首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
磷脂是构成生物膜和脂蛋白的重要成分,容易在自由基或非自由基以及酶促条件下发生氧化修饰,形成氧化磷脂(oxidized phospholipids,OxPLs),并进一步产生具有不同生物活性的氧化产物.临床证据表明,OxPLs在动脉粥样硬化(ath-erosclerosis,AS)发展过程中不断生成和转化,并在病变处积累...  相似文献   

2.
3.
Oxidized lipids are generated from (poly)unsaturated diacyl- and alk(en)ylacyl glycerophospholipids under conditions of oxidative stress. The great variety of reaction products is defined by the degree of modification, hydrophobicity, chemical reactivity, physical properties and biological activity. The biological activities of these compounds may depend on both, the recognition of the particular molecular structures by specific receptors and on the unspecific physical and chemical effects on their target systems (membranes, proteins). In this review, we aim at highlighting the molecular features that are essential for the understanding of the biological actions of pure oxidized phospholipids. Firstly, their chemical structures are described as a basis for an understanding of their physical and (bio)chemical properties in membrane- and protein-bound form. Secondly, the biological activities of oxidized phospholipids are discussed in terms of their unspecific effects on the membrane level as well as their potential interactions with specific targets (receptors) affecting a large set of (signaling) molecules. Finally, the role of oxidized phospholipids as important mediators in pathophysiology is discussed with emphasis on atherosclerosis.  相似文献   

4.
The effects of oxidatively modified phospholipids on the association with model biomembranes of four antimicrobial peptides (AMPs), temporin B and L, indolicidin, and LL-37(F27W) were studied by Langmuir balance and fluorescence spectroscopy. In keeping with previous reports the negatively charged phospholipid phosphatidylglycerol (PG) enhanced the intercalation of all four peptides into lipid monolayers and liposomal bilayers under low ionic strength conditions. Interestingly, similar effect was observed for 1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC), a zwitterionic oxidized phospholipid bearing an aldehyde function at the end of its truncated sn-2 acyl chain. Instead, the structurally similar 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) containing a carboxylic moiety was less efficient in promoting the membrane association of these peptides. Physiological saline reduced the binding of the above peptides to membranes containing PG, whereas interactions with PoxnoPC were found to be insensitive to ionic strength. Notably, membrane intercalation of temporin L, the most surface active of the above peptides could be into PoxnoPC containing monolayers was strongly attenuated by methoxyamine, suggesting the importance of Schiff base formation between peptide amino groups and the lipid aldehyde function. PoxnoPC and similar aldehyde bearing oxidatively modified phospholipids could represent novel molecular targets for AMPs.  相似文献   

5.
6.
The interactions of three therapeutic agents, viz. the antipsychotics HPD and CPZ, and the antineoplastic anthracycline DOX, with oxidatively modified phospholipids were studied by monitoring the quenching of fluorescence of an incorporated pyrene-labeled lipid derivative. All three drugs bound avidly to the two oxidized PCs bearing either an aldehyde or carboxylic function at the end of the sn-2 nonanoyl chain, with the highest affinity measured between CPZ and the latter oxidized lipid. Subsequent dissociation of the above drugs from the oxidized lipids by DNA, acidic phospholipids, and NaCl revealed the binding of these drugs with the aldehyde lipid to be driven by hydrophobicity similarly to their binding to lysophosphatidylcholine, whereas a significant contribution of electrostatics was evident for the lipid with the carboxylic moiety. These results connect to previous experimental data, demonstrating the induction by these drugs of oxidative stress and binding to membrane phospholipids. These issues are elaborated with reference to their clinical use and side effects.  相似文献   

7.
Megli FM  Russo L  Sabatini K 《FEBS letters》2005,579(21):4577-4584
The thermal behaviour of phospholipid multilamellar vesicles (MLV) made of various molar percentages of DPPC and LPPC, containing also oxidized LPPC (LPPCox), was studied by use of EPR spectroscopy and n-DSPC spin label in order to determine variations in the membrane fluidity brought about by lipid oxidation. Experimental variables were temperature, ranging from 4 to 44 degrees C, and molar percentage composition of DPPC/LPPC/LPPCox ternary mixture. We found that the presence of LPPCox in a percentage higher than both normal phospholipids' heavily hindered membrane formation, while lower percentage of the oxidized lipid with higher DPPC percentages yielded two-components EPR spectra, showing the presence of two different fluidity domains, indicative of membrane phase separation. When LPPC was the dominant lipid in the ternary mixture, simple EPR spectra were observed, indicating homogeneity of MLV membranes. Phase separation observed in the presence of LPPCox was better visible at lower temperature (12 degrees C or less), and almost disappeared with increasing temperature (36 degrees C or more). Furthermore, the correlation time of 16-DSPC in ternary mixture MLVs with higher LPPC percentage (homogeneous membranes) was not affected by the presence of LPPCox, while it normally increased upon DPPC percentage increase, as readily calculated from the EPR spectra featuring simple bands at 24 degrees C. It is concluded that oxidized lipid induces phase separation in more rigid DPPC-rich membranes, while leaving fluidity unaffected in more fluid LPPC-rich membranes, and at higher temperature.  相似文献   

8.
PURPOSE OF REVIEW: This review will summarize recent evidence demonstrating that biologically active phospholipid oxidation products modulate inflammatory reactions. RECENT FINDINGS: Structural identification of new biologically active oxidized phospholipids and the finding that they can also be formed at inflammatory sites other than the atherosclerotic lesion have expanded the potential role of these compounds in inflammation beyond atherogenesis. Various signaling pathways are induced by oxidized phospholipids, leading to the expression of inflammatory genes by mechanisms that differ from those mediated by the classic inflammatory agonists tumor necrosis factor or lipopolysaccharide. Furthermore, oxidized phospholipids can bind to pattern recognition molecules and thus potently influence inflammation and immune responses during host defense. SUMMARY: During inflammatory processes biologically active lipid oxidation products accumulate that modulate the inflammatory process and may determine the fate and outcome of the body's reaction in acute inflammation during host defense. Oxidized phospholipids may induce and propagate chronic inflammatory processes; however, evidence is accumulating that cells and tissues respond towards these oxidatively formed stress signals also by activation of anti-inflammatory, cytoprotective reactions.  相似文献   

9.
By the development of soft ionization such as matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI), mass spectrometry (MS) has become an indispensable technique to analyze proteins. The combination of protein separation and identification such as two-dimensional gel electrophoresis and MS, surface-enhanced laser desorption/ionization-MS, liquid chromatography/MS, and capillary electrophoresis/MS has been successfully applied for proteome analysis of urine and plasma to discover biomarkers of kidney diseases. Some urinary proteins and their proteolytic fragments have been identified as biomarker candidates for kidney diseases. This article reviews recent advances in the application of proteomics using MS to discover biomarkers for kidney diseases.  相似文献   

10.
11.
Genetic therapies for cardiovascular diseases   总被引:2,自引:0,他引:2  
Recent advances in understanding the molecular and cellular basis of cardiovascular diseases, together with the availability of tools for genetic manipulation of the cardiovascular system, offer possibilities for new treatments. Gene therapies have demonstrated potential usefulness for treating complex cardiovascular diseases, such as hypertension, atherosclerosis and myocardial ischemia, in various animal models. Some of these experimental therapies are now undergoing clinical evaluation in patients with cardiovascular disease. However, the successful transition of these therapies into mainstream clinical practice awaits further improvements to vector platforms and delivery tools and the documentation of clinical feasibility, safety and efficacy through multi-center randomized trials.  相似文献   

12.
Oxidized l-alpha-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), a component of minimally modified LDL, induces production of proinflammatory cytokines and development of atherosclerotic lesions. We tested the hypothesis that OxPAPC alters expression, phosphorylation, and localization of tight junction (TJ) proteins, particularly occludin, a transmembrane TJ protein. OxPAPC reduced total occludin protein and increased occludin phosphorylation dose dependently (10-50 microg/ml) and time dependently in bovine aortic endothelial cells. OxPAPC decreased occludin mRNA and reduced the immunoreactivity of zonula occludens-1 at the cell-cell contacts. Furthermore, OxPAPC increased the diffusive flux of 10-kDa dextran in a dose-dependent manner. O2-* production by bovine aortic endothelial cells increased nearly twofold after exposure to OxPAPC. Also, enzymatic generation of O2-* by xanthine oxidase-lumazine and H2O2 by glucose oxidase-glucose increased occludin phosphorylation, implicating reactive oxygen species as modulators of the OxPAPC effects on occludin phosphorylation. Superoxide dismutase and/or catalase blocked the effects of OxPAPC on occludin protein content and phosphorylation, occludin mRNA, zonula occludens-1 immunoreactivity, and diffusive flux of 10-kDa dextran. These findings suggest that changes in TJ proteins are potential mechanisms by which OxPAPC compromises the barrier properties of the vascular endothelium. OxPAPC-induced disruption of TJs, which likely facilitates transmigration of LDL and inflammatory cells into the subendothelial layers, may be mediated by reactive oxygen species.  相似文献   

13.
Oxidized phospholipids that are generated during inflammation exert anti-inflammatory properties and prevent death during murine endotoxemia. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) inhibits the interaction of LPS with LPS-binding protein and CD14. In this study, we determined the functional properties of OxPAPC and potential interference with CD14 during abdominal sepsis caused by Escherichia coli. Administration of OxPAPC rendered mice highly susceptible to E. coli peritonitis, as indicated by an accelerated mortality and enhanced bacterial outgrowth and dissemination. CD14(-/-) mice also displayed increased mortality and bacterial outgrowth and OxPAPC did not further impair host defense in these animals. The mechanisms by which OxPAPC and CD14 deficiency impaired the immune response differed: whereas CD14(-/-) mice demonstrated a strongly reduced recruitment of phagocytes to the site of the infection, OxPAPC did not influence the influx of inflammatory cells but strongly diminished the phagocytosing capacity of neutrophils and macrophages by a CD14-independent mechanism. Furthermore, OxPAPC potently inhibited uptake of fluorospheres as well as receptor-mediated endocytosis and fluid-phase pinocytosis. These data suggest that oxidized phospholipids such as produced during inflammatory reactions may contribute to mortality during Gram-negative sepsis in vivo via impairment of the phagocytic properties of professional phagocytes.  相似文献   

14.
Polyunsaturated fatty acids are precursors of multiple pro- and anti-inflammatory molecules generated by enzymatic stereospecific and positionally specific insertion of oxygen, which is a prerequisite for recognition of these mediators by cellular receptors. However, nonenzymatically oxidized free and esterified polyunsaturated fatty acids also demonstrate activities relevant to inflammation. In particular, phospholipids containing oxidized fatty acid residues (oxidized phospholipids; OxPLs) were shown to induce proinflammatory changes in endothelial cells but paradoxically also to inhibit inflammation induced via TLR4. In this study, we show that half-maximal inhibition of LPS-induced elevation of E-selectin mRNA in endothelial cells developed at concentrations of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) 10-fold lower than those required to induce proinflammatory response. Similar concentration difference was observed for other classes and molecular species of OxPLs. Upon injection into mice, OxPAPC did not elevate plasma levels of IL-6 and keratinocyte chemoattractant but strongly inhibited LPS-induced upregulation of these inflammatory cytokines. Thus, both in vitro and in vivo, anti-LPS effects of OxPLs are observed at lower concentrations than those required for their proinflammatory action. Quantification of the most abundant oxidized phosphatidylcholines by HPLC/tandem mass spectrometry showed that circulating concentrations of total oxidized phosphatidylcholine species are close to the range where they demonstrate anti-LPS activity but significantly lower than that required for induction of inflammation. We hypothesize that low levels of OxPLs in circulation serve mostly anti-LPS function and protect from excessive systemic response to TLR4 ligands, whereas proinflammatory effects of OxPLs are more likely to develop locally at sites of tissue deposition of OxPLs (e.g., in atherosclerotic vessels).  相似文献   

15.
Hypertension afflicts over 65 million Americans and poses an increased risk for cardiovascular morbidity such as stroke, myocardial infarction and end-stage renal disease resulting in significant mortality. Overactivity of the renin-angiotensin system (RAS) has been identified as an important determinant that is implicated in the etiology of these diseases and therefore represents a major target for therapy. In spite of the successes of drugs inhibiting various elements of the RAS, the incidence of hypertension and cardiovascular diseases remain steadily on the rise. This has lead many investigators to seek novel and innovative approaches, taking advantage of new pathways and technologies, for the control and possibly the cure of hypertension and related pathologies. The main objective of this review is to forward the concept that gene therapy and the genetic targeting of the RAS is the future avenue for the successful control and treatment of hypertension and cardiovascular diseases. We will present argument that genetic targeting of angiotensin-converting enzyme 2 (ACE2), a newly discovered member of the RAS, is ideally poised for this purpose. This will be accomplished by discussion of the following: (i) summary of our current understanding of the RAS with a focus on the systemic versus tissue counterparts as they relate to hypertension and other cardiovascular pathologies; (ii) the newly discovered ACE2 enzyme with its physiological and pathophysiological implications; (iii) summary of the current antihypertensive pharmacotherapy and its limitations; (iv) the discovery and design of ACE inhibitors; (v) the emerging concepts for ACE2 drug design; (vi) the current status of genetic targeting of the RAS; (vii) the potential of ACE2 as a therapeutic target for hypertension and cardiovascular disease treatment; and (viii) future perspectives for the treatment of cardiovascular diseases.  相似文献   

16.
Maturation of dendritic cells (DCs) induced by pathogen-derived signals via TLRs is a crucial step in the initiation of an adaptive immune response and therefore has to be well controlled. In this study, we demonstrate that oxidized phospholipids (ox-PLs), which are generated during infections, apoptosis, and tissue damage, interfere with DC activation, preventing their maturation. ox-PLs blocked TLR-3- and TLR-4-mediated induction of the costimulatory molecules CD40, CD80, CD83, and CD86, the cytokines IL-12 and TNF, as well as lymphocyte stimulatory capacity. CD40 and TLR-2-mediated cytokine production was also inhibited, whereas up-regulation of costimulatory molecules via these receptors was not affected by ox-PLs. Thus, formation of ox-PLs during the course of an inflammatory response may represent a negative-feedback loop preventing excessive and sustained immune reactions through regulating DC maturation.  相似文献   

17.
microRNAs:心血管疾病重要的调控因子   总被引:1,自引:0,他引:1  
朱霓  秦永文  荆清 《生命科学》2008,20(2):218-221
微RNA(microRNA,miRNA)是一类内源性19—25个核苷酸大小的非编码RNA分子,在进化中具有高度保守性,并且能够通过碱基匹配原则识别靶基因3’非翻译区的靶位点,从而抑制编码蛋白靶基因的翻译或(和)降解靶基因。目前的研究表明,miRNA在生物体发育、心血管疾病以及肿瘤发生等过程中起重要作用。本文对miRNA在心血管系统生理病理中的作用做一综述。  相似文献   

18.
The aim of the study was to determine the prevalence of risk factors for cardiovascular diseases among physicians at a teaching hospital. In total, 203 men and 167 women were included in the study. The participants filled in a questionnaire; their height, weight, blood pressure, serum cholesterol and glucose levels were added. 19.2 % males and 13.8 % females were smokers, hypertension was diagnosed in 10 % of males and in 6.6 % of females, 52.2 % males and 17.4 % females were overweight, 37 % males and 43.1 % females had hypercholesterolemia. The above findings suggest that Czech physicians have more favourable values of all the studied cardiovascular diseases risk factors than the general Czech population. However, Czech physicians smoke more than those in other countries and their level of cardiovascular diseases risk factors is unsatisfactory and calls for further intensive prevention. Preliminary outcomes of the study repeated after two years show no positive trends as well as physicians' low willingness to actively participate in lowering cardiovascular diseases risk factors.  相似文献   

19.
Previous studies have shown that macrophage receptors for oxidized LDL (OxLDL) recognize both the lipid and protein moieties, and that a monoclonal antibody against OxLDL, EO6, also recognizes both species. The present studies show directly that during LDL oxidation phospholipids become covalently attached to apolipoprotein B (apoB). After exhaustive extraction of lipids, apoB of native LDL contained 4 +/- 3 moles of phosphorus/mole protein. In contrast, apoB of OxLDL contained approximately 75 moles of phosphorus/mole protein. Saponification of this apoB released phosphorus, choline, and saturated fatty acids in a molar ratio of 1.0:0.98:0.84. When LDL was reductively methylated prior to oxidation, the amount of phospholipid covalently bound was reduced by about 80%, indicating that the phospholipids attach at lysine epsilon amino groups. Progressive decreases in the phospholipid associated with apoB of OxLDL decreased the ability of the protein to compete for binding to macrophage scavenger receptors and decreased its reactivity with antibody EO6.We postulate that some oxidized phospholipids containing fatty acid aldehydes at the sn-2 position bind to lysine residues of apoB while others remain unreacted within the lipid phase. This would account for the interchangeability of lipid and apolipoprotein of OxLDL with respect to receptor binding and antibody recognition.  相似文献   

20.
Receptor for advanced glycation end-products (RAGE) is known to be involved in microvascular complications in diabetes. RAGE is also profoundly associated with macrovascular complications in diabetes through regulation of atherogenesis, angiogenic response, vascular injury, and inflammatory response. The potential significance of RAGE in the pathogenesis of cardiovascular disease appears not to be confined solely to nondiabetic rather than diabetic conditions. Numerous truncated forms of RAGE have recently been described, and the C-terminally truncated soluble form of RAGE has received much attention. Soluble RAGE consists of several forms, including endogenous secretory RAGE (esRAGE), which is a spliced variant of RAGE, and a shedded form derived from cell-surface RAGE. These heterogeneous forms of soluble RAGE, which carry all of the extracellular domains but are devoid of the transmembrane and intracytoplasmic domains, bind ligands including AGEs and can antagonize RAGE signaling in vitro and in vivo. ELISA systems have been developed to measure plasma esRAGE and total soluble RAGE, and the pathophysiological roles of soluble RAGE have begun to be unveiled clinically. In this review, we summarize recent findings regarding pathophysiological roles in cardiovascular disease of RAGE and soluble RAGE and discuss their potential usefulness as therapeutic targets and biomarkers for the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号