首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Recent population structure studies of T. gondii revealed that a few major clonal lineages predominated in different geographical regions. T. gondii in South America is genetically and biologically divergent, whereas this parasite is remarkably clonal in North America and Europe with a few major lineages including Types I, II and III. Information on genotypes and mouse virulence of T. gondii isolates from China is scarce and insufficient to investigate its population structure, evolution, and transmission.

Methodology/Principal Findings

Genotyping of 23 T. gondii isolates from different hosts using 10 markers for PCR-restriction fragment length polymorphism analyses (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico) revealed five genotypes; among them three genotypes were atypical and two were archetypal. Fifteen strains belong to the Chinese 1 lineage, which has been previously reported as a widespread lineage from swine, cats, and humans in China. Two human isolates fall into the type I and II lineages and the remaining isolates belong to two new atypical genotypes (ToxoDB#204 and #205) which has never been reported in China. Our results show that these genotypes of T. gondii isolates are intermediately or highly virulent in mice except for the strain TgCtwh6, which maintained parasitemia in mice for 35 days post infection although it possesses the uniform genotype of Chinese 1. Additionally, phylogenetic network analyses of all isolates of genotype Chinese 1 are identical, and there is no variation based on the sequence data generated for four introns (EF1, HP2, UPRT1 and UPRT7) and two dense granule proteins (GRA6 and GRA7).

Conclusion/Significance

A limited genetic diversity was found and genotype Chinese 1 (ToxoDB#9) is dominantly circulating in mainland China. The results will provide a useful profile for deep insight to the population structure, epidemiology and biological characteristics of T. gondii in China.  相似文献   

2.
Little is known of the genetic diversity of Toxoplasma gondii circulating in wildlife. In the present study wild animals, from the USA were examined for T. gondii infection. Tissues of naturally exposed animals were bioassayed in mice for isolation of viable parasites. Viable T. gondii was isolated from 31 animals including, to our knowledge for the first time, from a bald eagle (Haliaeetus leucocephalus), five gray wolves (Canis lupus), a woodrat (Neotoma micropus), and five Arctic foxes (Alopex lagopus). Additionally, 66 T. gondii isolates obtained previously, but not genetically characterised, were revived in mice. Toxoplasma gondii DNA isolated from these 97 samples (31 + 66) was characterised using 11 PCR-restriction fragment length polymorphism (RFLP) markers (SAG1, 5′- and 3′-SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22–8, c29–2, L358, PK1 and Apico). A total of 95 isolates were successfully genotyped. In addition to clonal Types II, and III, 12 different genotypes were found. These genotype data were combined with 74 T. gondii isolates previously characterised from wildlife from North America and a composite data set of 169 isolates comprised 22 genotypes, including clonal Types II, III and 20 atypical genotypes. Phylogenetic network analysis showed limited diversity with dominance of a recently designated fourth clonal type (Type 12) in North America, followed by the Type II and III lineages. These three major lineages together accounted for 85% of strains in North America. The Type 12 lineage includes previously identified Type A and X strains from sea otters. This study revealed that the Type 12 lineage accounts for 46.7% (79/169) of isolates and is dominant in wildlife of North America. No clonal Type I strain was identified among these wildlife isolates. These results suggest that T. gondii strains in wildlife from North America have limited diversity, with the occurrence of only a few major clonal types.  相似文献   

3.
Recent studies found that isolates of Toxoplasma gondii from Brazil were biologically and genetically different from those in North America and Europe. However, to date only a small number of isolates have been analysed from different animal hosts in Brazil. In the present study DNA samples of 46 T. gondii isolates from cats in 11 counties in S?o Paulo state, Brazil were genetically characterised using 10 PCR restriction fragment length polymorphism markers including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico. An additional marker, CS3, that locates on chromosome VIIa and has previously been shown to be linked to acute virulence of T. gondii was also used to determine its association to virulence in mice. Genotyping of these 46 isolates revealed a high genetic diversity with 20 genotypes but no clonal Type I, II or III lineage was found. Two of the 46 isolates showed mixed infections. Combining genotyping data in this study with recent reported results from chickens, dogs and cats in Brazil (total 125 isolates) identified 48 genotypes and 26 of these genotypes had single isolates. Four of the 48 genotypes with multiple isolates identified from different hosts and locations are considered the common clonal lineages in Brazil. These lineages are designated as Types BrI, BrII, BrIII and BrIV. These results indicate that the T. gondii population in Brazil is highly diverse with a few successful clonal lineages expanded into wide geographical areas. In contrast to North America and Europe, where the Type II clonal lineage is overwhelmingly predominant, no Type II strain was identified from the 125 Brazil isolates. Analysis of mortality rates in infected mice indicates that Type BrI is highly virulent, Type BrIII is non-virulent, whilst Type BrII and BrIV lineages are intermediately virulent. In addition, allele types at the CS3 locus are strongly linked to mouse-virulence of the parasite. Thus, T. gondii has an epidemic population structure in Brazil and the major lineages have different biological traits.  相似文献   

4.
Toxoplasma gondii is one of the most successful protozoan parasites given its ability to manipulate the immune system and establish a chronic infection. It is a parasite with a significant impact on human health, mainly in immunocompromised patients. In Europe and North America, only a few clonal genotypes (I, II and III) seem to be responsible for the vast majority of Toxoplasma infections. Surface antigen 2 gene (SAG2) has been extensively used for genotyping T. gondii isolates. The analysis of this locus reveals that in Northern hemisphere, human disease causing isolates are mainly type II, whereas T. gondii isolated from different animals are both type II and III. Since the immune response depends on parasite genotype, it seems relevant to characterize parasites producing human toxoplasmosis in different geographical areas. The growing information about the prevalent T. gondii genotypes in South America mostly refers to domestic animals. This is the first report of genetic characterization of T. gondii isolates from clinical samples in Chile, South America. All the samples analyzed corresponded to SAG2 type I isolates, and they differ from classic SAG2 type I by genetic polymorphisms. This study contributes to the scarce available information on T. gondii at South America, and reinforces an emerging concept suggesting that SAG2 type I, rather than II, parasites are a frequent cause of clinical toxoplasmosis in this continent.  相似文献   

5.
6.
Recent studies have demonstrated that, in Brazil and South America, strains of Toxoplasma gondii are often genotypically and biologically different from those found in countries on other continents. The objective of this study was to genotypically characterize T. gondii isolates from naturally infected sheep in herds in the southern region of the state of Rio Grande do Sul, Brazil, by means of the polymerase chain reaction with restriction fragment length polymorphism (PCR-RFLP). Five T. gondii isolates obtained from sheep in five municipalities in the state of Rio Grande do Sul were used. Application of multilocus PCR-RFLP multilocus using 12 genetic markers (SAG1, 5′3′ SAG2, alt. SAG2, SAG3, BTUB, c22-8, c29-2, GRA6, L358, PK1, APICO and CS3) revealed four different genotypes in the five isolates studied: clonal type II (TgOvBrRS4), type BrIV (TgOvBrRS2 and TgOvBrRS3) and two new non-archetypal genotypes, ToxoDB-RFLP#270 and #271 (TgOvBrRS1 and TgOvBrRS5, respectively). The genotype structure found in the T. gondii isolates from naturally infected sheep in the southern region of Brazil was revealed to have high diversity. This study confirms the presence of rare circulation of the clonal type II genotype in Brazil.  相似文献   

7.
Clinical toxoplasmosis is most severe in congenitally-infected hosts. In humans, transmission of Toxoplasma gondii from the mother to the foetus is considered to be most efficient during the last trimester of pregnancy but clinical congenital toxoplasmosis is more severe if transmission occurs during the first trimester. However, there are no data on the rate of congenital transmission of T. gondii with respect to gestational age in any host during natural infection. In the present study, attempts were made to isolate T. gondii by bioassay in mice inoculated with tissues from foetuses of 88 naturally-exposed white-tailed deer from Iowa and Minnesota. Viable T. gondii was isolated from foetuses of six of 61 deer in early pregnancy (45-85 days of gestation) from Iowa and foetuses of nine of 27 deer from Minnesota in mid-gestation (130-150 days) of a gestational period of 7 months. The 15 T. gondii isolates obtained from foetal deer were PCR-restriction fragment length polymorphism genotyped using polymorphisms at 10 nuclear markers including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and an apicoplast marker, Apico. Five genotypes were revealed, including the clonal Type II and III lineages, and three non-clonal genotypes. DNA sequencing analysis of representative isolates at loci SAG2, c22-8, L358 and PK1 revealed that the three non-clonal genotypes are closely related to the clonal Type I, II and III lineages. It is very likely that these non-clonal genotypes were derived from genetic crosses among the three clonal Type I, II and III lineages. The most common genotype was Type II, commonly found in humans in North America and Europe, suggesting the possible link of transmission from game animals to humans.  相似文献   

8.
Due to their ground-feeding behaviour, free-ranging chickens and turkeys are exposed to oocysts and are good indicators of the presence of Toxoplasma gondii in the environment. In addition, poultry may become infected by ingestion of tissues of infected intermediate hosts such as small rodents. Free-ranging poultry are considered an important source of T. gondii infection in humans, especially in developing countries. Knowledge on T. gondii genotypes in infected animals and humans is important for understanding the epidemiology of T. gondii infections. The aim of the present study was to analyse the ability of experimentally infected turkeys and chickens to develop a T. gondii clonal type-specific antibody response (IgY) after i.v. inoculation with tachyzoites of three T. gondii clonal lineages, types I, II and III. A peptide microarray displaying a panel of 101 different synthetic peptides was used for serotyping. Peptide sequences were derived from polymorphic regions of 16?T. gondii proteins (GRA1, GRA3-7, SAG1, SAG2A, SAG3, SAG4, SRS1, SRS2, ROP1, NTPase I and NTPase III and BSR4). The array was probed with 120 sera from experimentally infected chickens and turkeys inoculated with different doses of T. gondii tachyzoites (104, 103 and 102) collected from isolates representative for T. gondii clonal types I (RH), II (ME49) or III (NED) and uninfected controls. After screening of the peptides with reference sera from chickens and turkeys, and evaluation of data by Receiver Operating Characteristics analysis, 41 and 40 peptides were identified that appeared suitable to detect type-specific reactions with sera collected at 2, 5, 7 and 9?weeks p.i. Selected peptides allowed the identification of T. gondii clonal types, until 9?week p.i., which the chickens or turkeys had been inoculated with. At 9?weeks p.i., a high proportion of the experimentally infected chickens (67% (12/18)) and turkeys (61% (11/18)) no longer reacted with the selected peptides. Serotyping of the infection in individual chickens or turkeys was only possible when the whole peptide panel was applied. Clonal type-specific antibody responses were dynamic in both poultry species and depended on the individual animal and the time after infection.  相似文献   

9.
The genetic diversity of Toxoplasma gondii varies in different geographical regions. Isolates of T. gondii in South America, for example, are genetically and biologically divergent from those in North America and Europe, where the population structure is highly clonal and composed mainly of 3 distinct lineages, i.e., Types I, II, and III. However, little is known of the T. gondii genotypes in the People's Republic of China. Toxoplasma gondii infection in pigs causes significant economic loss and presents a risk for human infection. We conducted a survey to determine the genetic diversity of this parasite in slaughtered pigs from Yunnan Province, southwestern China. In total, 412 DNA samples were extracted from hilar lymph nodes and livers of pigs from slaughterhouses in Yunnan Province in southwest China, 56 of which were found to be positive for the T. gondii SAG3 gene. These positive DNA samples were typed at 10 genetic markers, including 9 nuclear loci, i.e., SAG1, SAG2, SAG3, BTUB, GRA6, L358, PK1, c22-8, c29-2, and an apicoplast locus Apico. Of these, 5 isolates were genotyped with complete data for all loci. Only 1 genotype (ToxoDB 9) was identified, previously reported as a widespread lineage from pigs, cats, and human patients in China. The results indicate that this genotype may be the major T. gondii lineage in China and possibly all of eastern Asia. This is the first report of genetic typing of T. gondii isolates from pigs in China's southwestern Yunnan Province, the results of which have implications for the prevention and control of T. gondii infections in humans and other animals.  相似文献   

10.
Toxoplasma gondii is an opportunistic protozoan parasite that can infect almost all warm-blooded animals including humans with a worldwide distribution. Micronemes play an important role in invasion process of T. gondii, associated with the attachment, motility, and host cell recognition. In this research, sequence diversity in microneme protein 6 (MIC6) gene among 16 T. gondii isolates from different hosts and geographical regions and 1 reference strain was examined. The results showed that the sequence of all the examined T. gondii strains was 1,050 bp in length, and their A + T content was between 45.7% and 46.1%. Sequence analysis presented 33 nucleotide mutation positions (0-1.1%), resulting in 23 amino acid substitutions (0-2.3%) aligned with T. gondii RH strain. Moreover, T. gondii strains representing the 3 classical genotypes (Type I, II, and III) were separated into different clusters based on the locus of MIC6 using phylogenetic analyses by Bayesian inference (BI), maximum parsimony (MP), and maximum likelihood (ML), but T. gondii strains belonging to ToxoDB #9 were separated into different clusters. Our results suggested that MIC6 gene is not a suitable marker for T. gondii population genetic studies.  相似文献   

11.
Cats are important in the epidemiology of Toxoplasma gondii because they are the only hosts that excrete environmentally resistant oocysts in feces. In the present study, 115 viable T. gondii isolates from tissues of cats from Egypt were genotyped using 10 PCR-restriction fragment length polymorphism markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico) and DNA from tachyzoites. Seven genotypes were recognized including the clonal Type II, Type III (2 genotypes), and 4 atypical genotypes. Ninety percent (103 of 115) of isolates were clonal, i.e., Type II (n = 61) and Type III (n = 42) strains. Of the 61 Type II strains, all had the Type II alleles at all loci, except for 2 strains that had allele I at Apico. Eight isolates were divided into 4 atypical genotypes. One of these genotypes (with 4 isolates) was previously reported in dogs from Sri Lanka and in sand cats from the United Arab Emirates. Four isolates had mixed infections. These results revealed a strong clonal population structure with the dominance of clonal Type II and III lineages of T. gondii in feral cats from Egypt.  相似文献   

12.
Toxoplasma gondii is an important cosmopolitan opportunistic protozoan parasite, which threatens the health of human beings and animals. Genetic characterization of isolates from South America has revealed high genetic diversity. In contrast, isolates from North America and Europe were highly clonal, with 3 major lineages known as the Types I, II, and III. However, limited information on T. gondii genotypes has been reported in The People's Republic of China. Here we conducted a survey to determine genetic diversity of this parasite in wild birds of China. In total, tissues from breast muscle of 178 wild birds, including 98 common pheasants ( Phasianus colchicus ), 35 tree sparrows ( Passer montanus ), 22 house sparrows ( Passer domesticus ), 20 saxaul sparrows ( Passer ammodendri ), and 1 cinnamon sparrow ( Passer rutilans ), were tested for T. gondii infection, 4 of which were found to be positive for the T. gondii B1 gene by PCR amplification. These positive DNA samples were typed at 10 genetic markers, including 9 nuclear loci, i.e., SAG1, 5'- and 3'-SAG2, alternative SAG2, SAG3, GRA6, L358, PK1, c22-8, c29-2, and an apicoplast locus Apico. Of these, 3 isolates were genotyped with complete data for all loci, and 2 genotypes (Type I and Type II variant) were identified. This is the first report of genetic typing of T. gondii isolates from wild birds from different regions in China. The results suggest that the Type I and II variant strains are circulating in wild birds in China, and these birds are potential reservoirs for T. gondii transmission.  相似文献   

13.
Toxoplasma gondii, an obligate intracellular protozoan parasite of the phylum Apicomplexa, can infect all warm-blooded vertebrates, including humans, livestock, and marine mammals. The aim of this study was to investigate whether superoxide dismutase (SOD) of T. gondii can be used as a new marker for genetic study or a potential vaccine candidate. The partial genome region of the SOD gene was amplified and sequenced from 10 different T. gondii isolates from different parts of the world, and all the sequences were examined by PCR-RFLP, sequence analysis, and phylogenetic reconstruction. The results showed that partial SOD gene sequences ranged from 1,702 bp to 1,712 bp and A + T contents varied from 50.1% to 51.1% among all examined isolates. Sequence alignment analysis identified total 43 variable nucleotide positions, and these results showed that 97.5% sequence similarity of SOD gene among all examined isolates. Phylogenetic analysis revealed that these SOD sequences were not an effective molecular marker for differential identification of T. gondii strains. The research demonstrated existence of low sequence variation in the SOD gene among T. gondii strains of different genotypes from different hosts and geographical regions.  相似文献   

14.
The prevalence of Toxoplasma gondii infection in birds has epidemiological significance because birds are indeed considered as a good indicator of environmental contamination by T. gondii oocysts. In this study, the prevalence of T. gondii in 313 house sparrows in Lanzhou, northwestern China was assayed by the modified agglutination test (MAT). Antibodies to T. gondii were positive in 39 (12.46%) of 313 samples (MAT titer ≥ 1:5). Tissues of heart, brain, and lung from the 39 seropositive house sparrows were tested for T. gondii DNA, 11 of which were found to be positive for the T. gondii B1 gene by PCR amplification. These positive DNA samples were typed at 9 genetic markers, including 8 nuclear loci, i.e., SAG1, 5''- and 3''-SAG2, alternative SAG2, SAG3, GRA6, L358, PK1, c22-8 and an apicoplast locus Apico. Of them, 4 isolates were genotyped with complete data for all loci, and 2 genotypes (Type II variants; ToxoDB #3 and a new genotype) were identified. These results showed that there is a potential risk for human infection with T. gondii in this region. To our knowledge, this is the first report of T. gondii seroprevalence in house sparrows in China.  相似文献   

15.
16.
There are three major clonal lineages, types I, II, and III, of Toxoplasma gondii known to cause human toxoplasmosis worldwide. Toxoplasma gondii infections have, however, not been genotyped in Ghana. This study detected the clonal types infecting immune compromised and immune competent individuals in Accra, Ghana. Blood samples were obtained from 148 HIV seropositive pre-antiretroviral therapy individuals (0  CD4+ T-cell count/μl blood ≤ 200) at the Fevers Unit and 149 HIV seronegative apparently healthy blood donors at the blood bank, all of the Korle-Bu Teaching Hospital. Genomic DNA was extracted and multilocus genotyping conducted by nested PCR-RFLP analysis using GRA6, SAG3, and BTUB gene markers. Among the HIV seropositive participants, 54.7% (81/148) were T. gondii DNA positive for any of the markers. Out of the 81, 42.0% (34) were positive for SAG3 only, 30.9% (25) for GRA6 only, 24.7% (20) for both SAG3 and GRA6, and 2.5% (2) for SAG3, GRA6, and BTUB. Overall, 93.8% of the positives were of clonal type II, 1.2% type I, while 4.9% (4) were atypical or mixed types (I and II). In the healthy blood donors, prevalence of T. gondii DNA positivity was 3.4% (5/149) by SAG3 and/or GRA6; among them, 60.0% (3/5) were type I, and the remaining 40.0%, type II. This study showed a relatively high prevalence of active T. gondii infections in immune compromised patients and low prevalence in immune competent individuals in Accra. Type II was highly prevalent. Detection of T. gondii in blood donors raises public health concerns and screening for T. gondii should be considered.  相似文献   

17.
18.
Toxoplasma gondii infects virtually all warm‐blooded hosts worldwide. Recently, attention has been focused on the genetic diversity of the parasite to explain its pathogenicity in different hosts. It has been hypothesized that interaction between feral and domestic cycles of T. gondii may increase unusual genotypes in domestic cats and facilitate transmission of potentially more pathogenic genotypes to humans, domestic animals, and wildlife. In the present study, we tested black bear (Ursus americanus), bobcat (Lynx rufus), and feral cat (Felis catus) from the state of Pennsylvania for T. gondii infection. Antibodies to T. gondii were found in 32 (84.2%) of 38 bears, both bobcats, and 2 of 3 feral cats tested by the modified agglutination test (cut off titer 1:25). Hearts from seropositive animals were bioassayed in mice, and viable T. gondii was isolated from 3 of 32 bears, 2 of 2 bobcats, and 2 of 3 feral cats. DNA isolated from culture‐derived tachyzoites of these isolates was characterized using multilocus PCR‐RFLP markers. Three genotypes were revealed, including ToxoDB PCR‐RFLP genotype #1 or #3 (Type II, 1 isolate), #5 (Type 12, 3 isolates), and #216 (3 isolates), adding to the evidence of genetic diversity of T. gondii in wildlife in Pennsylvania. Pathogenicity of 3 T. gondii isolates (all #216, 1 from bear, and 2 from feral cat) was determined in outbred Swiss Webster mice; all three were virulent causing 100% mortality. Results indicated that highly mouse pathogenic strains of T. gondii are circulating in wildlife, and these strains may pose risk to infect human through consuming of game meat.  相似文献   

19.

Background

Environmental transmission of the zoonotic parasite Toxoplasma gondii, which is shed only by felids, poses risks to human and animal health in temperate and tropical ecosystems. Atypical T. gondii genotypes have been linked to severe disease in people and the threatened population of California sea otters. To investigate land-to-sea parasite transmission, we screened 373 carnivores (feral domestic cats, mountain lions, bobcats, foxes, and coyotes) for T. gondii infection and examined the distribution of genotypes in 85 infected animals sampled near the sea otter range.

Methodology/Principal Findings

Nested PCR-RFLP analyses and direct DNA sequencing at six independent polymorphic genetic loci (B1, SAG1, SAG3, GRA6, L358, and Apico) were used to characterize T. gondii strains in infected animals. Strains consistent with Type X, a novel genotype previously identified in over 70% of infected sea otters and four terrestrial wild carnivores along the California coast, were detected in all sampled species, including domestic cats. However, odds of Type X infection were 14 times higher (95% CI: 1.3–148.6) for wild felids than feral domestic cats. Type X infection was also linked to undeveloped lands (OR = 22, 95% CI: 2.3–250.7). A spatial cluster of terrestrial Type II infection (P = 0.04) was identified in developed lands bordering an area of increased risk for sea otter Type II infection. Two spatial clusters of animals infected with strains consistent with Type X (P≤0.01) were detected in less developed landscapes.

Conclusions

Differences in T. gondii genotype prevalence among domestic and wild felids, as well as the spatial distribution of genotypes, suggest co-existing domestic and wild T. gondii transmission cycles that likely overlap at the interface of developed and undeveloped lands. Anthropogenic development driving contact between these cycles may increase atypical T. gondii genotypes in domestic cats and facilitate transmission of potentially more pathogenic genotypes to humans, domestic animals, and wildlife.  相似文献   

20.
Toxoplasma 3 main clonal lineages are designated as type I, II, and III; however, atypical and mixed genotypes were also reported. This study was conducted for detection of Toxoplasma gondii genotypes in rats (Rattus rattus) in Riyadh region, Saudi Arabia. PCR test on T. gondii B1 gene was conducted on ELISA IgM positive samples for confirmation of the infection. However, genetic analysis of the SAG2 locus was performed to determine T. gondii genotypes using PCR-RFLP technique. PCR test on T. gondii B1gene showed that 22 (81.5%) out of the 27 ELISA IgM positive samples have T. gondii DNA. Genotypic analysis shows that, of the total 22 PCR positive samples, only 13 (59.1%) were of type II, 7 (31.8%) were of type III, and 2 (9.1%) were of an unknown genotype. It is obvious that the prevalence of both type II and III is high in rats. No reports have been available on T. gondii genotypes among rats in Riyadh region, and only little is known about its seroprevalence in rats. Future studies on T. gondii genotypes in rats using multi-locus markers is needed in Riyadh region, Saudi Arabia for better understanding of T. gondii pathogenesis and treatment in humans and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号