首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of bleomycin A5 residue linked to four-, eight-, and twelve-mer oligodeoxyribonucleotides on the substrate properties of their tandem and continuous (with or without unmodified octanucleotide effectors) hybrid duplexes was studied using E. coli RNase H. The bleomycin derivatives of oligodeoxyribonucleotides were shown to form hybrid duplexes with practically the same thermostability as those formed by unmodified oligodeoxyribonucleotides. The RNA in the bleomycin-containing hybrid duplexes is cleaved by E. coli RNase H; however, the initial hydrolysis rate (v 0) is 2.6–3.4-fold reduced for the continuous duplexes. In the case of tandem hybrid complexes, the effect of bleomycin on v 0 was less pronounced. We hypothesized that steric factors play a key role in the bleomycin inhibition and effectors probably determine the substrate properties of such hybrid complexes. Of all the tandem systems studied, the RNA duplex with the bleomycin-containing tetranucleotide flanked with two effectors displayed the best substrate properties.  相似文献   

2.
The efficiency of the cleavage of RNA involved in perfect as well as imperfect hybrid duplexes composed of three components: (1) homogeneous RNA's or polyribonucleotides; (2) corresponding complementary synthetic oligodeoxyribonucleotides; (3) E. coli RNase H was investigated. The predominant RNA hydrolysis was shown to take place within the perfect hybrid duplexes formed by the target RNA and the complementary oligodeoxyribonucleotide probes. RNase H was found to cleave effectively a number of imperfect hybrid duplexes containing a central base pair mismatch.  相似文献   

3.
We studied the E. coli RNase H cleavage of a 5'-labeled RNA fragment within two hybrid duplexes with identical sequences, one of which is formed by RNA and a 20-mer oligodeoxyribonucleotide (RNA/p20), whereas the second, by RNA and a tandem of short oligodeoxyribonucleotides (octanucleotide: (RNA/tandem). It was shown that RNA in the RNA/p20 complex is hydrolyzed from the 3'-end to yield consecutively the 17-, 14-, 11-, 8-, and 5-mer 5'-labeled fragments. On hydrolysis of RNA in complex RNA/tandem, the same products were registered, but their accumulation rates in this case differed. Thus, the initial rates of accumulation of the 17- and 8-mer were close. Moreover, the accumulation of the final 5-mer differed considerably: in the RNA/tandem complex it appeared within first minutes of the reaction, but only after a considerable lag period in complex RNA/p20. These data testify that the tandem is involved not only in the consecutive accumulation of the shortened products (which is characteristic of complexes including extended oligonucleotides) but also in the parallel accumulation. This results from hydrolysis of each duplex segment formed by RNA and the short oligonucleotide of the tandem. Although the order of recognition and cleavage of RNA target by ribonuclease H depends on the type of the hybrid duplex, the destruction of RNA target within complex RNA/tandem and in complex with the full-size oligonucleotide occurs with a close effectiveness.  相似文献   

4.
Solution structures of DNA/RNA hybrid duplexes, d(GCGCA*AA*ACGCG): r(cgcguuuugcg)d(C) (designated PP57), containing two C8-propynyl 2'-deoxyadenosines (A*) and unmodified hybrid (designated U4A4) are solved. The C8-propynyl groups on 2'-deoxyadenosine perturb the local structure of the hybrid duplex, but overall the structure is similar to that of canonical DNA/RNA hybrid duplex except that Hoogsteen hydrogen bondings between A* and U result in lower thermal stability. RNase H is known to cleave RNA only in DNA/RNA hybrid duplexes. Minor groove widths of hybrid duplexes, sugar puckerings of DNA are reported to be responsible for RNase H mediated cleavage, but structural requirements for RNase H mediated cleavage still remain elusive. Despite the presence of bulky propynyl groups of PP57 in the minor groove and greater flexibility, the PP57 is an RNase H substrate. To provide an insight on the interactions between RNase H and substrates we have modeled Bacillus halodurans RNase H-PP57 complex, our NMR structure and modeling study suggest that the residue Gly(15) and Asn(16) of the loop residues between first beta sheet and second beta sheet of RNase HI of Escherichia coli might participate in substrate binding.  相似文献   

5.
We studied theE. coli RNase H cleavage of a 5′-labeled RNA fragment within two hybrid duplexes with identical sequences, one of which is formed by RNA and a 20-mer oligodeoxyribonucleotide (RNA/p20) whereas the second, by RNA and a tandem of short oligodeoxyribonucleotides (octanucleotide : tetranucleotide : octanucleotide) (RNA/tandem). It was shown that RNA in the RNA/p20 complex is hydrolyzed from the 3′-end to yield consecutively the 17-, 14-, 11-, 8-, and 5-mer 5′-labeled fragments. On hydrolysis of RNA in complex RNA/tandem, the same products were registered but their accumulation rates in this case differed. Thus, the initial rates of accumulation of the 17- and 8-mer were close. Moreover, the accumulation of the final 5-mer differed considerably: in the RNA/tandem complex it appeared within first minutes of the reaction but only after a considerable lag period in complex RNA/p20. These data testify that the tandem is involved not only in the consecutive accumulation of the shortened products (which is characteristic of complexes including extended oligonucleotides) but also in the parallel accumulation. This results from hydrolysis of each duplex segment formed by RNA and the short oligonucleotide of the tandem. Although the order of recognition and cleavage of RNA target by ribonuclease H at certain bonds depends on the type of the hybrid duplex, the destruction of RNA target within complex RNA/tandem and in complex with the full-size oligonucleotide occurs with a close effectiveness.  相似文献   

6.
Solution structures of DNA/RNA hybrid duplexes, d(GCGCA*AA*ACGCG): r(cgcguuuugcg)d(C) (designated PP57), containing two C8-propynyl 2′-deoxyadenosines (A*) and unmodified hybrid (designated U4A4) are solved. The C8-propynyl groups on 2′-deoxyadenosine perturb the local structure of the hybrid duplex, but overall the structure is similar to that of canonical DNA/RNA hybrid duplex except that Hoogsteen hydrogen bondings between A* and U result in lower thermal stability. RNase H is known to cleave RNA only in DNA/RNA hybrid duplexes. Minor groove widths of hybrid duplexes, sugar puckerings of DNA are reported to be responsible for RNase H mediated cleavage, but structural requirements for RNase H mediated cleavage still remain elusive. Despite the presence of bulky propynyl groups of PP57 in the minor groove and greater flexibility, the PP57 is an RNase H substrate. To provide an insight on the interactions between RNase H and substrates we have modeled Bacillus halodurans RNase H-PP57 complex, our NMR structure and modeling study suggest that the residue Gly(15) and Asn(16) of the loop residues between first β sheet and second β sheet of RNase HI of Escherichia coli might participate in substrate binding.  相似文献   

7.
A hybrid enzyme which site-specifically hydrolyzes RNA was created by covalently linking an oligodeoxyribonucleotide to Escherichia coli ribonuclease HI, an enzyme which specifically cleaves RNA moiety of DNA/RNA hybrids. A cysteine residue was substituted for Glu135 by site-directed mutagenesis in the mutant enzyme, in which all 3 free cysteine residues were replaced by alanine (Kanaya, S., Kimura, S., Katsuda, C., and Ikehara, M. (1990) Biochem. J. 271, 59-66), and coupled with a maleimide group, which is attached to the 5' terminus of the nonadeoxyribonucleotide (5'-GTCATCTCC-3') with a flexible tether. The resulting hybrid enzyme, d9-C135/RNase H, cleaved the phosphodiester bond between the fifth and sixth residues of the complementary nonaribonucleotide, without addition of the oligodeoxyribonucleotide. The nonaribonucleotide is cleaved by the wild-type or unmodified mutant enzyme only when the complementary oligodeoxyribonucleotide is present. When the kinetic parameters of the hybrid enzyme for the hydrolysis of the nonaribonucleotide were compared with those of the unmodified mutant enzyme for the hydrolysis of the nonanucleotide duplex, the hybrid enzyme exhibited a 7- and 4-fold decreases in the Km and kcat values, respectively, indicating that it performs multiple turnovers and has a sufficiently high hydrolytic activity. Hybrid ribonucleases H with various oligodeoxyribonucleotides in size and sequence, therefore, might be used as excellent tools for structural and functional studies of RNA.  相似文献   

8.
Protected 2'-deoxy-2'-fluorouridine and 2'-deoxy-2'-fluorocytidine suitable for incorporation into oligonucleotides via the phosphoramidite approach have been prepared. Five modified and two unmodified oligonucleotides have been synthesized to investigate the regiospecific cleavage of a 5S RNA from Escherichia coli by RNase H. In order to show whether the modified oligonucleotides are able to hybridize with the RNA the physico-chemical properties (melting curves, CD spectra) of analogous DNA/oligodeoxyribonucleotide duplexes have been examined. The modified oligonucleotides are shown to form stable duplexes with a DNA-matrix which exist in an A-like form. Two of the modified probes containing four 2'-deoxy-2'-fluorocytidines or two 2'-deoxy-2'-fluorouridines direct the splitting by RNase H of only one phosphodiester bond of the RNA.  相似文献   

9.
The 20-mer bridged oligodeoxynucleotides containing short oligomers joined by the hexamethylenediol and hexaethylene glycol linkers were shown to form complementary DNA/DNA and RNA/DNA complexes whose thermostability depends on the length and number of the nonnucleotide linkers. Hybrid complexes of the bridged oligonucleotides proved to be substrates for the E. coli ribonuclease H. The presence of one-three nonnucleotide linkers in a 20-mer decreased the hydrolysis efficacy only 1.2-1.4-fold. It is the composition of the RNA cleavage products that was influenced the most significantly by the nonnucleotide linkers. RNase H simultaneously hydrolyzed the RNA 3'-ends of each hybrid duplex involving a bridged oligonucleotide. The presence of an inverted 3'-3'-phosphodiester bond at the 3'-end of the oligodeoxyribonucleotide only slightly affected the RNase H activity.  相似文献   

10.
Bacterial double-stranded RNA-specific RNase III recognizes the A-form of an RNA helix with little sequence specificity. In contrast, baker yeast RNase III (Rnt1p) selectively recognizes NGNN tetraloops even when they are attached to a B-form DNA helix. To comprehend the general mechanism of RNase III substrate recognition, we mapped the Rnt1p binding signal and directly compared its substrate specificity to that of both Escherichia coli RNase III and fission yeast RNase III (PacI). Rnt1p bound but did not cleave long RNA duplexes without NGNN tetraloops, whereas RNase III indiscriminately cleaved all RNA duplexes. PacI cleaved RNA duplexes with some preferences for NGNN-capped RNA stems under physiological conditions. Hydroxyl radical footprints indicate that Rnt1p specifically interacts with the NGNN tetraloop and its surrounding nucleotides. In contrast, Rnt1p interaction with GAAA-capped hairpins was weak and largely unspecific. Certain duality of substrate recognition was exhibited by PacI but not by bacterial RNase III. E. coli RNase III recognized RNA duplexes longer than 11 bp with little specificity, and no specific features were required for cleavage. On the other hand, PacI cleaved long, but not short, RNA duplexes with little sequence specificity. PacI cleavage of RNA stems shorter than 27 bp was dependent on the presence of an UU-UC internal loop two nucleotides upstream of the cleavage site. These observations suggest that yeast RNase IIIs have two recognition mechanisms, one that uses specific structural features and another that recognizes general features of the A-form RNA helix.  相似文献   

11.
To clarify the mechanism by which the RNA portion of a DNA/RNA hybrid is specifically hydrolyzed by ribonuclease H (RNase H), the binding of a DNA/RNA hybrid, a DNA/DNA duplex, or an RNA/RNA duplex to RNase HI from Escherichia coli was investigated by 1H-15N heteronuclear NMR. Chemical shift changes of backbone amide resonances were monitored while the substrate, a hybrid 9-mer duplex, a DNA/DNA 12-mer duplex, or an RNA/RNA 12-mer duplex was titrated. The amino acid residues affected by the addition of each 12-mer duplex were almost identical to those affected by the substrate hybrid binding, and resided close to the active site of the enzyme. The results reveal that all the duplexes, hybrid-, DNA-, and RNA-duplex, bind to the enzyme. From the linewidth analysis of the resonance peaks, it was found that the exchange rates for the binding were different between the hybrid and the other duplexes. The NMR and CD data suggest that conformational changes occur in the enzyme and the hybrid duplex upon binding.  相似文献   

12.
Ribonuclease HI (RNase H) is a member of the nucleotidyl-transferase superfamily and endo-nucleolytically cleaves the RNA portion in RNA/DNA hybrids and removes RNA primers from Okazaki fragments. The enzyme also binds RNA and DNA duplexes but is unable to cleave either. Three-dimensional structures of bacterial and human RNase H catalytic domains bound to RNA/DNA hybrids have revealed the basis for substrate recognition and the mechanism of cleavage. In order to visualize the enzyme’s interactions with duplex DNA and to establish the structural differences that afford tighter binding to RNA/DNA hybrids relative to dsDNA, we have determined the crystal structure of Bacillus halodurans RNase H in complex with the B-form DNA duplex [d(CGCGAATTCGCG)]2. The structure demonstrates that the inability of the enzyme to cleave DNA is due to the deviating curvature of the DNA strand relative to the substrate RNA strand and the absence of Mg2+ at the active site. A subset of amino acids engaged in contacts to RNA 2′-hydroxyl groups in the substrate complex instead bind to bridging or non-bridging phosphodiester oxygens in the complex with dsDNA. Qualitative comparison of the enzyme’s interactions with the substrate and inhibitor duplexes is consistent with the reduced binding affinity for the latter and sheds light on determinants of RNase H binding and cleavage specificity.  相似文献   

13.
The aim of this review is to draw a correlation between the structure of the DNA/RNA hybrid and its properties as a substrate for the RNase H, as well as to point the crucial structural requirements for the modified AONs to preserve their RNase H potency. The review is divided into the following parts: (1) mechanistic considerations, (2) target RNA folding-AON folding-RNase H assistance in AON/RNA hybrid formation, (3) carbohydrate modifications, (4) backbone modifications, (5) base modifications, (6) conjugated AONs, (7) importance of the tethered chromophore in AON for the AON/RNA hybrid interactions with the RNase H. The structural changes in the AON/RNA hybrid duplexes brought by different modifications of the sugar, backbone or base in the antisense strand, and the effect of these changes on the RNase H recognition of the modified substrates have been addressed. Only those AON modifications and the corresponding AON/RNA hybrids, which have been structurally characterized by spectroscopic means and functionally analyzed by their ability to elicit RNase H potency in comparison with the native counterpart have been presented here.  相似文献   

14.
15.
Inversion of configuration of the C2' position of RNA leads to a very unique nucleic acid structure: arabinonucleic acid (ANA). ANA, and its 2'-fluoro derivative (2'F-ANA) from hybrids with RNA that are capable of activating RNase H, resulting in cleavage of the RNA strand. In this paper, we review the properties of duplexes formed between ANA (or 2'F-ANA) and its RNA complement. These studies support the notion that RNase H is sensitive to the minor groove dimensions of the hybrid substrate.  相似文献   

16.
DNA replication and cellular survival requires efficient removal of RNA primers during lagging strand DNA synthesis. In eukaryotes, RNA primer removal is initiated by type 2 RNase H, which specifically cleaves the RNA portion of an RNA-DNA/DNA hybrid duplex. This conserved type 2 RNase H family of replicative enzymes shares little sequence similarity with the well-characterized prokaryotic type 1 RNase H enzymes, yet both possess similar enzymatic properties. Crystal structures and structure-based mutational analysis of RNase HII from Archaeoglobus fulgidus, both with and without a bound metal ion, identify the active site for type 2 RNase H enzymes that provides the general nuclease activity necessary for catalysis. The two-domain architecture of type 2 RNase H creates a positively charged binding groove and links the unique C-terminal helix-loop-helix cap domain to the active site catalytic domain. This architectural arrangement apparently couples directional A-form duplex binding, by a hydrogen-bonding Arg-Lys phosphate ruler motif, to substrate-discrimination, by a tyrosine finger motif, thereby providing substrate-specific catalytic activity. Combined kinetic and mutational analyses of structurally implicated substrate binding residues validate this binding mode. These structural and mutational results together suggest a molecular mechanism for type 2 RNase H enzymes for the specific recognition and cleavage of RNA in the RNA-DNA junction within hybrid duplexes, which reconciles the broad substrate binding affinity with the catalytic specificity observed in biochemical assays. In combination with a recent independent structural analysis, these results furthermore identify testable molecular hypotheses for the activity and function of the type 2 RNase H family of enzymes, including structural complementarity, substrate-mediated conformational changes and coordination with subsequent FEN-1 activity.  相似文献   

17.
Minasov G  Teplova M  Nielsen P  Wengel J  Egli M 《Biochemistry》2000,39(13):3525-3532
The origins of the substrate specificity of Escherichia coli RNase H1 (termed RNase H here), an enzyme that hydrolyzes the RNA strand of DNA-RNA hybrids, are not understood at present. Although the enzyme binds double-stranded RNA, no cleavage occurs with such duplexes [Lima, W. F., and Crooke, S. T. (1997) Biochemistry 36, 390]. Therefore, the hybrid substrates may not adopt a canonical A-form geometry. Furthermore, RNase H is exquisitely sensitive to chemical modification of the DNA strands in hybrid duplexes. This is particularly relevant to the RNase H-dependent pathway of antisense action. Thus, only very few of the modifications currently being evaluated as antisense therapeutics are tolerated by the enzyme, among them phosphorothioate DNA (PS-DNA). Recently, hybrids of RNA and arabinonucleic acid (ANA) as well as the 2'F-ANA analogue were shown to be substrates of RNase H [Damha, M. J., et al. (1998) J. Am. Chem. Soc. 120, 12976]. Using X-ray crystallography, we demonstrate here that ANA analogues, such as 2'F-ANA [Berger, I., et al. (1998) Nucleic Acids Res. 26, 2473] and [3.3.0]bicyclo-ANA (bc-ANA), may not be able to adopt sugar puckers that are compatible with pure A- or a B-form duplex geometries, but rather prefer the intermediate O4'-endo conformation. On the basis of the observed conformations of these ANA analogues in a DNA dodecamer duplex, we have modeled a duplex of an all-C3'-endo RNA strand and an all-O4'-endo 2'F-ANA strand. This duplex exhibits a minor groove width that is intermediate between that of A-form RNA and B-form DNA, a feature that may be exploited by the enzyme in differentiating between RNA duplexes and DNA-RNA hybrids. Therefore, the combination of the established structural and functional properties of ANA analogues helps settle existing controversies concerning the discrimination of substrates by RNase H. Knowlegde of the structure of an analogue that exhibits enhanced RNA affinity while not interfering with RNase H activity may prove helpful in the design of future antisense modifications.  相似文献   

18.
Inversion of configuration of the C2′ position of RNA leads to a very unique nucleic acid structure: arabinonucleic acid (ANA). ANA, and its 2′-fluoro derivative (2′ F-ANA) form hybrids with RNA that are capable of activating RNase H, resulting in cleavage of the RNA strand. In this paper, we review the properties of duplexes formed between ANA (or 2′F-ANA) and its RNA complement. These studies support the notion that RNase H is sensitive to the minor groove dimensions of the hybrid substrate.  相似文献   

19.
It is demonstrated that 16S rRNA, complementary-addressed labelled with 2',3'-O-[4-N-methyl-N-(2-chloroethyl)-amino]benzylidene derivatives of oligonucleotides d(pACCTTGTT)rA and d(pTTTGCTCCCC)rA, can be cleaved by RNase H within the adducts, resulted from the modification. Comparative study of the 16S rRNA cleavage with RNase H within the above--mentioned covalent adducts, on the one hand, and within heteroduplexes with the same oligodeoxyribonucleotides, on the other, showed that(i) the complementary-addressed modification proceeds both in perfect and non-per ect complexes; (ii) 16S rRNA is cleaved by RNase H within both perfect and non-perfect complexes resulted from the alkylation, non-perfect complexes being considerably stabilized by the covalent bond between the reagent and the RNA; (iii) non-perfect complexes of 16S rRNA with the free oligodeoxyribonucleotides are unstable even at the high oligonucleotide concentration, so that no cleavage of 16S rRNA in such duplexes is observed. The approach based on cleavage of RNA within covalent adducts resulted from the complementary-addressed RNA modification may be used for fragmentation of RNA molecule in the addressed reagent's binding site.  相似文献   

20.
Tadokoro T  Chon H  Koga Y  Takano K  Kanaya S 《The FEBS journal》2007,274(14):3715-3727
The gene encoding a bacterial type 1 RNase H, termed RBD-RNase HI, was cloned from the psychrotrophic bacterium Shewanella sp. SIB1, overproduced in Escherichia coli, and the recombinant protein was purified and biochemically characterized. SIB1 RBD-RNase HI consists of 262 amino acid residues and shows amino acid sequence identities of 26% to SIB1 RNase HI, 17% to E. coli RNase HI, and 32% to human RNase H1. SIB1 RBD-RNase HI has a double-stranded RNA binding domain (RBD) at the N-terminus, which is commonly present at the N-termini of eukaryotic type 1 RNases H. Gel mobility shift assay indicated that this domain binds to an RNA/DNA hybrid in an isolated form, suggesting that this domain is involved in substrate binding. SIB1 RBD-RNase HI exhibited the enzymatic activity both in vitro and in vivo. Its optimum pH and metal ion requirement were similar to those of SIB1 RNase HI, E. coli RNase HI, and human RNase H1. The specific activity of SIB1 RBD-RNase HI was comparable to that of E. coli RNase HI and was much higher than those of SIB1 RNase HI and human RNase H1. SIB1 RBD-RNase HI showed poor cleavage-site specificity for oligomeric substrates. SIB1 RBD-RNase HI was less stable than E. coli RNase HI but was as stable as human RNase H1. Database searches indicate that several bacteria and archaea contain an RBD-RNase HI. This is the first report on the biochemical characterization of RBD-RNase HI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号