首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Klostermeier D  Millar DP 《Biochemistry》2000,39(42):12970-12978
Helical junctions are ubiquitous structural elements that govern the folding and tertiary structure of RNAs. The tobacco ringspot virus hairpin ribozyme consists of two helix-loop-helix elements that lie on adjacent arms of a four-way junction. In the active form of the hairpin ribozyme, the loops are in proximity. The nature of the helical junction determines the stability of the hairpin ribozyme tertiary structure [Walter, N. G., Burke, J. M., and Millar, D. P. (1999) Nat. Struct. Biol. 6, 544-549] and thus its catalytic activity. We used two-, three-, and four-way junction hairpin ribozymes as model systems to investigate the thermodynamic basis for the different tertiary structure stabilities. The equilibrium between docked and extended conformers was analyzed as a function of temperature using time-resolved fluorescence resonance energy transfer (trFRET). As the secondary and tertiary structure transitions overlap, information from UV melting curves and trFRET had to be combined to gain insight into the thermodynamics of both structural transitions. It turned out that the higher tertiary structure stability observed in the context of a four-way junction is the result of a lower entropic cost for the docking process. In the two- and three-way junction ribozymes, a high entropic cost counteracts the favorable enthalpic term, rendering the docked conformer only marginally stable. Thus, two- and three-way junction tertiary structures are more sensitive toward regulation by ligands, whereas four-way junctions provide a stable scaffold. Altogether, RNA folding and stability appear to be governed by principles similar to those for the folding of proteins.  相似文献   

2.
M J Fedor 《Biochemistry》1999,38(34):11040-11050
The hairpin ribozyme catalyzes a reversible RNA cleavage reaction that participates in processing intermediates of viral satellite RNA replication in plants. A minimal hairpin ribozyme consists of two helix-loop-helix segments. These segments associate noncoaxially in the active folded structure in a way that brings catalytically important loop nucleotides into close proximity. The hairpin ribozyme in the satellite RNA of Tobacco Ringspot Virus assembles in the context of a four-way helical junction. Recent physical characterization of hairpin ribozyme structures using fluorescence resonance energy transfer demonstrated enhanced stability of the folded structure in the context of a four-way helical junction compared to minimal hairpin ribozyme variants. Analysis of the functional consequences of this modification of the helical junction has revealed two changes in the hairpin ribozyme kinetic mechanism. First, ribozymes with a four-way helical junction bind 3' cleavage products with much higher affinity than minimal hairpin ribozymes, evidence that tertiary interactions within the folded structure contribute to product binding energy. Second, the balance between ligation and cleavage shifts in favor of ligation. The enhanced ligation activity of hairpin ribozymes that contain a four-way helical junction supports the notion that tertiary structure stability is a major determinant of the hairpin ribozyme proficiency as a ligase and illustrates the link between RNA structure and biological function.  相似文献   

3.
The hairpin ribozyme is a small catalytic RNA comprised of two internal loops carried on two adjacent arms of a four-way helical junction (4WJ). To achieve catalytic activity, the ribozyme folds into a compact conformation that facilitates the formation of tertiary interactions between the two loops. We have investigated the folding kinetics of the natural 4WJ form of the hairpin ribozyme, as well as a minimal construct consisting of just the two loop-containing duplexes, by means of stopped-flow fluorescence resonance energy transfer between donor and acceptor probes attached to the ends of the loop-bearing arms. Folding was initiated by the addition of Mg(2+) ions or a pseudosubstrate strand to the ribozyme, and the ensuing changes in the emission of both donor and acceptor were monitored over time. Both ribozyme constructs exhibited slow, biphasic kinetic behavior, attributed to two parallel folding pathways leading to compact, docked structures. Two distinct folding rates were observed across a range of Mg(2+) concentrations, and increasing amounts of Mg(2+) accelerated both rates. Notably, both rates were essentially independent of temperature, indicating that the corresponding activation enthalpies were negligible, in contrast to the large activation enthalpies generally observed for RNA folding processes. Instead, the slow folding was due to unfavorable entropy changes in reaching the transition state, indicating that the ribozyme tertiary structure forms through a slow conformational search. These features were observed in both forms of the ribozyme, indicating that the conformational search is confined to the two loop regions and is largely independent of the overall ribozyme architecture. Conformational search may be a general mechanism of tertiary structure formation in RNA.  相似文献   

4.
Klostermeier D  Millar DP 《Biochemistry》2001,40(37):11211-11218
The hairpin catalytic motif in tobacco ringspot virus satellite RNA consists of two helix-loop-helix elements on two adjacent arms of a four-way helical junction. The bases essential for catalytic activity are located in the loops that are brought into proximity by a conformational change as a prerequisite for catalysis. The two loops interact via a ribose zipper motif involving the 2'-hydroxyls of A10, G11, A24, and C25 [Rupert, P. B., and Ferre d'Amare, A. R. (2001) Nature 401, 780-786]. To quantify the energetic importance of the ribose zipper hydrogen bonds, we have incorporated deoxy modifications at these four positions and determined the resulting destabilization of the docked conformer by means of time-resolved fluorescence resonance energy transfer. In a minimal form of the ribozyme, in which the loops are placed on the arms of a two-way helical junction, all modifications lead to a significant loss in tertiary structure stability and altered Mg2+ binding. Surprisingly, no significant destabilization was seen with the natural four-way junction ribozyme, suggesting that hydrogen bonding interactions involving the 2'-hydroxyls do not contribute to the stability of the docked conformer. These results suggest that the energetic contributions of ribose zipper hydrogen bonds are highly context dependent and differ significantly for the minimal and natural forms of the ribozyme.  相似文献   

5.
Klostermeier D  Millar DP 《Biochemistry》2002,41(48):14095-14102
The hairpin ribozyme, a small catalytic RNA consisting of two helix-loop-helix motifs, serves as a paradigm for RNA folding. In the active conformer, the ribozyme is docked into a compact structure via loop-loop interactions. The crystal structure of the docked hairpin ribozyme shows an intricate network of hydrogen bonding interactions at the docking interface, mediated by the base, sugar, and phosphate groups of U42 and G+1 [Rupert, P. B., and Ferre-D'Amare, A. R. (2001) Nature 410, 780-786]. To elucidate the determinants for tertiary structure stability in the hairpin ribozyme, we evaluated the energetic contributions of hydrogen bonds surrounding U42 and G+1 by time-resolved fluorescence resonance energy transfer using modified ribozymes that lack one or more of the individual interactions. Elimination of a single tertiary hydrogen bond consistently resulted in a net destabilization of approximately 2 kJ/mol. The results of double- and triple-mutant cycles suggest that individual hydrogen bonds surrounding G+1 or U42 act cooperatively and form extended hydrogen bond networks that stabilize the docked ribozyme. These results demonstrate that RNAs, similar to proteins, can exploit coupled hydrogen bond networks to stabilize the docking of distant structural domains.  相似文献   

6.
In its natural context, the hairpin ribozyme is constructed around a four-way helical junction. This presents the two loops that interact to form the active site on adjacent arms, requiring rotation into an antiparallel structure to bring them into proximity. In the present study we have compared the folding of this form of the ribozyme and subspecies lacking either the loops or the helical junction using fluorescence resonance energy transfer. The complete ribozyme as a four-way junction folds into an antiparallel structure by the cooperative binding of magnesium ions, requiring 20-40 microM for half-maximal extent of folding ([Mg2+]1/2) and a Hill coefficient n = 2. The isolated junction (lacking the loops) also folds into a corresponding antiparallel structure, but does so noncooperatively (n = 1) at a higher magnesium ion concentration ([Mg2+]1/2 = 3 mM). Introduction of a G + 1A mutation into loop A of the ribozyme results in a species with very similar folding to the simple junction, and complete loss of ribozyme activity. Removal of the junction from the ribozyme, replacing it either with a strand break (serving as a hinge) or a GC5 bulge, results in greatly impaired folding, with [Mg2+]1/2 > 20 mM. The results indicate that the natural form of the ribozyme undergoes ion-induced folding by the cooperative formation of an antiparallel junction and loop-loop interaction to generate the active form of the ribozyme. The four-way junction thus provides a scaffold in the natural RNA that facilitates the folding of the ribozyme into the active form.  相似文献   

7.
Abstract Hairpin ribozymes occur naturally only in the satellite RNAs of tobacco ringspot virus (TRsV), chicory yellow mottle virus (CYMoV) and arabis mosaic virus (ArMV). The catalytic centre of the predominantly studied sTRsV hairpin ribozyme, and of sArMV is organised around a four-way helical junction. We show here that sCYMoV features a five-way helical junction instead. Mutational analysis indicates that the fifth stem does not influence kinetic parameters of the sCYMoV hairpin ribozyme in vitro reactions, and therefore seems an appendix to that junction in the other ribozymes. We report further that all three ribozymes feature a three-way helical junction outside the catalytic core in stem A, with Watson-Crick complementarity to loop nucleotides in stem B. Kinetic analyses of cleavage and ligation reactions of several variants of the sTRsV and sCYMoV hairpin ribozymes in vitro show that the presence of this junction interferes with their reactions, particularly the ligation. We provide evidence that this is not due to a presumed interaction of the afore-mentioned elements in stems A and B. The evolutionary survival of this cis-inhibiting element seems rather to be caused by the coincidence of its position with that of the hammerhead ribozyme in the other RNA polarity.  相似文献   

8.
The equilibrium distributions of hairpin ribozyme conformational isomers have been examined by time-resolved fluorescence resonance energy transfer. Ribozymes partition between active (docked) and inactive (extended) conformers, characterized by unique interdomain distance distributions, which define differences in folding free energy. The active tertiary structure is stabilized both by specific interactions between the catalytic and the substrate-binding domains and by the structure of the intervening helical junction. Under physiological conditions, the docking equilibrium of the natural four-way junction dramatically favors the active conformer, while those of a three-way and the two-way junction used in gene therapy applications favor the inactive conformer.  相似文献   

9.
In the natural form of the hairpin ribozyme the two loop-carrying duplexes that comprise the majority of essential bases for activity form two adjacent helical arms of a four-way RNA junction. In the present work we have manipulated the sequence around the junction in a way known to perturb the global folding properties. We find that replacement of the junction by a different sequence that has the same conformational properties as the natural sequence gives closely similar reaction rate and Arrhenius activation energy for the substrate cleavage reaction. By comparison, rotation of the natural sequence in order to alter the three-dimensional folding of the ribozyme leads to a tenfold reduction in the kinetics of cleavage. Replacement with the U1 four-way junction that is resistant to rotation into the antiparallel structure required to allow interaction between the loops also gives a tenfold reduction in cleavage rate. The results indicate that the conformation of the junction has a major influence on the catalytic activity of the ribozyme. The results are all consistent with a role for the junction in the provision of a framework by which the loops are presented for interaction in order to create the active form of the ribozyme.  相似文献   

10.
D M Lilley 《FEBS letters》1999,452(1-2):26-30
The hairpin ribozyme undergoes a site-specific transesterification cleavage of the phosphodiester backbone. The natural form of the ribozyme is a four-way helical junction, where two arms contain unpaired loops. This folds by pairwise coaxial stacking of helical arms, and a rotation into an antiparallel conformation in which there is close association between the loops. This probably generates the local conformation required to facilitate the trajectory into an in-line SN2 transition state. Folding is induced by the cooperative binding of at least two divalent metal ions, which are probably distributed between the junction and the loop-loop interface. The junction forms the structural scaffold on which the geometry of the ribozyme is built, and structural perturbation of the junction leads to impaired catalytic activity.  相似文献   

11.
Metal ion binding and the folding of the hairpin ribozyme   总被引:6,自引:1,他引:5       下载免费PDF全文
The hairpin ribozyme comprises two formally unpaired loops carried on two arms of a four-way helical RNA junction. Addition of divalent metal ions brings about a conformational transition into an antiparallel structure in which there is an intimate association between the loops to generate the active form of the ribozyme. In this study, we have used fluorescence resonance energy transfer to analyze the global folding of the complete ribozyme, and the simple four-way junction derived from it, over a wide concentration range of divalent and monovalent metal ions. The simple junction undergoes an ion-induced rotation into an antiparallel form. In the presence of a constant background concentration of sodium ions, the magnesium-ion-induced transition is characterized by noncooperative binding with a Hill coefficient n = 1. By contrast, the magnesium-ion-induced folding of the complete ribozyme is more complex, involving two distinct binding phases. The first phase occurs in the micromolar range, and involves the cooperative binding of at least three magnesium ions. This can also be achieved by high concentrations of sodium ions, and is therefore likely to be due to diffuse binding of cations at the junction and the interface of the loop-loop interaction. The second phase occurs in the millimolar range, and can only be induced by divalent metal ions. This transition occurs in response to the noncooperative, site-specific binding of magnesium ions. We observe a good correlation between the extent of ion-induced folding and cleavage activity.  相似文献   

12.
Biological RNAs, like their DNA counterparts, contain helical stretches, which have standard Watson-Crick base pairs in the anti conformation. Most functional RNAs also adopt geometries with far greater complexity such as bulges, loops, and multihelical junctions. Occasionally, nucleobases in these regions populate the syn conformation wherein the base resides close to or over the ribose sugar, which leads to a more compact state. The importance of the syn conformation to RNA function is largely unknown. In this study, we analyze 51 RNAs with tertiary structure, including aptamers, riboswitches, ribozymes, and ribosomal RNAs, for number, location, and properties of syn nucleobases. These RNAs represent the set of nonoverlapping, moderate- to high-resolution structures available at present. We find that syn nucleobases are much more common among purines than pyrimidines, and that they favor C2'-endo-like conformations especially among those nucleobases in the intermediate syn conformation. Strikingly, most syn nucleobases participate in tertiary stacking and base-pairing interactions: Inspection of RNA structures revealed that the majority of the syn nucleobases are in regions assigned to function, with many syn nucleobases interacting directly with a ligand or ribozyme active site. These observations suggest that judicious placement of conformationally restricted nucleotides biased into the syn conformation could enhance RNA folding and catalysis. Such changes could also be useful for locking RNAs into functionally competent folds for use in X-ray crystallography and NMR.  相似文献   

13.
We report a set of atomistic folding/unfolding simulations for the hairpin ribozyme using a Monte Carlo algorithm. The hairpin ribozyme folds in solution and catalyzes self-cleavage or ligation via a specific two-domain structure. The minimal active ribozyme has been studied extensively, showing stabilization of the active structure by cations and dynamic motion of the active structure. Here, we introduce a simple model of tertiary-structure formation that leads to a phase diagram for the RNA as a function of temperature and tertiary-structure strength. We then employ this model to capture many folding/unfolding events and to examine the transition-state ensemble (TSE) of the RNA during folding to its active “docked” conformation. The TSE is compact but with few tertiary interactions formed, in agreement with single-molecule dynamics experiments. To compare with experimental kinetic parameters, we introduce a novel method to benchmark Monte Carlo kinetic parameters to docking/undocking rates collected over many single molecular trajectories. We find that topology alone, as encoded in a biased potential that discriminates between secondary and tertiary interactions, is sufficient to predict the thermodynamic behavior and kinetic folding pathway of the hairpin ribozyme. This method should be useful in predicting folding transition states for many natural or man-made RNA tertiary structures.  相似文献   

14.
RNA secondary structures can be divided into helical regions composed of canonical Watson-Crick and related base pairs, as well as single-stranded regions such as hairpin loops, internal loops, and junctions. These elements function as building blocks in the design of diverse RNA molecules with various fundamental functions in the cell. To better understand the intricate architecture of three-dimensional (3D) RNAs, we analyze existing RNA four-way junctions in terms of base-pair interactions and 3D configurations. Specifically, we identify nine broad junction families according to coaxial stacking patterns and helical configurations. We find that helices within junctions tend to arrange in roughly parallel and perpendicular patterns and stabilize their conformations using common tertiary motifs such as coaxial stacking, loop-helix interaction, and helix packing interaction. Our analysis also reveals a number of highly conserved base-pair interaction patterns and novel tertiary motifs such as A-minor-coaxial stacking combinations and sarcin/ricin motif variants. Such analyses of RNA building blocks can ultimately help in the difficult task of RNA 3D structure prediction.  相似文献   

15.
Four small RNA self-cleaving domains, the hammerhead, hairpin, hepatitis delta virus and Neurospora VS ribozymes, have been identified previously in naturally occurring RNAs. The secondary structures of these ribozymes are reasonably well understood, but little is known about long-range interactions that form the catalytically active tertiary conformations. Our previous work, which identified several secondary structure elements of the VS ribozyme, also showed that many additional bases were protected by magnesium-dependent interactions, implying that several tertiary contacts remained to be identified. Here we have used site-directed mutagenesis and chemical modification to characterize the first long-range interaction identified in VS RNA. This interaction contains a 3 bp pseudoknot helix that is required for tertiary folding and self-cleavage activity of the VS ribozyme.  相似文献   

16.
Mutational, kinetic, and chemical modification experiments show that one of the three-way helical junctions in the Neurospora VS ribozyme contains a uridine turn that is important for organizing the functional three-dimensional structure of this junction. Disruption of the uridine turn disrupts the structure of the junction and decreases the self-cleavage activity of the ribozyme; however, substitution of the uridine turn with a variety of different hairpins, thereby transforming the three-way junction into a four-way junction, maintains catalytic activity. Chemical modification structure probing reveals that both the native junction and the hairpin-containing junction support the same tertiary interactions required elsewhere in the ribozyme for catalysis. These observations show that functionally equivalent three-dimensional RNA structures can be built from different secondary structure elements.  相似文献   

17.
The hairpin ribozyme is an RNA enzyme that performs site-specific phosphodiester bond cleavage between nucleotides A-1 and G+1 within its cognate substrate. Previous functional studies revealed that the minimal hairpin ribozyme exhibited "gain-of-function" cleavage properties resulting from U39C or U39 to propyl linker (C3) modifications. Furthermore, each "mutant" displayed different magnesium-dependence in its activity. To investigate the molecular basis for these gain-of-function variants, crystal structures of minimal, junctionless hairpin ribozymes were solved in native (U39), and mutant U39C and U39(C3) forms. The results revealed an overall molecular architecture comprising two docked internal loop domains folded into a wishbone shape, whose tertiary interface forms a sequestered active site. All three minimal hairpin ribozymes bound Co(NH(3))(6)(3+) at G21/A40, the E-loop/S-turn boundary. The native structure also showed that U37 of the S-turn adopts both sequestered and exposed conformations that differ by a maximum displacement of 13 A. In the sequestered form, the U37 base packs against G36, and its 2'-hydroxyl group forms a water mediated hydrogen bond to O4' of G+1. These interactions were not observed in previous four-way-junction hairpin ribozyme structures due to crystal contacts with the U1A splicing protein. Interestingly, the U39C and U39(C3) mutations shifted the equilibrium conformation of U37 into the sequestered form through formation of new hydrogen bonds in the S-turn, proximal to the essential nucleotide A38. A comparison of all three new structures has implications for the catalytically relevant conformation of the S-turn and suggests a rationale for the distinctive metal dependence of each mutant.  相似文献   

18.
RNA tertiary interactions involving docking of GNRA (N; any base; R; purine) hairpin loops into helical stem structures on other regions of the same RNA are one of the most common RNA tertiary interactions. In this study, we investigated a tertiary association between a GAAA hairpin tetraloop in a small branching ribozyme (DiGIR1) and a receptor motif (HEG P1 motif) present in a hairpin structure on a separate mRNA molecule. DiGIR1 generates a 2', 5' lariat cap at the 5' end of its downstream homing endonuclease mRNA by catalysing a self-cleavage branching reaction at an internal processing site. Upon release, the 5' end of the mRNA forms a distinct hairpin structure termed HEG P1. Our biochemical data, in concert with molecular 3D modelling, provide experimental support for an intermolecular tetraloop receptor interaction between the L9 GAAA in DiGIR1 and a GNRA tetraloop receptor-like motif (UCUAAG-CAAGA) found within the HEG P1. The biological role of this interaction appears to be linked to the homing endonuclease expression by promoting post-cleavage release of the lariat capped mRNA. These findings add to our understanding of how protein-coding genes embedded in nuclear ribosomal DNA are expressed in eukaryotes and controlled by ribozymes.  相似文献   

19.
The hairpin ribozyme is a small catalytic RNA that has been reengineered resulting in a number of variants with extended or even new functions. Thus, manipulation of the hairpin ribozyme structure has allowed for activity control by external effectors, namely oligonucleotides, flavine mononucleotide, and adenine. Hairpin ribozyme-derived twin ribozymes that mediate RNA fragment exchange reactions as well as self-processing hairpin ribozymes were designed. Furthermore, several hairpin ribozyme variants have been engineered for knock down of specific RNA substrates by adapting the substrate-binding domain to the specific target sequence. This review will focus on hairpin ribozymes possessing structural extensions/variations and thus functionally differing from the parent hairpin ribozyme.  相似文献   

20.
Within the hairpin ribozyme, structural elements required for formation of the active tertiary structure are localized in two independently folding domains, each consisting of an internal loop flanked by helical elements. Here, we present results of a systematic examination of the relationship between the structure of the helical elements and the ability of the RNA to form the catalytically active tertiary structure. Deletions and mutational analyses indicate that helix 1 (H1) in domain A can be entirely eliminated, while segments of helices 2, 3, and 4 can also be deleted. From these results, we derive a new active minimal ribozyme that contains three helical elements, an internal loop, and a terminal loop. A three-dimensional model of this truncated ribozyme was generated using MC-SYM, and confirms that the catalytic core of the minimized construct can adopt a tertiary structure that is very similar to that of the nontruncated version. A new strategy is described to study the functional importance of various residues and chemical groups and to identify specific interdomain interactions. This approach uses two physically separated and truncated domains derived from the minimal motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号