首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CLCA proteins (calcium-activated chloride channel regulators) have been linked to diseases involving secretory disorders, including cystic fibrosis (CF) and asthma. They have been shown to modulate endogenous chloride conductance, possibly by acting as metalloproteases. Based on the differential processing of the subunits after posttranslational cleavage, two subgroups of CLCA proteins can be distinguished. In one subgroup, both subunits are secreted, in the other group, the carboxy-terminal subunit possesses a transmembrane segment, resulting in shedding of only the amino-terminal subunit. Recent data on the post-translational cleavage and proteolytic activity of CLCA are limited to secreted CLCA. In this study, we characterized the cleavage of mCLCA6, a murine CLCA possessing a transmembrane segment. As for secreted CLCA, the cleavage in the endoplasmic reticulum was not observed for a protein with the E157Q mutation in the HEXXH motif of mCLCA6, suggesting that this mutant protein and secreted CLCA family members share a similar autoproteolytic cleavage mechanism. In contrast to secreted CLCA proteins with the E157Q mutation, the uncleaved precursor of the mCLCA6E157Q mutant reached the plasma membrane, where it was cleaved and the amino-terminal subunit was shed into the supernatant. Using crude membrane fractions, we showed that cleavage of the mCLCA6E157Q protein is zinc-dependent and sensitive to metalloprotease inhibitors, suggesting secondary cleavage by a metalloprotease. Interestingly, anchorage of mCLCA6E157Q to the plasma membrane is not essential for its secondary cleavage, because the mCLCA6Δ™E157Q mutant still underwent cleavage. Our data suggest that the processing of CLCA proteins is more complex than previously recognized.  相似文献   

2.
Both cleavage products of the mCLCA3 protein are secreted soluble proteins   总被引:4,自引:0,他引:4  
Members of the chloride channels, calcium-activated (CLCA) family of proteins and in particular the murine mCLCA3 (alias gob-5) and its human ortholog hCLCA1 have been identified as clinically relevant molecules in diseases with secretory dysfunctions including asthma and cystic fibrosis. Initial studies have indicated that these proteins evoke a calcium-activated chloride conductance when transfected into human embryonic kidney cells 293 cells. However, it is not yet clear whether the CLCA proteins form chloride channels per se or function as mediators of other, yet unknown chloride channels. Here, we present a systematic biochemical analysis of the posttranslational processing and intracellular trafficking of the mCLCA3 protein. Pulse-chase experiments after metabolic protein labeling of mCLCA3-transfected COS-1 or human embryonic kidney 293 cells revealed cleavage of a primary 110-kDa mCLCA3 translation product in the endoplasmic reticulum into a 75-kDa amino-terminal and a 35-kDa carboxyl-terminal protein that were glycosylated and remained physically associated with each other. Confocal fluorescent analyses identified both cleavage products in vesicles of the secretory pathway. Neither cleavage product was associated with the cell membrane at any time. Instead, both subunits were fully secreted into the extracellular environment as a soluble complex of two glycoproteins. These results suggest that the two mCLCA3 cleavage products cannot form an anion channel on their own but may instead act as extracellular signaling molecules. Furthermore, our results point toward significant structural differences between mCLCA3 and its human ortholog, hCLCA1, which is thought to be a single, non-integral membrane protein.  相似文献   

3.
Several members of the CLCA family of proteins, originally named chloride channels, calcium-activated, have been shown to modulate chloride conductance in various cell types via an unknown mechanism. Moreover, the human (h) hCLCA1 is thought to modulate the severity of disease in asthma and cystic fibrosis (CF) patients. All CLCA proteins are post-translationally cleaved into two subunits, and recently, a conserved HEXXH zinc-binding amino acid motif has been identified, suggesting a role for CLCA proteins as metalloproteases. Here, we have characterized the cleavage and autoproteolytic activity of the murine model protein mCLCA3, which represents the murine orthologue of human hCLCA1. Using crude membrane fractions from transfected HEK293 cells, we demonstrate that mCLCA3 cleavage is zinc-dependent and exclusively inhibited by cation-chelating metalloprotease inhibitors. Cellular transport and secretion were not affected in response to a cleavage defect that was introduced by the insertion of an E157Q mutation within the HEXXH motif of mCLCA3. Interspecies conservation of these key results was further confirmed with the porcine (p) orthologue of hCLCA1 and mCLCA3, pCLCA1. Importantly, the mCLCA3E157Q mutant was cleaved after co-transfection with the wild-type mCLCA3 in HEK293 cells, suggesting that an intermolecular autoproteolytic event takes place. Edman degradation and MALDI-TOF-MS of the protein fragments identified a single cleavage site in mCLCA3 between amino acids 695 and 696. The data strongly suggest that secreted CLCA proteins have zinc-dependent autoproteolytic activity and that they may cleave additional proteins.  相似文献   

4.
CLCA (chloride channel, calcium-activated) proteins are novel pulmonary vascular addresses for blood-borne, lung-metastatic cancer cells. They facilitate vascular arrest of cancer cells via adhesion to beta4 integrin and promote early, intravascular, metastatic growth. Here we identify the interacting binding domains of endothelial CLCA proteins (e.g. hCLCA2, mCLCA5, mCLCA1, and bCLCA2) and beta4 integrin. Endothelial CLCAs share a common beta4-binding motif (beta4BM) in their 90- and 35-kDa subunits of the sequence F(S/N)R(I/L/V)(S/T)S, which is located in the second extracellular domain of the 90-kDa CLCA and near the N terminus of the 35-kDa CLCA, respectively. Using enzyme-linked immunosorbent, pull-down, and adhesion assays, we showed that glutathione S-transferase fusion proteins of beta4BMs from the 90- and 35-kDa CLCA subunits bind to the beta4 integrin in a metal ion-dependent manner. Fusion proteins from fibronectin and the integrins beta1 and beta3 served as negative controls. beta4BM fusion proteins competitively blocked the beta4/CLCA adhesion and prevented lung colonization of MDA-MB-231 breast cancer cells. A disrupted beta4BM in hCLCA1, which is not expressed in endothelia, failed to interact with beta4 integrin. The corresponding CLCA-binding domain of the beta4 integrin is localized to the specific determining loop (SDL). Again enzyme-linked immunosorbent, pull-down, and adhesion assays were used to confirm the interaction with CLCA proteins using a glutathione S-transferase fusion protein representing the C-terminal two-thirds of beta4 SDL (amino acids 184-203). A chimeric beta4 integrin in which the indicated SDL sequence had been replaced with the corresponding sequence from the beta1 integrin failed to bind hCLCA2. The dominance of the CLCA ligand in beta4 activation and outside-in signaling is discussed in reference to our previous report that beta4/CLCA ligation elicits selective signaling via focal adhesion kinase to promote metastatic growth.  相似文献   

5.
6.
Pompe's disease is caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). GAA is synthesized as a 110-kDa precursor containing N-linked carbohydrates modified with mannose 6-phosphate groups. Following trafficking to the lysosome, presumably via the mannose 6-phosphate receptor, the 110-kDa precursor undergoes a series of complex proteolytic and N-glycan processing events, yielding major species of 76 and 70 kDa. During a detailed characterization of human placental and recombinant human GAA, we found that the peptides released during proteolytic processing remained tightly associated with the major species. The 76-kDa form (amino acids (aa) 122-782) of GAA is associated with peptides of 3.9 kDa (aa 78-113) and 19.4 kDa (aa 792-952). The 70-kDa form (aa 204-782) contains the 3.9- and 19.4-kDa peptide species as well as a 10.3-kDa species (aa 122-199). A similar set of proteolytic fragments has been identified in hamster GAA, suggesting that the multicomponent character is a general phenomenon. Rabbit anti-peptide antibodies have been generated against sequences in the proteolytic fragments and used to demonstrate the time course of uptake and processing of the recombinant GAA precursor in Pompe's disease fibroblasts. The results indicate that the observed fragments are produced intracellularly in the lysosome and not as a result of nonspecific proteolysis during purification. These data demonstrate that the mature forms of GAA characterized by polypeptides of 76 or 70 kDa are in fact larger molecular mass multicomponent enzyme complexes.  相似文献   

7.
Two new calcium-activated chloride channel (CLCA) family members, mCLCA5 and mCLCA6, have been cloned from mouse eye and intestine, respectively. mCLCA5 is highly homologous to hCLCA2, and mCLCA6 is highly homologous to hCLCA4. mCLCA5 is widely expressed with strong expression in eye and spleen, whereas mCLCA6 is primarily expressed in intestine and stomach. mCLCA6 is also expressed as a splice variant lacking exon 8 and part of exon 10 in intestine and stomach. Transfection of tsA201 cells with enhanced green fluorescent protein-tagged versions of the three cDNAs reveals protein products of 155 and 65 kDa for mCLCA5 and mCLCA6 and 145 and 65 kDa for the mCLCA6 splice variant. In vitro translation of mCLCA5 generates a 90-kDa protein that does not appear to be glycosylated. mCLCA6 also generates a 90-kDa protein that is glycosylated to a 110-kDa product, whereas the mCLCA6 splice variant generates an 80-kDa product that is 100 kDa after glycosylation. Treatment of enhanced green fluorescent protein-tagged mCLCA6 with PNGase F (peptide: N-glycosidase F) to remove N-linked glycosyl groups shows a reduction in size of the 65 kDa product to 60 kDa. Consistent with the hypothesis that mCLCA5, mCLCA6, and its splice variant encode calcium-activated chloride channels, in HEK293 cells expressing CLCAs ionomycin-evoked increases in intracellular calcium stimulated a current that reversed near Cl(-) equilibrium potential, E(Cl). Furthermore, these currents were inhibited by the chloride channel blocker niflumic acid. Given the prominent role of hCLCA2 in cancer cell adhesion and the unique high level of expression of hCLCA4 in brain, the identification of their murine counterparts presents the opportunity to clarify the role of CLCAs in disease and normal cell physiology.  相似文献   

8.
CLCA proteins represent a large family of proteins widely expressed in mammalian tissues with a unique expression pattern for each family member analyzed so far. However, their functions in normal and diseased tissues are poorly understood. Here, we present the cellular expression pattern of mCLCA5 in murine tissues using immunohistochemistry, confocal laser scanning microscopy and immune electron microscopy with specific antibodies and RT-qPCR following laser-capture microdissection. The mCLCA5 protein was localized to granular layer keratinocytes of virtually all stratified squamous epithelia of the body. Biochemical protein characterizations revealed that the amino-terminal cleavage product is fully secreted by the cell, while the carboxy-terminal cleavage product remains associated with the cell. The results imply that mCLCA5 may play a role in maturation and keratinization of squamous epithelial cells.  相似文献   

9.
mCLCA1/2 are members of the CLCA protein family that are widely expressed in secretory epithelia, but their putative physiological role still awaits elucidation. mCLCA1/2 have 95% amino acid identity, but currently no specific antibody is available. We have generated a rabbit polyclonal antibody (pAb849) against aa 424–443 of mCLCA1/2. In HEK293 cells transfected with mCLCA1; pAb849 detected two specific protein bands at ∼125 kDa and 90 kDa, representing full-length precursor and N-terminal cleavage product, respectively. pAb849 also immunoprecipitated mCLCA1 and labeled the protein by immunostaining. But pAb849 crossreacted with mCLCA3/4/6 despite ≤80% amino acid identity of the antigenic epitope. We therefore investigated the cellular localization of mCLCA1/2 in epithelial tissues, which do not express mCLCA3/4/6 (salivary glands, pancreas, kidney) or express mCLCA3/6 with known localization (mucus cells of stomach and small intestine; villi of small intestine). mCLCA1/2 mRNA and protein expression were found in both parotid and submandibular gland, and immunohistochemistry revealed labeling in parotid acinar cells, in the luminal membrane of parotid duct cells, and in the duct cells of submandibular gland. In exocrine pancreas, mCLCA1/2 expression was restricted to acinar zymogen granule membranes, as assessed by immunoblotting, immunohistochemistry, and preembedding immunoperoxidase and immunogold electron microscopy. Moreover, mCLCA1/2 immunolabeling was present in luminal membranes of gastric parietal cells and small intestinal crypt enterocytes, whereas in the kidney, mCLCA1/2 protein was localized to proximal and distal tubules. The apical membrane localization and overall distribution pattern of mCLCA1/2 favor a transmembrane protein implicated in transepithelial ion transport and protein secretion. (J Histochem Cytochem 58:653–668, 2010)  相似文献   

10.
Proteins of the CLCA gene family have been proposed to mediate calcium-activated chloride currents. In this study, we used detailed bioinformatics analysis and found that no transmembrane domains are predicted in hCLCA1 or mCLCA3 (Gob-5). Further analysis suggested that they are globular proteins containing domains that are likely to be involved in protein-protein interactions. In support of the bioinformatics analysis, biochemical studies showed that hCLCA1 and mCLCA3, when expressed in HEK293 cells, could be removed from the cell surface and could be detected in the extracellular medium, even after short incubation times. The accumulation in the medium was shown to be brefeldin A-sensitive, demonstrating that hCLCA1 is constitutively secreted. The N-terminal cleavage products of hCLCA1 and mCLCA3 could be detected in bronchoalveolar lavage fluid taken from asthmatic subjects and ovalbumin-challenged mice, demonstrating release from cells in a physiological setting. We conclude that hCLCA1 and mCLCA3 are non-integral membrane proteins and therefore cannot be chloride channels in their own right.  相似文献   

11.
The CLCA family of proteins consists of a growing number of structurally and functionally diverse members with distinct expression patterns in different tissues. Several CLCA homologs have been implicated in diseases with secretory dysfunctions in the respiratory and intestinal tracts. Here we present biochemical protein characterization and details on the cellular and subcellular expression pattern of the murine mCLCA6 using specific antibodies directed against the amino- and carboxy-terminal cleavage products of mCLCA6. Computational and biochemical characterizations revealed protein processing and structural elements shared with hCLCA2 including anchorage in the apical cell membrane by a transmembrane domain in the carboxy-terminal subunit. A systematic light- and electron-microscopic immunolocalization found mCLCA6 to be associated with the microvilli of non-goblet cell enterocytes in the murine small and large intestine but in no other tissues. The expression pattern was confirmed by quantitative RT-PCR following laser-capture microdissection of relevant tissues. Confocal laser scanning microscopy colocalized the mCLCA6 protein with the cystic fibrosis transmembrane conductance regulator CFTR at the apical surface of colonic crypt cells. Together with previously published functional data, the results support a direct or indirect role of mCLCA6 in transepithelial anion conductance in the mouse intestine.  相似文献   

12.
Members of the recently discovered chloride channels, calcium-activated (CLCA) gene family are thought to contribute to transmembrane trafficking of anions and other cellular functions. Previous northern blot and in situ hybridization studies revealed expression of the murine putative chloride channel mCLCA1 (alias mCaCC) in numerous epithelia and few other cell types. However, the subsequent cloning of mCLCA2 which shares 96% cDNA sequence identity with mCLCA1 suggested that the distribution pattern proposed for mCLCA1 in fact represented the sum of both mRNA species. In this study, a real-time RT-quantitative PCR assay was established to specifically quantify mCLCA1 and mCLCA2 expression in 19 pre- and 44 postnatal murine tissues. Different expression levels of mCLCA1 and mCLCA2 were found in most tissues analyzed. Particularly strong and virtually exclusive expression was found for mCLCA1 in spleen and bone marrow and for mCLCA2 in lactating and involuting mammary glands. In contrast, other tissues including intestine and trachea were found to express equally moderate levels of both homologues. Moreover, mCLCA2, but not mCLCA1, seems to be involved in stage-specific organogenesis in fetal tissues. These results indicate that, in spite of their extremely close sequence homology, mCLCA1 and mCLCA2 are involved in different, yet unidentified pathways.  相似文献   

13.
The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.  相似文献   

14.
15.
The putative anion channel mCLCA3 (alias gob-5) is the third murine member of the recently discovered family of calcium-activated chloride channels (CLCA family). Preliminary data suggest that mCLCA3 may play a significant role in diseases with secretory dysfunctions, including asthma and cystic fibrosis. In this study, the mCLCA3 protein was characterized biochemically and its cellular and subcellular distribution pattern was established in normal murine tissues. Polyclonal rabbit antibodies were generated and affinity-immunopurified using synthetic oligopeptides corresponding to the extracellular amino terminus of the mCLCA3 polypeptide. After in vitro translation and glycosylation, proteinase K protection assay, and heterologous expression in COS-7 or HEK 293 cells, SDS-PAGE and immunoblotting revealed a protein structure similar to that of previously characterized CLCA proteins. A systematic light, confocal laser scanning, and transmission electron microscopic immunolocalization study, including virtually all murine tissues, identified the mCLCA3 protein exclusively associated with mucin granule membranes of gastrointestinal, respiratory, and uterine goblet cells and other mucin-producing cells. The results suggest that mCLCA3 may be involved in the synthesis, condensation, or secretion of mucins.  相似文献   

16.
17.
E H Ball  T Kovala 《Biochemistry》1988,27(16):6093-6098
Caldesmon is a widely distributed contractile protein that occurs in both a high molecular weight [120-150-kilodalton (kDa)] and a low molecular weight (71-80-kDa) form, depending on the tissue. The structural relationship between these two forms was examined by mapping techniques. Partial cyanogen bromide cleavage in conjunction with sodium dodecyl sulfate gel electrophoresis was used to construct a map of the cleavage points and determine the relative position of the fragments in a high molecular weight caldesmon from chicken gizzard (caldesmon125). By use of this map, markers for different regions of the protein were obtained: Antibodies directed toward certain areas were prepared by affinity purification, and specific 125I-labeled tryptic peptides were found to originate from terminal cyanogen bromide fragments. Mapping of a lower molecular weight form of caldesmon (caldesmon72 from chicken liver) revealed the presence of sequences located in both ends of caldesmon125. A terminal 38-kDa fragment of both proteins was apparently identical on the basis of arrangement of cleavage sites, antibody reactivity, and iodopeptide mapping. Fragments from the other end of both proteins exhibited an identical pattern of peptides. These results show that it is sequences located in the central area of caldesmon125 which are missing in caldesmon72, indicating that the smaller molecule is not simply a proteolytic product of the larger. The two forms of caldesmon may be derived from separate genes or by alternative splicing from a single gene.  相似文献   

18.
Pig models of cystic fibrosis (CF) have recently been established that are expected to mimic the human disease closer than mouse models do. The human CLCA (originally named chloride channels, calcium-activated) member hCLCA4 is considered a potential modifier of disease severity in CF, but its murine ortholog, mCLCA6, is not expressed in the mouse lung. Here, we have characterized the genomic structure, protein processing, and tissue expression patterns of the porcine ortholog to hCLCA4, pCLCA4a. The genomic structure and cellular protein processing of pCLCA4a were found to closely mirror those of hCLCA4 and mCLCA6. Similar to human lung, pCLCA4a mRNA was strongly expressed in porcine lungs, and the pCLCA4a protein was immunohistochemically detected on the apical membranes of tracheal and bronchial epithelial cells. This stands in sharp contrast to mouse mCLCA6, which has been detected exclusively in intestinal epithelia but not the murine lung. The results may add to the understanding of species-specific differences in the CF phenotype and support the notion that the CF pig model may be more suitable than murine models to study the role of hCLCA4.  相似文献   

19.
The two proteins of the erythropoietin receptor are structurally similar   总被引:6,自引:0,他引:6  
The structure of the erythropoietin receptor has been identified in this laboratory as two proteins of 100 and 85 kDa by cross-linking 125I-erythropoietin (125I-EP) to the surface of erythroid cells purified from the spleens of mice infected with the anemia strain of Friend virus. This study investigates the relatedness of these two proteins and the possibility that these proteins are subunits of the functional receptor for EP. Other workers have claimed that the 100- and 85-kDa proteins are bridged by disulfide bonds. This most likely is an artifact due to the insolubility of the cross-linked membrane. Proteolytic digestion by the method of Cleveland (Cleveland, D. W., Fischer, S. G., Kirschner, M. W., and Laemmli, U. K. (1977) J. Biol. Chem. 252, 1102-1106) resulted in identical fragments from the 100- and 85-kDa proteins, which strongly suggests that the primary amino acid sequence of these two proteins is similar if not identical. Increasing the number of protease inhibitors during the preparation of membranes and the binding and cross-linking steps increased the ratio of 100-kDa protein labeled compared to the 85-kDa protein. Together these results suggest that the 85-kDa protein is derived by proteolytic cleavage of the 100-kDa receptor for EP. It is not clear whether the 100-kDa protein can bind EP in the absence of the 85-kDa protein.  相似文献   

20.
The N-terminal 70-kDa fragment of human plasma fibronectin, purified from a cathepsin D digest, is characterized by lack of stability. It is processed proteolytically during incubation in the presence of Ca2+ into 27-kDa N-terminal heparin-binding and 45-kDa collagen-binding domains. The N-terminal residue in the 27-kDa fragment was blocked as in native fibronectin. The 45-kDa fragments began with the sequences AAVYQP, AVYQP and VYQP (residues 260, 261, 262-265 of fibronectin) that correspond to the beginning of the collagen-binding domain. In the presence of Ca2+ the purified 27-kDa fragment underwent further processing finally leading to the cleavage of the bond K85-D86 and to the simultaneous appearance of a specific proteolytic activity. Inhibition studies suggests that the newly generated enzyme is a Ca(2+)-dependent serine proteinase. Among all assayed matrix proteins, the newly generated enzyme cleaves native fibronectin and its fragments. It is proposed that this fibronectinase may originate from the N-terminal domain of fibronectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号