation in the presence of NADPH and molecular oxygen of 14C-labeled polychlorinated biphenyls (PCBs) and two tetrachlorobiphenyl (TCB) isomers with a reconstituted system containing NADPH-cytochrome P-450 reductase and cytochrome P-450, both purified from liver microsomes of phenobarbital(PB)-pretreated rabbits, led to covalent binding of radioactive metabolites of PCBs and TCBs to the protein components of the system. A rabbit liver cytosol fraction added to the system provided more binding sites for the activated metabolites and thus increased the extent of binding markedly. The binding reaction depended absolutely on the reductase, cytochrome P-450 and NADPH, and required dilauroyl phosphatidylcholine and sodium cholate for maximal activity. A further stimulation of the binding was attained by including cytochrome b5 in the reconstituted system. Four forms of cytochrome P-450, purified from liver microsomes of PB- and 3-methylcholanthrene(MC)-treated rabbits and rats, were used to reconstitute the PCB- and TCB-metabolizing systems, and it was found that PB-inducible forms of the cytochrome from both animals were more active than those inducible by MC in catalyzing the PCB- and TCB-binding reaction. Sodium dodecyl sulfate(SDS)-polyacrylamide gel electrophoresis indicated that, in the system containing the reductase, cytochrome P-450 and cytochrome b5, PCB metabolites bound to the reductase and cytochrome P-450, but not to cytochrome b5. In the presence of the liver cytosol fraction, the binding took place to many cytosolic proteins in addition to the reductase and cytochrome P-450.  相似文献   

2.
The suitability of Ca2+ ions for the precipitation of the microsomal fraction from the hydrocarbon-grown yeast Candida tropicalis was evaluated. In the final procedure the microsomes were precipitated by the addition of 16 mm CaCl2. Crude extracts obtained from cells via spheroplast lysis were centrifuged at 12,000g for 15 min and at 25,000g for 15 min prior to precipitation. The cytochrome P-450 content of the fraction was between 0.22 and 0.35 nmol mg?1 protein. The isolated microsomes exhibited both hexadecane hydroxylation activity and NADPH-cytochrome c reductase activity.  相似文献   

3.
Cytochrome P-450 and cytochrome b5 at levels of approximately 0.10 and 0.60 nanomole per milligram of microsomal protein were detected by spectral measurements in microsomes prepared from endosperm tissue of immature Marah macrocarpus seeds. TPNH-cytochrome c reductase, DPNH-cytochrome c reductase, andDPNH-cytochrome b5 reductase activities were also present in these microsomes at levels of approximately 0.060, 0.22, and 0.52 unit per milligram of microsomal protein, respectively. (One unit of reductase is the amount of enzyme catalyzing the reduction of 1 micromole of electron acceptor per minute.) Treatments of microsomes with steapsin or trypsin were not effective in solubilizing any of these electron transport components in detectable form. However, treatment of a microsomal suspension in 25% glycerol with 1% sodium deoxycholate led to the release of about 60% of the protein and each of the above hemoproteins and electron transfer activities to the fraction which was not pelleted after centrifugation for 2 hours at 105,000g. Some ent-kaur-16-ene oxidase activity could be detected in the solubilized fraction after removal of the detergent. Cytochrome b5 and DPNH-cytochrome b5 reductase activity were largely separated from one another and from an overlapping mixture of TPNH-cytochrome c reductase and DPNH-cytochrome c reductase when the sodium deoxycholate-solubilized fraction was chromatographed on a DEAE-cellulose column. No cytochrome P-450 or cytochrome P-420 was detected in the column fractions and no ent-kaur-16-ene oxidase activity was detected when the column fractions were tested singly or in combination.  相似文献   

4.
Microbodies (peroxisomes and glyoxysomes), mitochondria, and microsomes from rat liver, dog kidney, spinach leaves sunflower cotyledons, and castor bean endosperm were isolated by sucrose density-gradient centrifugation. The microbody-limiting membrane and microsomes each contained NADH-cytochrome c reductase and had a similar phospholipid composition. NADH-cytochrome c reductase from plant and animal microbodies and microsomes was insensitive to antimycin A, which inhibited the activity in the mitochondrial fractions. The pH optima of cytochrome c reductase in plant microbodies and microsomes was 7.5–9.0, which was 2 pH units higher than the optima for the mitochondrial form of the enzyme. The activity in animal organelles exhibited a broad pH optimum between pH 6 and 9. Rat liver peroxisomes retained cytochrome c reductase activity, when diluted with water, KCl, or EDTA solutions and reisolated. Cytochrome c reductase activity of microbodies was lost upon disruption by digitonin or Triton X-100, but other peroxisomal enzymes of the matrix were not destroyed. The microbody fraction from each tissue also contained a small amount of NADH-cytochrome b5 reductase activity. Peroxisomes from spinach leaves were broken by osmotic shock and particles from rat liver by diluting in alkaline pyrophosphate. Upon recentrifugation liver peroxisomes yielded a core fraction containing urate oxidase at a sucrose gradient density of 1.23 g × cm−3, a membrane fraction at 1.17 g × cm−3 containing NADH-cytochrome c reductase, and soluble matrix enzymes at the top of the gradient.  相似文献   

5.
The nitrate reductase activity of 5-day-old whole corn roots was isolated using phosphate buffer. The relatively stable nitrate reductase extract can be separated into three fractions using affinity chromatography on blue-Sepharose. The first fraction, eluted with NADPH, reduces nearly equal amounts of nitrate with either NADPH or NADH. A subsequent elution with NADH yields a nitrate reductase which is more active with NADH as electron donor. Further elution with salt gives a nitrate reductase fraction which is active with both NADH and NADPH, but is more active with NADH. All three nitrate reductase fractions have pH optima of 7.5 and Stokes radii of about 6.0 nanometers. The NADPH-eluted enzyme has a nitrate Km of 0.3 millimolar in the presence of NADPH, whereas the NADH-eluted enzyme has a nitrate Km of 0.07 millimolar in the presence of NADH. The NADPH-eluted fraction appears to be similar to the NAD(P)H:nitrate reductase isolated from corn scutellum and the NADH-eluted fraction is similar to the NADH:nitrate reductases isolated from corn leaf and scutellum. The salt-eluted fraction appears to be a mixture of NAD(P)H: and NADH:nitrate reductases.  相似文献   

6.
Solubilized components of the vitamin D3-25-hydroxylase, isolated from intact rat liver microsomes known to catalyze the C-25 oxidation of vitamin D3in vitro, have been separated into two submicrosomal fractions enriched in detergent-solubilized NADPH-cytochrome c reductase and cytochrome P-450 or P-448. The P-450 hemoprotein-containing fraction was obtained by solubilization with cholic acid followed by treatment with the nonionic detergent, Emulgen 911, yielding a final preparation with a specific content of 7.25 nmol/mg microsomal protein. The reduced triphosphopyridine nucleotide-dependent cytochrome P-450 reductase activity, as detected by its ability to reduce the artificial electron acceptor, cytochrome c, was isolated free of cytochromes b5 or P-450 by solubilization with deoxycholate and chromatography on DEAE-cellulose. The reductase component was found to exhibit kinetic properties with Michaelis constants: Km(NADPH) = 3.14 μM, Km(NADH) = 31.25 μM, and Km(cyt c) = 12.34 μM. The NADPH-cytochrome c reductase activity was sensitive to NADPH-reversible inhibition by NADP, but not rotenone or cyanide. When the isolated components were incubated in the presence of an NADPH-generating system and carbon monoxide under anaerobic conditions, enzymatic reduction of the P-450 hemoprotein was measured by the appearance of characteristic absorbances at 420 and 450 nm of the reduced carbon monoxide vs. reduced difference spectrum. Furthermore, when the soluble submicrosomal components were reconstituted with excess reduced triphosphopyridine nucleotide, 3H-labeled vitamin D3, and soluble cytosolic supernatant, full vitamin D3-25-hydroxylase activity was restored at rates of up to 7.68 pmol/h/mg protein, with an apparent turnover number of cytochrome P-450 of 1.16 to 1.20 under conditions where the concentrations of the hemoprotein were rate limiting for net product formation. These results strongly support the hypothesis that the rat liver microsomal mixed-function oxidase, vitamin D3-25-hydroxylase, consists of at least two membrane-bound protein components, NADPH-cytochrome c reductase and a cytochrome P-450 terminal oxidase, for the catalytic conversion of vitamin D3 to 25-hydroxyvitamin D3.  相似文献   

7.
Subfractionation of preparations of rat liver microsomes with a suitable concentration of sodium deoxycholate has resulted in the isolation of a membrane fraction consisting of smooth surfaced vesicles virtually free of ribonucleoprotein particles. The membrane fraction is rich in phospholipids, and contains the microsomal NADH-cytochrome c reductase, NADH diaphorase, glucose-6-phosphatase, and ATPase in a concentrated form. The NADPH-cytochrome c reductase, a NADPH (or pyridine nucleotide unspecific) diaphorase, and cytochrome b5 are recovered in the clear supernatant fraction. The ribonucleoprotein particles are devoid of, or relatively poor in, the enzyme activities mentioned. Those enzymes which are bound to the membranes vary in activity according to the structural state of the microsomes, whereas those which appear in the soluble fraction are stable. From these findings the conclusion is reached that certain enzymes of the endoplasmic reticulum are tightly bound to the membranes, whereas others either are loosely bound or are present in a soluble form within the lumina of the system. Some implications of these results as to the enzymic organization of the endoplasmic reticulum are discussed.  相似文献   

8.
1. The intracellular distribution of nitrogen, DPNH cytochrome c reductase, succinic dehydrogenase, and cytochrome c oxidase has been studied in fractions derived by differential centrifugation from rat and guinea pig spleen homogenates. 2. In the spleens of each species, the nuclear fraction accounted for 40 to 50 per cent of the total nitrogen content of the homogenate, and the mitochondrial, microsome, and supernatant fractions contained about 8, 12, and 30 per cent of the total nitrogen, respectively. 3. Per mg. of nitrogen, DPNH cytochrome c reductase was concentrated in the mitochondria and microsomes of both rat and guinea pig spleens. Seventy per cent of the total DPNH cytochrome c reductase activity was recovered in these two fractions. The reductase activity associated with the nuclear fraction was lowered markedly by isolating nuclei from rat spleens with the sucrose-CaCl2 layering technique. The lowered activity was accompanied by the recovery of about 90 per cent of the homogenate DNA in the isolated nuclei, indicating that little, if any, of the reductase is present in spleen cell nuclei. 4. Per mg. of nitrogen, succinic dehydrogenase was concentrated about 10-fold in the mitochondria of rat spleen, and 65 per cent of the total activity was recovered in this fraction. 5. Cytochrome c oxidase was concentrated, per mg. of nitrogen, in the mitochondria of both rat and guinea pig spleens. The activity associated with the nuclear fraction was greatly diminished when this fraction was isolated from rat spleens by the sucrose-CaCl2 layering technique. Only 50 to 70 per cent of the total cytochrome c oxidase activity of the original homogenates was recovered among the four fractions from both rat and guinea pig spleens, while the specific activities of reconstructed homogenates were only 55 to 75 per cent of those of the original whole homogenates. This was in contrast to the results with DPNH cytochrome c reductase and succinic dehydrogenase where the recovery of total enzyme activity approached 100 per cent, and the specific activities of reconstructed homogenates equalled those of the original homogenates. The recovery of cytochrome c oxidase was greatly improved when only the nuclei were separated from rat spleen homogenates. 6. Data were presented comparing the concentrations (ratio of activity per mg. of nitrogen of the fraction to activity per mg. of nitrogen of the homogenate) of DPNH cytochrome c reductase in mitochondria and microsomes derived from different organs of different animals. 7. Data were presented comparing the activities per mg. of nitrogen of DPNH cytochrome c reductase in homogenates from several organs of various animals.  相似文献   

9.
The liver microsomal enzyme system that catalyzes the oxidation of NADPH by organic hydroperoxides has been solubilized and resolved by the use of detergents into fractions containing NADPH-cytochrome c reductase, cytochrome P-450 (or P-448), and microsomal lipid. Partially purified cytochromes P-450 and P-448, free of the reductase and of cytochrome b5, were prepared from liver microsomes of rats pretreated with phenobarbital (PB) and 3-methylcholanthrene (3-MC), respectively, and reconstituted separately with the reductase and lipid fractions prepared from PB-treated animals to yield enzymically active preparations functional in cumene hydroperoxide-dependent NADPH oxidation. The reductase, cytochrome P-450 (or P-448), and lipid fractions were all required for maximal catalytic activity. Detergent-purified cytochrome b5 when added to the complete system did not enhance the reaction rate. However, the partially purified cytochrome P-450 (or P-448) preparation was by itself capable of supporting the NADPH-peroxidase reaction but at a lower rate (25% of the maximal velocity) than the complete system. Other heme compounds such as hematin, methemoglobin, metmyoglobin, and ferricytochrome c could also act as comparable catalysts for the peroxidation of NADPH by cumene hydroperoxide and in these reactions, NADH was able to substitute for NADPH. The microsomal NADH-dependent peroxidase activity was also reconstituted from solubilized components of liver microsomes and was found to require NADH-cytochrome b5 reductase, cytochrome P-450 (or P-448), lipid, and cytochrome b5 for maximal catalytic activity. These results lend support to our earlier hypothesis that two distinct electron transport pathways operate in NADPH- and NADH-dependent hydroperoxide decomposition in liver microsomes.  相似文献   

10.
Cytochrome P-450 was purified from microsomes of anaerobically grown yeast to a specific content of 12–15 nmoles per mg of protein with a yield of 10–30%. Upon sodium dodecylsulfate/polyacrylamide gel electrophoresis, the purified preparation yielded a major protein band having a molecular weight of about 51,000 together with a few faint bands. It was free from cytochrome b5, NADH-cytochrome b5 reductase, and NADPH-cytochrome c (P-450) reductase. In the oxidized state it exhibited a low-spin type absorption spectrum, and its reduced CO complex showed a Soret peak at 447–448 nm. It was reducible by NADPH in the presence of an NADPH-cytochrome c reductase preparation purified from yeast microsomes. Its conversion to the cytochrome P-420 form was much slower than that of hepatic cytochrome P-450.  相似文献   

11.
Isolation and characterization of Golgi membranes from bovine liver   总被引:48,自引:27,他引:21       下载免费PDF全文
Zonal centrifugation has been used to isolate a fraction from bovine liver which appears to be derived from the Golgi apparatus. Morphologically, the fraction consists mainly of sacs and tubular elements. Spherical inclusions, probably lipoproteins, are occasionally seen in negative stains of this material. The preparation is biochemically unique. UDP-galactose:N-acetyl glucosamine, galactosyl transferase activity is concentrated about 40-fold in this fraction compared to the homogenate. Rotenone- or antimycin-insensitive DPNH- or TPNH- cytochrome c reductase activities are 60–80% of the level of activities found in microsomes. Purified organelles from bovine liver such as plasma membranes, rough microsomes, mitochondria and nuclei have negligible levels of galactosyl transferase. Some activity is present in smooth microsomes but at a level compatible with the possible presence of Golgi membranes in this fraction. The Golgi fraction does not contain appreciable amounts of enzymes such as ATPase, 5'-nucleotidase, glycosidase, glucose-6-phosphatase, acid phosphatase, or succinate-cytochrome c reductase. Similar fractions isolated from bovine epididymis also have very high levels of galactosyl transferase. The fraction is heavily osmicated when incubated for long periods of time at elevated temperatures, a characteristic property of Golgi membranes.  相似文献   

12.
Iswari S  Palta JP 《Plant physiology》1989,90(3):1088-1095
Plasma membrane ATPase has been proposed as a site of functional alteration during early stages of freezing injury. To test this, plasma membrane was purified from Solanum leaflets by a single step partitioning of microsomes in a dextran-polyethylene glycol two phase system. Addition of lysolecithin in the ATPase assay produced up to 10-fold increase in ATPase activity. ATPase activity was specific for ATP with a Km around 0.4 millimolar. Presence of the ATPase enzyme was identified by immunoblotting with oat ATPase antibodies. Using the phase partitioning method, plasma membrane was isolated from Solanum commersonii leaflets which had four different degrees of freezing damage, namely, slight (reversible), partial (partially reversible), substantial and total (irreversible). With slight (reversible) damage the plasma membrane ATPase specific activity increased 1.5- to 2-fold and its Km was decreased by about 3-fold, whereas the specific activity of cytochrome c reductase and cytochrome c oxidase in the microsomes were not different from the control. However, with substantial (lethal, irreversible) damage, there was a loss of membrane protein, decrease in plasma membrane ATPase specific activity and decrease in Km, while cytochrome c oxidase and cytochrome c reductase were unaffected. These results support the hypothesis that plasma membrane ATPase is altered by slight freeze-thaw stress.  相似文献   

13.
The activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in brain microsomes was modified in vitro. The inactivation of the enzyme required Mg2+ and ATP or ADP, and an inactivator present both in S105 and microsomes. Inactivation was dependent on inactivator concentration and time of preincubation. The inactive reductase in brain microsomes could be completely reactivated by a factor present in brain S105. Reactivation of the enzyme also depended on incubation time and the activator concentration. Activator activity was inhibited by NaF, a phosphatase inhibitor. Both the inactivator and the activator appear to be proteins. Our data thus suggest that the inactivation and the reactivation of the reductase in brain microsomes occurs via protein-mediated interconversion to phosphorylated and dephosphorylated forms of the enzyme with differing catalytic activity. The HMG-CoA reductase activity increases almost two-fold during isolation of the brain microsomes. This increase in activity is blocked when brain tissue is homogenized in the medium containing NaF. In rat brain about 50% of the reductase exists in an inactive form in both young and adult rats. The low reductase activity in brain of adult animals does not appear to be related to an increase in the proportion of an inactive phosphorylated form of the enzyme. This suggests that developmental change in the reductase activity is not associated with the change in the proportion of phosphorylated and dephosphorylated forms of the enzyme.  相似文献   

14.
Rat liver microsomes and microsomal extracts contain an enzymic activity which competes with 3-hydroxy-3-methylglutaryl coenzyme A reductase for 3-hydroxy-3-methylglutaryl coenzyme A. The presence of this activity in enzyme preparations causes errors in the determination of reductase activity and its properties. This contaminant can be removed by gel filtration using Bio-Gel A 1.5m, by washing the microsomes, or by incubating the microsomal extract at 37 °C. The Km's of the reductase (free of this competing enzymic activity) for d-3-hydroxy-3-methylglutaryl coenzyme A and NADPH are 1.3 and 26 μm, respectively.  相似文献   

15.
1. A protein fraction containing three polypeptides (the major one with Mr < 13 000) was isolated by means of Triton X-100 extraction of submitochondrial particles specifically treated to remove succinate dehydrogenase.2. The mixing of the protein fraction with the soluble reconstitutively active succinate dehydrogenase results in formation of highly active succinate-DCIP reductase which is sensitive to thenoyltrifluoroacetone or carboxin.3. The maximal turnover number of succinate dehydrogenase in the succinate-DCIP reductase reaction revealed in the presence of a saturating amount of the protein fraction is slightly higher than that measured with phenazine methosulfate as artificial electron acceptor.4. The protein fraction greatly increases the stability of soluble succinate dehydrogenase under aerobic conditions.5. The titration of soluble succinate dehydrogenase by the protein fraction shows that smaller amounts of the protein fraction are required to block the reduction of ferrycyanide by Hipip center than that required to reveal the maximal catalytic capacity of the enzyme.6. The apparent Km of the reconstituted system for DCIP depends on the amount of protein fraction; the more protein fraction added to the enzyme, the lower the Km value obtained.7. A comparison of different reconstituted succinate-ubiquinone reductases described in the literature is presented and the possible arrangement of the native and reconstituted succinate-ubiquinone region of the respiratory chain is discussed.  相似文献   

16.
Plasma membranes isolated from K562 cells contain an NADH-ascorbate free radical reductase activity and intact cells show the capacity to reduce the rate of chemical oxidation of ascorbate leading to its stabilization at the extracellular space. Both activities are stimulated by CoQ10 and inhibited by capsaicin and dicumarol. A 34-kDa protein (p34) isolated from pig liver plasma membrane, displaying NADH-CoQ10 reductase activity and its internal sequence being identical to cytochrome b 5 reductase, increases the NADH-ascorbate free radical reductase activity of K562 cells plasma membranes. Also, the incorporation of this protein into K562 cells by p34-reconstituted liposomes also increased the stabilization of ascorbate by these cells. TPA-induced differentiation of K562 cells increases ascorbate stabilization by whole cells and both NADH-ascorbate free radical reductase and CoQ10 content in isolated plasma membranes. We show here the role of CoQ10 and its NADH-dependent reductase in both plasma membrane NADH-ascorbate free radical reductase and ascorbate stabilization by K562 cells. These data support the idea that besides intracellular cytochrome b 5-dependent ascorbate regeneration, the extracellular stabilization of ascorbate is mediated by CoQ10 and its NADH-dependent reductase.  相似文献   

17.
Epithelial cells from isolated rat small intestine were harvested by vibration of the everted intestine in 0.14 m NaCl containing 5 mm EDTA. These cells, which were largely free of mucus contamination, were homogenized in hypotonic (74 mm) sucrose using a Potter-Elvehjem homogeniser. After successively sedimenting a “brush border plus nuclei” and a “mitochondrial” fraction, microsomes were prepared from the postmitochondrial supernatant by ultracentrifugation or by precipitation at pH 5.0. The isolation and fractionation procedure was validated by the distribution of marker enzymes and by light microscopy and found to be largely uncontaminated by other subcellular components or by haemoglobin. The usefulness of this preparation was demonstrated by determining drug-metabolising enzyme activity and by substrate- and metabolite-binding spectra to cytochrome P-450. A comparison of precipitated “acid” and “normal” intestinal microsomes indicated similar apparent Km and Vmax values for a number of drug-metabolising enzymes. The content of components of the microsomal electron transport system were also similar in both preparations while the “acid” microsomes contained approximately 50% more protein.  相似文献   

18.
Hen liver microsomes contained 0.20 nmol of cytochromeb5 per mg of protein. Upon addition of NADH about 95% cytochrome b5 was reduced very fast with a rate constant of 206 s?1When ferricyanide was added to the reaction system the cytochrome stayed in the oxidized form until the ferricyanide reduction was almost completed. The reduced cytochrome b5 in microsomes was oxidized very rapidly by ferricyanide. The rate constant of 4.5 × 108m?1 s?1, calculated on the basis of assumption that ferricyanide reacts directly with the cytochrome, was found to be more than 100 times higher than that of the reaction between ferricyanide and soluble cytochrome b5. To explain the results, therefore, the reverse electron flow from cytochrome b5 to the flavin coenzyme in microsomes was assumed.By three independent methods the specific activity of the microsomes was measured at about 20 nmol of NADH oxidized per s per mg of protein and it was concluded that the reduction of the flavin coenzyme of cytochrome b5 reductase by NADH is rate-limiting in the NADH-cytochrome b5 and NADH-ferricyanide reductase reactions of hen liver microsomes. In the NADH-ferricyanide reductase reaction the apparent Michaelis constant for NADH was 2.8 μm and that for ferricyanide was too low to be measured. In the NADH-cytochrome c reductase reaction the maximum velocity was 2.86 nmol of cytochrome c reduced per s per mg of protein and the apparent Michaelis constant for cytochrome c was 3.8 μm.  相似文献   

19.
3-Hydroxy-3-methylglutaryl coenzyme A reductase activity is diminished in several in vitro liver systems preincubated in the presence of cAMP. Reductase activity in isolated, washed liver microsomes is inactivated by ATP, Mg++, and a protein fraction separated from the liver cytosol. This effect is augmented by 3′–5′ cyclic AMP. Reductase activity in previously inactivated microsomes can be partially restored by incubation with a second protein fraction of the cytosol.  相似文献   

20.
An important function of the liver is detoxification of drugs, toxins and foreign compounds. Within the liver cell, the endoplasmic reticulum, isolated as the microsomal fraction, is especially active. Microsomal oxidation is the major oxidation pathway for many compounds, and the requirement for NADPH, an expensive cofactor, is an important consideration in bioreactor design. This paper presents design information for NADPH- and substrate-dependent oxidation rates for free and immobilized microsomes. The primary goal of this paper is determining NADPH requirements for oxidation. The effect of various initial levels of nicotinamide adenine dinucleotide phosphate (NADPH) on chlorpromazine oxidation rate has been studied for a crude hepatic microsomal fraction immobilized in calcium alginate gel. At an initial NADPH concentration of 600 nmoles/ml, immobilized microsomes accelerate to a maximal velocity of ≈ 240 nmoles min−1 ml−1 of oxygen consumption. In comparison, free microsomes reach a maximal velocity of approximately 150 nmoles min−1 ml−1 at an initial NADPH concentration of 220 nmoles/ml. By fitting the “initial” rate as a function of NADPH concentration to Michaelis-Menten kinetics, the apparent half-saturation coefficients (Km)app are 3.5 nmole/ml for free microsomes and 134.4 nmole/ml for immobilized microsomes, however the maximum reaction velocity, Vmax, for immobilized microsomes is calculated to be 322 nmoles min−1 ml−1 compared with 145 nmols min−1 ml−1 for free microsomes. Preliminary studies indicate that is is possible to obtain significant reaction rates using calcium alginate immobilized microsomes and that this system may offer advantages due to its simplicity and lower cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号