首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enrichment cultures with enantiomeric 2-(4-sulfophenyl)butyrate (SPB) as the sole added source(s) of carbon and energy for growth yielded a pure culture of a degradative bacterium, which was identified as Delftia acidovorans SPB1. The organism utilized the enantiomers sequentially. R-SPB was utilized first (specific growth rate [mu] = 0.28 h(-1)), with transient excretion of an unknown intermediate, which was identified as 4-sulfocatechol (4SC). Utilization of S-SPB was slower (mu = 0.016 h(-1)) and was initiated only after the first enantiomer was exhausted. Suspensions of cells grown in S-SPB excreted 4SC, so metabolism of the two enantiomers converged at 4SC. The latter was degraded by ortho cleavage via 3-sulfo-cis,cis-muconate. Strain SPB1 grew with 4SC and with 1-(4-sulfophenyl)octane (referred to herein as model LAS) but not with commercial linear alkylbenzenesulfonate (LAS) surfactant, which is subterminally substituted but nontoxic. It would appear that metabolism of the model LAS does not represent metabolism of commercial LAS.  相似文献   

2.
Genes thought to encode (a) the regulator of taurine catabolism under carbon-limiting or nitrogen-limiting conditions and (b) taurine dehydrogenase were found in the genome of Rhodopseudomonas palustris. The organism utilized taurine quantitatively as a sole source of nitrogen (but not of carbon) for aerobic and photoheterotrophic growth. No sulfate was released, and the C-sulfonate bond was recovered stoichiometrically as sulfoacetate, which was identified by mass spectrometry. An inducible sulfoacetaldehyde dehydrogenase was detected. R. palustris thus contains a pathway to generate a natural product that was previously believed to be formed solely from sulfoquinovose.The senior author (AMC) would like to express his thanks for the rewarding experience of doing postdoctoral research in the laboratory of Prof. H.-G. Schlegel.  相似文献   

3.
Enrichment cultures with enantiomeric 2-(4-sulfophenyl)butyrate (SPB) as the sole added source(s) of carbon and energy for growth yielded a pure culture of a degradative bacterium, which was identified as Delftia acidovorans SPB1. The organism utilized the enantiomers sequentially. R-SPB was utilized first (specific growth rate [μ] = 0.28 h−1), with transient excretion of an unknown intermediate, which was identified as 4-sulfocatechol (4SC). Utilization of S-SPB was slower (μ = 0.016 h−1) and was initiated only after the first enantiomer was exhausted. Suspensions of cells grown in S-SPB excreted 4SC, so metabolism of the two enantiomers converged at 4SC. The latter was degraded by ortho cleavage via 3-sulfo-cis,cis-muconate. Strain SPB1 grew with 4SC and with 1-(4-sulfophenyl)octane (referred to herein as model LAS) but not with commercial linear alkylbenzenesulfonate (LAS) surfactant, which is subterminally substituted but nontoxic. It would appear that metabolism of the model LAS does not represent metabolism of commercial LAS.  相似文献   

4.
Organosulfonates are widespread in the environment, both as natural products and as xenobiotics; and they generally share the property of chemical stability. A wide range of phenomena has evolved in microorganisms able to utilize the sulfur or the carbon moiety of these compounds; and recent work has centered on bacteria. This Mini-Review centers on bacterial catabolism of the carbon moiety in the C2-sulfonates and the fate of the sulfonate group. Five of the six compounds examined are subject to catabolism, but information on the molecular nature of transport and regulation is based solely on sequencing data. Two mechanisms of desulfonation have been established. First, there is the specific monooxygenation of ethanesulfonate or ethane-1,2-disulfonate. Second, the oxidative, reductive and fermentative modes of catabolism tend to yield the intermediate sulfoacetaldehyde, which is now known to be desulfonated to acetyl phosphate by a thiamin-diphosphate-dependent acetyltransferase. This enzyme is widespread and at least three subgroups can be recognized, some of them in genomic sequencing projects. These data emphasize the importance of acetyl phosphate in bacterial metabolism. A third mechanism of desulfonation is suggested: the hydrolysis of sulfoacetate.  相似文献   

5.
Aniline-degraders were isolated from activated sludge and environmental samples and classified into eight phylogenetic groups. Seven groups were classified into Gram-negative bacteria, such as Acidovorax sp., Acinetobacter sp., Delftia sp., Comamonas sp., and Pseudomonas sp., suggesting the possible dominance of Gram-negative aniline-degraders in the environment. Aniline degradative genes were cloned from D. acidovorans strain 7N, and the nucleotide sequence of the 8,039-bp fragment containing eight open reading frames was determined. Their deduced amino acid sequences showed homologies to glutamine synthetase (GS)-like protein, glutamine amidotransferase (GA)-like protein, large and small subunits of aniline dioxygenase, reductase, LysR-type regulator, small ferredoxin-like protein, and catechol 2,3-dioxygenase, suggesting a high similarity of this gene cluster to those in P. putida strain UCC22 and Acinetobacter sp. strain YAA. Polymerase chain reaction (PCR) and sequencing analyses of GS-like protein gene segments of other Gram-negative bacteria suggested that Gram-negative bacteria have aniline degradative gene that can be divided into two distinctive groups.  相似文献   

6.
The ability of Delftia acidovorans to incorporate a broad range of 3-hydroxyvalerate (3HV) monomers into polyhydroxyalkanoate (PHA) copolymers was evaluated in this study. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] containing 0–90 mol% of 3HV was obtained when a mixture of sodium 3-hydroxybutyrate and sodium valerate was used as the carbon sources. Transmission electron microscopy analysis revealed an interesting aspect of the P(3HB-co-3HV) granules containing high molar ratios of 3HV whereby, the copolymer granules were generally larger than those of poly(3-hydroxybutyrate) [P(3HB)] granules, despite having almost the same cellular PHA contents. The large number of P(3HB-co-3HV) granules occupying almost the entire cell volume did not correspond to a higher amount of polymer by weight. This indicated that the granules of P(3HB-co-3HV) contain polymer chains that are loosely packed and therefore have lower density than P(3HB) granules. It was also interesting to note that a decrease in the length of the side chain from 3HV to 4-hydroxybutyrate (4HB) corresponded to an increase in the density of the respective PHA granules. The presence of longer side chain monomers (3HV) in the PHA structure seem to exhibit steric effects that prevent the polymer chains in the granules from being closely packed. The results reported here have important implications on the maximum ability of bacterial cells to accumulate PHA containing monomers with longer side chain length.  相似文献   

7.
In this study, one bacterial strain, ESM-1, was isolated from rhizosphere of Eruca sativa, growing in Al Hofouf, Saudia Arabia, after enrichment with methanol as a sole carbon and energy source in a batch culture. ESM-1 was characterized by a polyphasic approach. The strain was identified as Delftia acidovorans at similarity level of 99.9% of the 16S rRNA gene sequences. Results of the Biolog Gen III MicroPlate test system showed that strain ESM-1 reacted positively to 47 (50%) including the one-carbon compound formic acid, and partially positive to 6 (∼6.4%) out of the 94 different the traits examined. The total cellular fatty acids composition of the strain ESM-1 was (C16:1ω7c/C16:1ω6c) and C16:0) and matched that of Delftia acidovorans at a similarity index of 0.9, providing a robustness to the ESM-1 identification. Furthermore, ESM-1 displayed a complex polar lipid profile consisting of phosphatidylethanolamine, phosphatidylglycerol, glycolipid, aminolipid, in addition to uncharacterized lipids. The DNA G+C content of the strain was 66.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain ESM1-1 was clearly clustered within the Delftia clade and constructed a monophyletic subcluster with Delftia acidovorans NBRC14950. The results addressed that ESM-1 is a facultative methylotrophic bacterium indigenous to Al Hofouf region and opens the door for potential biotechnological applications (e.g., bioremediation) of this strain, in future. Additionally, these findings assure that the total cellular fatty acid analysis and 16S rRNA gene are reliable tool for bacterial characterization and identification.  相似文献   

8.
The present investigation showed that active processes were involved in the uptake of 2,4-dichlorophenoxyacetate (2,4-D) by Delftia acidovorans MC1. With 2,4-D-grown cells, uptake at pH 6.8 was highly affine and showed a complex pattern-forming intermediary plateau at 20–100 μM 2,4-D. The kinetics became increasingly sigmoidal with raising of the pH to 7.5 and 8.5, and complexity disappeared. The apparent maximum was obtained at around 400 μM 2,4-D at either pH, and amounted to 15–20 nmol/min*mg protein. Higher substrate concentrations resulted in significant inhibition. With cells grown on (RS)-2-(2,4-dichlorophenoxy)propionate, 2,4-D uptake increased significantly and reached 45 nmol/min*mg, hinting at induction of a specific carrier(s). The kinetic characteristics made it apparent that several proteins contribute to 2,4-D uptake in MC1. An open reading frame was detected which has similarity to genes encoding major facilitator superfamily (MFS) transporters. Mutant strains that lacked this gene showed altered kinetics with decreased affinity to 2,4-D at pH 6.8. A mutant with complete deficiency in phenoxyalkanoate utilization showed an almost linear uptake pattern hinting at sole diffusion. Cloning of tfdK encoding a specific transporter for 2,4-D resulted in an increased uptake rate and, above all, higher affinity at slightly alkaline conditions due to hyperbolic kinetics. The presence of carbonylcyanide m-chlorophenylhydrazone led to the subsequent strong inhibition of 2,4-D uptake, suggesting proton symport as the likely active mechanism.  相似文献   

9.
The functional properties of the anion-selective porin Omp32 from the bacterium Delftia acidovorans, formerly Comamonas acidovorans, are determined by the particularly narrow channel constriction and the electrostatic field inside and outside the pore. A cluster of arginines (Arg 38, Arg 75, and Arg 133) determines the electrostatic field close to the constriction zone. Stacked amino acids carrying charges are prone to drastic pK(a) shifts. However, optimized calculations of the titration behavior of charged groups, based on the finite-difference Poisson-Boltzmann technique, suggest that all the arginines are charged at physiological pH. Protonation of the clustered arginines is stabilized by one buried glutamate residue (Glu 58), which is strongly interacting with Arg 75 and Arg 38. This functional arrangement of three charged amino acid residues is of general significance because it is found in the constriction zones of all known 16-stranded porins from the alpha-, beta-, and gamma-proteobacteria.  相似文献   

10.
Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain’s degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (μmax) of 0.158 h−1. The half-maximum rate-associated substrate concentration (Ks) was 45 μM. At pH 8.5 μmax was only 0.05 h−1 and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that μmax with dichlorprop was around 0.2 h−1 at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with μmax of 0.147 h−1 and Ks of 267 μM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 μM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)−2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h−1 at pH 6.8 and up to D = 0.2 h−1 at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.  相似文献   

11.
The polyhydroxyalkanoate (PHA) synthase (PhaC(Da)) from Delftia acidovorans DS-17 (formerly Comamonas acidovorans) has a unique large insertion consisting of 40 amino acid residues in the alpha/beta hydrolase fold region. In order to examine whether this insertion is necessary for enzyme function, we generated a mutant gene where the nucleotides encoding the insertion sequence were deleted [phaC(Da)del(342-381)]. The ability of the mutant PhaC(Da) lacking the insertion sequence to produce PHA in recombinant Escherichia coli JM109 was compared with that of wild-type PhaC(Da). The results revealed that the mutant enzyme had approximately one fourth the activity of the wild-type enzyme. However, there was no significant difference in PHA content accumulated in cells harboring either the mutant PhaC(Da) or wild-type PhaC(Da) nor were there any differences in the molecular masses of the produced polymers. Therefore, we have concluded that the characteristic insertion is not indispensable for PHA synthesis. Also, slight cellular proteolysis in E. coli was found specifically for wild-type PhaC(Da) by Western blot analysis. This result prompted us to further examine the proteolytic stability of PhaC(Da) in D. acidovorans. Consequently, it has been suggested that the insertion region of PhaC(Da) is susceptible to cellular proteolysis during accumulation of PHA.  相似文献   

12.
13.
Abstract

Corneal infection is a devastating sight-threatening complication that is associated with contact lens (CL) wear, commonly caused by Pseudomonas aeruginosa. Lately, Achromobacter xylosoxidans, Delftia acidovorans, and Stenotrophomonas maltophilia have been associated with corneal infection. This study investigated the adhesion of these emerging pathogens to CLs, under the influence of an artificial tear solution (ATS) containing a variety of components commonly found in human tears. Two different CL materials, etafilcon A and senofilcon A, either soaked in an ATS or phosphate buffered saline, were exposed to the bacteria. Bacterial adhesion was investigated using a radio-labeling technique (total counts) and plate count method (viable counts). The findings from this study revealed that in addition to P. aeruginosa, among the emerging pathogens evaluated, A. xylosoxidans showed an increased propensity for adherence to both CL materials and S. maltophilia showed lower viability. ATS influenced the viable counts more than the total counts on CLs.  相似文献   

14.
Assimilation of sulfur from alkyl- and arylsulfonates by Clostridium spp.   总被引:3,自引:0,他引:3  
Organisms able to utilize one of several alkyl- and arylsulfonates as sole source of sulfur under anoxic conditions were enriched. Three fermenting bacteria, all putative Clostridium spp., were isolated in pure culture. All three organisms had wide substrate ranges for alkylsulfonates, taurine and arylsulfonates, presumably due to three different enzyme systems. One organism, strain KNNDS (DSM 10612) was selected for further characterization. The organism was possibly a new Clostridium sp., with Clostidium intestinalis as its nearest neighbor (97.6% similarity of rDNA). Strain KNNDS catalyzed complete sulfonate utilization concomitant with growth. Growth yields of approximtely 3 kg protein/mol sulfur were observed, independent of the sulfur source [e.g. sulfate, sulfide, 4-(phenyl)butyl-1-sulfonate, 2,6-naphthyldisulfonate or 4-nitrocatechol sulfate]. We failed to detect significant amounts of either an arylsulfonatase or an arylsulfatase, and we hypothesize different arylsulfatases [EC 3.1.6.1] in aerobes and in Clostridium spp. Received: 15 October / Accepted: 29 November 1996  相似文献   

15.
Taurine is present in high concentrations in neutrophils, and when the cells are stimulated taurine can react with hypochlorous acid (HOCl) to form taurine-chloramine (Tau-Cl). This compound retains oxidant activity and can affect the neutrophil itself or surrounding tissue cells. We have investigated the effects of Tau-Cl on MAPK signaling in human umbilical vein endothelial cells (HUVEC). Tau-Cl caused no loss in intracellular glutathione or inactivation of the thiol-sensitive enzyme glyceraldehyde-3-phosphate dehydrogenase, indicating that it had not entered the cells. However, stimulation of HUVEC with Tau-Cl (20-100 microM) induced the rapid activation of ERK within 10 min. This activation was abolished by inhibition of MEK by U0126, indicating that it was not because of direct oxidation of ERK. No activation of p38 was detected. These results suggest that Tau-Cl reacts with a cell membrane target that results in intracellular ERK activation. Tau-Cl over the same concentration range and time scale stimulated epidermal growth factor (EGF) receptor tyrosine phosphorylation in A431 cells and HUVEC. The EGF receptor inhibitor PD158780 significantly attenuated Tau-Cl-induced phosphorylation of both the EGF receptor and ERK. This implicates the EGF receptor in the upstream activation of ERK. The Src tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine had no effect on Tau-Cl-induced EGF receptor or ERK activation. We propose that Tau-Cl acts on an oxidant-sensitive target on the cell surface, this being either the EGF receptor itself or another target that can interact with the EGF receptor, with consequential activation of ERK.  相似文献   

16.
We isolated a strictly anaerobic bacterium, strain GRZCYSA, from a sludge digestor for its ability to ferment cysteate (2-amino-3-sulfopropionate). The organism also fermented the organosulfonates isethionate (2-hydroxyethanesulfonate) and aminomethanesulfonate, but taurine (2-aminoethanesulfonate) was not a substrate. Strain GRZCYSA, a gram-negative, oxidase-negative and catalase-positive vibrio that could reduce sulfate and contained desulfoviridin, was tentatively identified as Desulfovibrio sp. Utilization of cysteate as a substrate for fermentative growth led to the formation of four products identified as acetate, ammonia, and equimolar amounts of sulfide and sulfate. The fermentation was in balance. Some reactions involved in this novel process were detected in cell-free extracts in which ammonia and acetate were formed from cysteate. Received: 10 March 1997 / Accepted: 14 May 1997  相似文献   

17.
P2-fractions were isolated from rat brain, and used to study net taurine transport. The fractions were incubated in increasing concentrations of [3H]taurine and the intraterminal concentration measured by liquid scintillation and amino acid analysis. The membrane potential of the isolated fractions was estimated using86Rb+ as a marker for intracellular K+. Taurine was synthesized in the P2-fraction when incubated in taurine free medium. At external taurine concentrations below 370 M a significant amount of the endogenous taurine was released to the incubation medium. Net taurine uptake into the P2-fraction was achieved at external taurine concentrations exceeding 370 M. The taurine antagonist 6-aminomethyl-3-methyl-4H, 1, 2, 4-benzothiadiazine-1, 1-dioxide (TAG) competitively inhibited taurine and [3H]taurine transport into the P2-fraction. As the external concentration of taurine was increased, the accumulation of86Rb+ into the P2-fraction was facilitated. This indicated an increasing hyperpolarization of the neuronal membrane as taurine transport shifted from release towards uptake. TAG reduced the hyperpolarization that paralleled taurine accumulation, in a dose dependent manner. Our results indicate that relatively low transmembranal gradients of taurine may be maintained by an electrogenic taurine transporter having a large transport capacity. Such a transporter may well serve the needs of osmotic regulation, i.e. to transport large amounts of taurine in any direction across the neuronal membrane.  相似文献   

18.
Comamonas acidovorans NBA-10 was previously shown to degrade 4-nitrobenzoate via 4-hydroxylaminobenzoate and 3,4-dihydroxybenzoate. Washed cells, grown on a mixture of 4-nitrobenzoate and ethanol, stoichiometrically produced ammonium and 3,4-dihydroxybenzoate from 4-nitrobenzoate under anaerobic conditions provided ethanol was present. In cell extracts 4-hydroxylaminobenzoate was degraded to ammonium and 3,4-dihydroxybenzoate, but this activity was lost upon dialysis. No requirement for a cofactor was found, but rather reduced incubation conditions were necessary to restore enzyme activity. The 4-hydroxylamino-degrading enzyme was purified and the role of this novel type of enzyme in the degradation of nitroaromatic compounds is discussed.Abbreviation 4-ABA 4-aminobenzoate - 4-NBA 4-nitrobenzoate - 4-HABA 4-hydroxylaminobenzoate - 3,4-diHBA 3,4-dihydroxybenzoate  相似文献   

19.
Plants are suggested to produce their major growth promoting phytohormone, indole-3-acetic acid (IAA), via multiple redundantly operating pathways. Although great effort has been made and plenty of possible routes have been proposed based on experimental evidence, a complete pathway for IAA production has yet to be demonstrated. In this study, an in-vitro approach was taken to examine the conversion of l-tryptophan (l-trp) to IAA by gas chromatography-mass spectrometry (GC-MS). Especially the influence of putative reaction intermediates on the enzymatic conversion of l-trp to IAA was analyzed. Among the substances tested only indole-3-acetamide (IAM) showed a pronounced effect on the l-trp conversion. We additionally report that IAM is synthesized from l-trp and that it is further converted to IAA by the utilized cell free Arabidopsis extract. Together, our results underscore the functionality of an IAM-dependent auxin biosynthesis pathway in Arabidopsis thaliana.  相似文献   

20.
Four bacterial strains (CA26, CA28, CA37, and CA45), which all were able to use aniline, 3-chloroaniline (3-CA), and 4-chloroaniline (4-CA) as sole sources of carbon, nitrogen and energy, were isolated after enrichment in aerated soil columns and identified as Pseudomonas acidovorans strains. In addition strains CA26 and CA45 were able to degrade 2-chloroaniline (2-CA) at very low rates. At 25°C strain CA28 was grown on aniline and 3-CA with generation times of 3.0 and 7.7 h, respectively, and exhibited complete mineralization of these substrates in degradation rates of 2.25 mmol aniline and 1.63 mmol 3-CA g-1 of biomass per hour, respectively. Degradation of 4-CA occurred at 1.54 mmol 4-CA g-1 of biomass per hour and a generation time of 18.7 h but, in contrast, was not complete due to formation of minor amounts of chlorohydroxymuconic semialdehyde, a meta-cleavage product of 4-chlorocatechol. The initial attack on the substrate, the formation of corresponding chlorocatechols from 3-CA and 4-CA, was found to be the rate-limiting degradation step. Evidence for two different aniline-oxygenase systems in strain CA28 with distinct activity pattern on chlorinated and nonsubstituted anilines was demonstrated by oxygen uptake rate experiments with aniline and chloroaniline pregrown cells. Further degradation was shown to be initialized by catechol dioxygenases.Non-standard abbreviations CA chloroaniline - DCA dichloroaniline - ECM enrichment and cultivation medium - CFU colony forming unit  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号