首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis signal-regulating kinase (ASK) 1 is activated in response to various cytotoxic stresses including TNF, Fas and reactive oxygen species (ROS) such as H2O2, and activates c-Jun NH2-terminal kinase (JNK) and p38. However, the roles of JNK and p38 signaling pathways during apoptosis have been controversial. Here we show that by deleting ASK1 in mice, TNF- and H2O2-induced sustained activations of JNK and p38 are lost in ASK1–/– embryonic fibroblasts, and that ASK1–/– cells are resistant to TNF- and H2O2-induced apoptosis. TNF- but not Fas-induced apoptosis requires ROS-dependent activation of ASK1–JNK/p38 pathways. Thus, ASK1 is selectively required for TNF- and oxidative stress-induced sustained activations of JNK/p38 and apoptosis.  相似文献   

2.
Neuronal oxidative stress (OS) injury has been proven to be associated with many neurodegenerative diseases, and thus, antioxidation treatment is an effective method for treating these diseases. Saikosaponin-D (SSD) is a sapogenin extracted from Bupleurum falcatum and has been shown to have many pharmacological activities. The main purpose of this study was to investigate whether and how SSD protects PC12 cells from H2O2-induced apoptosis. The non-toxic level of SSD significantly mitigated the H2O2-induced decrease in cell viability, reduced the apoptosis rate, improved the nuclear morphology, and reduced caspase-3 activation and poly ADP-ribose polymerase (PARP) cleavage. Additionally, exogenous H2O2-induced apoptosis by damaging the intracellular antioxidation system. SSD significantly slowed the H2O2-induced release of malonic dialdehyde (MDA) and lactate dehydrogenase and increased the activity of superoxide dismutase (SOD) and the total antioxidant capacity, thereby reducing apoptosis. More importantly, SSD effectively blocked H2O2-induced phosphorylation of extracellular-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38MAPK), and specific inhibitors of ERK, JNK, and p38-reduced OS injury and apoptosis, suggesting that SSD reduces OS injury and apoptosis via MAPK signalling pathways. Finally, we confirmed that SSD significantly reduced H2O2-induced reactive oxygen species (ROS) accumulation, and the ROS inhibitor blocked the apoptosis caused by MAPK activation and cellular oxidative damage. In short, our study confirmed that SSD reduces H2O2-induced PC12 cell apoptosis by removing ROS and blocking MAPK-dependent oxidative damage.  相似文献   

3.
Retinal pigment epithelial (RPE) cells are constantly exposed to oxidative injury while clearing byproducts of photoreceptor turnover, a circumstance thought to be responsible for degenerative retinal diseases. The mechanisms of hydrogen peroxide (H2O2)-induced apoptosis in RPE cells are not fully understood. We studied signal transduction mechanisms of H2O2-induced apoptosis in the human RPE cell line ARPE-19. Activation of two stress kinases (JNK and p38) occurs during H2O2 stimulation, and H2O2-mediated cell death was significantly reduced by their specific inhibition. Exposure to a lethal dose of H2O2 elicited Bax translocation to the mitochondria and release of apoptosis-inducing factor (AIF) from the mitochondria, both of which were abolished by either JNK- or p38-specific inhibitors. Both H2O2-induced cell death and JNK/p38 phosphorylation were partially inhibited by C. difficile toxin B, inhibitor of Rho, Rac, and cdc42. Use of pull-down assays revealed that the small GTPase activated by H2O2 is Rac1. This study is the first to demonstrate that H2O2 induces a Rac1/JNK1/p38 signaling cascade, and that JNK and p38 activation is important for H2O2-induced apoptosis as well as AIF/Bax translocation of RPE cells. Y.-C. Yang and T.-C. Ho contributed equally to the work described herein.  相似文献   

4.
《Free radical research》2013,47(6-7):526-534
Abstract

Although endothelial progenitor cells (EPCs) have been used to promote revascularization after peripheral or myocardial ischemia, excess amounts of reactive oxygen species (ROS) are often involved in senescence and apoptosis of EPCs, thereby causing defective neovascularization and reduced or failed recovery. Here, we examined the cytoprotective effect of Ecklonia cava-derived antioxidant dieckol (DK) on oxidative stress-induced apoptosis in EPCs to improve EPC bioactivity for vessel repair. Although H2O2 (10 ? 3 M) increased the intracellular ROS level in EPCs, DK (10ug/ml) pretreatment suppressed the H2O2-induced ROS increase and drastically reduced the ratios of apoptotic cells. H2O2-induced ROS increased the phosphorylation of p38 MAPK and JNK; this was inhibited by DK pretreatment. H2O2 treatment increased the phosphorylation of NF-κB, which was blocked by pretreatment with SB 203580, a p38 MAPK inhibitor, or SP 600125, a JNK inhibitor. H2O2 decreased the cellular levels of Bcl-2 and c-IAPs, cellular inhibitors of apoptosis proteins, but increased caspase-3 activation. However, all these effects were inhibited by pretreatment with DK. Injection of DK-mixed EPCs (DK + EPCs) into myocardial ischemic sites in vivo induced cellular proliferation and survival of cells at the ischemic sites and, thereby, enhanced the secretion of angiogenic cytokines at the ischemic sites. These results show that DK + EPC exhibit markedly enhanced anti-apoptotic and antioxidative capabilities, unlike that shown by EPCs alone; thus, they contribute to improved repair of ischemic myocardial injury through cell survival and angiogenic cytokine production.  相似文献   

5.
Cadmium (Cd), a highly toxic environmental pollutant, induces neurodegenerative diseases. Recently we have demonstrated that Cd may induce neuronal apoptosis in part through activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (Erk1/2) pathways. However, the underlying mechanism remains enigmatic. Here we show that Cd induced generation of reactive oxygen species (ROS), leading to apoptosis of PC12 and SH-SY5Y cells. Pretreatment with N-acetyl-L-cysteine (NAC) scavenged Cd-induced ROS, and prevented cell death, suggesting that Cd-induced apoptosis is attributed to its induction of ROS. Furthermore, we found that Cd-induced ROS inhibited serine/threonine protein phosphatases 2A (PP2A) and 5 (PP5), leading to activation of Erk1/2 and JNK, which was abrogated by NAC. Overexpression of PP2A or PP5 partially prevented Cd-induced activation of Erk1/2 and JNK, as well as cell death. Cd-induced ROS was also linked to the activation of caspase-3. Pretreatment with inhibitors of JNK (SP600125) and Erk1/2 (U0126) partially blocked Cd-induced cleavage of caspase-3 and prevented cell death. However, zVAD-fmk, a pan caspase inhibitor, only partially prevented Cd-induced apoptosis. The results indicate that Cd induction of ROS inhibits PP2A and PP5, leading to activation of JNK and Erk1/2 pathways, and consequently resulting in caspase-dependent and -independent apoptosis of neuronal cells. The findings strongly suggest that the inhibitors of JNK, Erk1/2, or antioxidants may be exploited for prevention of Cd-induced neurodegenerative diseases.  相似文献   

6.
Oxidative stress, as mediated by ROS (reactive oxygen species), is a significant factor in initiating the cells damaged by affecting cellular macromolecules and impairing their biological functions; SelX, a selenoprotein also known as MsrB1 belonging to the methionine sulfoxide reductase (Msr) family, is the redox repairing enzyme and involved in redox-related functions. In order to more precisely analyze the relationship between oxidative stress, cell oxidative damage, and SelX, we stably overexpressed porcine Selx full-length cDNA in human normal hepatocyte (LO2) cells. Cell viability, cell apoptosis rate, intracellular ROS, and the expression levels of mRNA or protein of apoptosis-related genes under H2O2-induced oxidative stress were detected. We found that overexpression of SelX can prevent the oxidative damage caused by H2O2 and propose that the main mechanism underlying the protective effects of SelX is the inhibition of LO2 cell apoptosis. The results revealed that overexpressed SelX reduced the H2O2-induced intracellular ROS generation, inhibited the H2O2-induced upregulation of Bax and downregulation of Bcl-2, and increased the mRNA and protein ratio of Bcl-2/Bax. Furthermore, it inhibited H2O2-induced p38 MAPK phosphorylation. Taken together, our findings suggested that SelX played important roles in protecting LO2 cells against oxidative damage and that its protective effect is partly via the p38 pathway by acting as a ROS scavenger.  相似文献   

7.
Poor survival of mesenchymal stem cells (MSCs) compromised the efficacy of stem cell therapy for myocardial infarction. The increase of exogenous reactive oxygen species (ROS) in infracted heart is one of the important factors that challenged the survival of donor MSCs. In the study we aimed to evaluate the effect of oxidative stress on the cell death of MSCs and investigate its mechanisms in order to help with the identification of new biological compounds to reduce donor cells damage. Apoptosis of MSCs were evaluated with Hoechst 33342 staining and flow cytometry analysis. The mitochondrial membrane potential of MSCs was analyzed with JC‐1 staining. Signaling pathways involved in H2O2 induced apoptosis were analyzed with Western blot. H2O2 induced apoptosis of MSCs in a dose‐ and time‐dependent manner. H2O2 induced apoptosis of MSCs via both endoplasmic reticulum (ER) and mitochondrial pathways rather than extrinsic apoptosis pathway. H2O2 caused transient rather than sustained activation of p38 and JNK with no effect on ERK1/2 pathway. P38 was involved in the regulation of early apoptosis of MSCs while JNK was involved in the late apoptosis. P38 directed both ER stress and mitochondria death pathway in the early apoptosis. In conclusion, exogenous ROS was a major factor to induce apoptosis of MSCs. Both ER stress and mitochondria death pathway were involved in the apoptosis of MSCs. H2O2 activated p38 that directed the above two pathways in the regulation of early apoptosis of MSCs while JNK was involved in the late apoptosis of MSCs. J. Cell. Biochem. 111: 967–978, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Chen Z  Jiang H  Wan Y  Bi C  Yuan Y 《Cytotechnology》2012,64(1):65-73
P38 mitogen-activated protein kinases (p38 MAPK) and tumor necrosis factor-α (TNF-α) play important roles in oxidative stress-induced apoptosis in cardiac myocytes. However, the regulation and functional role of cross-talk between p38 MAPK and TNF-α pathways have not yet been fully characterized in cardiac myocytes. In this study, we found that inhibition of p38 MAPK with SB-203580 (SB) reduced H2O2-stimulated secretion of TNF-α, whereas pre-activation of p38 MAPK with sodium arsenite (SA) enhanced H2O2-stimulated secretion of TNF-α. In addition, pretreatment of cells with TNF-α increased basal and H2O2-stimulated p38 MAPK and apoptosis of cardiac myocytes, and p38 MAPK-associated apoptosis of cardiac myocytes induced by TNF-α was blocked by inhibition of p38 MAPK with SB. Finally, H2O2-induced apoptosis was attenuated by the inhibitors of p38 MAPK or reactive oxygen species (ROS), whereas it was enhanced by p38 MAPK agonist SA. These results suggest that H2O2-induced secretion of TNF-α increases apoptosis of cardiac myocytes through ROS-dependent activation of p38 MAPK. This may represent a novel mechanism that TNF-α partly interplays with p38 MAPK pathways during oxidative stress-modulated apoptosis in cardiac myocytes.  相似文献   

9.
Reactive oxygen species including H2O2 lead vascular endothelial cells (EC) to undergo apoptosis. Sphingosine 1-phosphate (S1P) is a platelet-derived sphingolipid mediator that elicits various EC responses. We aimed to explore whether and how S1P modulates EC apoptosis induced by H2O2. Treatment of cultured bovine aortic EC (BAEC) with H2O2 (750 μM for 6 h) led to DNA fragmentation (ELISA), DNA nick formation (TUNEL staining), and cleavage of caspase-3, key features of EC apoptosis. These responses elicited by H2O2 were alike markedly attenuated by pretreatment with S1P (1 μM, 30 min). H2O2 induced robust phosphorylation of both p38 and JNK MAP kinases. However, pretreatment with S1P decreased phosphorylation of only p38 MAP kinase, but not that of JNK; conversely, an inhibitor of p38 MAP kinase, but not that of JNK, attenuated H2O2-induced caspase-3 activation. Thus S1P attenuates H2O2-induced apoptosis of cultured BAEC, involving p38 MAP kinase.  相似文献   

10.
Oxidative stress induced by serum starvation and H2O2 exposure, both triggers apoptosis in retinal neuronal cell line RGC‐5 (retinal ganglion cell‐5). We have examined whether, despite excess generation of ROS (reactive oxygen species) and apoptosis induction, there is any dissimilarity in nuclear morphology and apoptotic signalling pathway in RGC‐5 under these conditions. Sub‐confluent cells were treated either with H2O2 or maintained in SFM (serum‐free medium). ROS level was detected along with nuclear morphology and ultrastructural analysis. Generation of excess intracellular ROS, nuclear localization of Bax and caspase 3 activation along with decrease of cellular viability, confirmed apoptosis induction in RGC‐5 by 72 h serum starvation and 500 M H2O2 exposure for 1 h. Nuclear swelling as supported by nuclear cytoplasmic ratio and conspicuous black spots with nuclear remodelling were observed only upon SFM, but not with H2O2 treatment. Serum starvation did not alter JNK1 (c‐Jun N‐terminal kinase 1) expression, although nuclear translocation and higher level of pJNK (phospho‐JNK) was evident. Conversely, H2O2 exposure blocked the expression and activation of JNK1 to phospho‐JNK as a negligible level of pJNK was present in the cytoplasm. Despite similar ROS generation in both the conditions, difference in nuclear morphology and JNK1 expression leads to the hypothesis that RGC‐5 cells may follow different signalling pathways when challenged with serum starvation and H2O2.  相似文献   

11.
Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Nerve cells are incessantly exposed to environmental stresses leading to overproduction of some harmful species like reactive oxygen species (ROS). ROS including hydrogen peroxide and superoxide anion are potent inducers of various signaling pathways encompassing MAPKs and JAK-STAT pathways. In the current study, we scrutinized the effects of hydrogen peroxide and/or menadione (superoxide anion generator) on JNK/p38-MAPKs and JAK2-STAT3 pathways to elucidate the mechanism(s) by which each oxidant modulated the above-mentioned pathways leading to SK-N-MC cell death. Our results delineated that hydrogen peroxide and superoxide anion radical induced distinct responses as we showed that STAT3 and p38 were activated in response to hydrogen peroxide, but not superoxide anion radicals indicating the specificity in ROS-induced signaling pathways activations and behaviors. We also observed that menadione induced JNK-dependent p53 expression and apoptotic death in SK-N-MC cells while H2O2-induced JNK activation was p53 independent. Thus, we declare that ROS type has a key role in selective instigation of JNK/p38-MAPKs and JAK2-STAT3 pathways in SK-N-MC cells. Identifying these differential behaviors and mechanisms of hydrogen peroxide and superoxide anion functions illuminates the possible therapeutic targets in the prevention or treatment of ROS-induced neurodegenerative diseases such as Alzheimer’s disease.  相似文献   

12.
Oxidative stress is important for the initiation and progression of cancers, which confers the cells with a survival advantage by inducing oxidative adaption and drug resistance. Therefore, developing strategies to promote oxidative stress-induced cytotoxicity could be important for cancer therapy. Herein, we found that H2O2-mediated oxidative stress increases TRPV2 expression in human hepatoma (HepG2 and Huh-7) cells. This occurred at the mRNA and protein levels in a dose-dependent manner. The significance of TRPV2 in promoting H2O2-induced cell death was demonstrated in gain and loss of function studies with overexpression and knockdown of TRPV2, respectively. Mechanistically, H2O2-induced cell death involves inhibition of pro-survival signaling proteins (Akt, Nrf2) and activation of pro-death signaling proteins (p38, JNK1). Overexpression of TRPV2 in H2O2-treated hepatoma cells aggravates the inhibition of Akt and Nrf2, while it enhances the activation of p38 and JNK1 at the early stage of cell death. Interestingly, increased expression of TRPV2 in HepG2 cells improved the efficacy of stress-associated chemicals to induce cell death. Our findings suggest that TRPV2 acts as an important enhancer for H2O2-induced cytotoxicity. This process occurred by the inhibition of Akt and Nrf2 as well as the early activation of p38 and JNK1. These findings have important implications for inhibition of oxidative adaption and drug resistance.  相似文献   

13.
14.
The function of protein phosphatases with EF-hand domains (PPEF) in mammals is not known. Large-scale expression profiling experiments suggest that PPEF expression may correlate with stress protective responses, cell survival, growth, proliferation, or neoplastic transformation. Apoptosis signal regulating kinase-1 (ASK1) is a MAP kinase kinase kinase implicated in cancer, cardiovascular and neurodegenerative diseases. ASK1 is activated by oxidative stress and induces pro-apoptotic or inflammatory signalling, largely via sustained activation of MAP kinases p38 and/or JNK. We identify human PPEF2 as a novel interacting partner and a negative regulator of ASK1. In COS-7 or HEK 293A cells treated with H2O2, expression of PPEF2 abrogated sustained activation of p38 and one of the JNK p46 isoforms, and prevented ASK1-dependent caspase-3 cleavage and activation. PPEF2 efficiently suppressed H2O2-induced activation of ASK1. Overexpessed as well as endogenous ASK1 co-immunoprecipitated with PPEF2. PPEF2 was considerably more potent both as a suppressor of ASK1 activation and as its interacting partner as compared to protein phosphatase 5 (PP5), a well-known negative regulator of ASK1. PPEF2 was found to form complexes with endogenous Hsp70 and to a lesser extent Hsp90, which are also known interacting partners of PP5. These data identify, for the first time, a possible downstream signalling partner of a mammalian PPEF phosphatase, and suggest that, despite structural divergence, PPEF and PP5 phosphatases may share common interacting partners and functions.  相似文献   

15.
Organisms living in an aerobic environment are continuously exposed to reactive oxygen species (ROS). Apoptosis of cells can be induced by ROS and cells also develop negative feedback mechanisms to limit ROS induced cell death. In this study, RAW264.7 murine macrophage cells were treated with H2O2 and cDNA microarray technique was used to produce gene expression profiles. We found that H2O2 treatment caused up-regulation of stress, survival and apoptosis related genes, and down-regulation of growth and cell cycle promoting genes. Numerous genes of metabolism pathways showed special expression patterns under oxidative stress: glycolysis and lipid synthesis related genes were down-regulated whereas the genes of lipid catabolism and protein synthesis were up-regulated. We also identified several signaling molecules as ROS-responsive, including p53, Akt, NF- B, ERK, JNK, p38, PKC and INF- . They played important roles in the process of apoptosis or cell survival. Finally, an interactive pathway involved in cellular response to oxidative stress was proposed to provide some insight into the molecular events of apoptosis induced by ROS and the feedback mechanisms involved in cell survival.Y. Zhang and C.C. Fong contributed equally to this work.  相似文献   

16.
We investigated the signaling pathways underlying nano-TiO2-induced apoptosis in cultured human lymphocytes. Nano-TiO2 increased the proportion of sub-G1 cells, activated caspase-9 and caspase-3, and induced caspase-3-mediated PARP cleavage. Nano-TiO2 also induced loss of mitochondrial membrane potential, which suggests that nano-TiO2 induces apoptosis via a mitochondrial pathway. A time-sequence analysis of the induction of apoptosis by nano-TiO2 revealed that nano-TiO2 triggered apoptosis through caspase-8/Bid activation. We also observed that inhibition of caspase-8 by z-IETD-fmk suppressed the caspase-8/Bid activation, caspase-3-mediated PARP cleavage, and apoptosis. Nano-TiO2 activated two MAPKs, p38 and JNK. In addition, the selective p38 inhibitor SB203580 and selective JNK inhibitor SP600125 suppressed nano-TiO2-induced apoptosis and caspase-8 activation to moderate and significant extents, respectively. Knockdown of protein levels of JNK1 and p38 using an RNA interference technique also suppressed caspase-8 activation. Our results suggest that nano-TiO2-induced apoptosis is mediated by the p38/JNK pathway and the caspase-8-dependent Bid pathway in human lymphocytes.  相似文献   

17.
Silent information regulator 1 (SIRT1), a class III histone deacetylase, retards aging and plays roles in cellular oxidative stress injury (OSI). However, the biological context in which SIRT1 promotes oxidative injury is not fully understood. Here, we show that SIRT1 essentially mediates hydrogen peroxide (H2O2)-induced cytotoxicity in human umbilical vein endothelial cell (HUVEC). In HUVECs, SIRT1 protein expression was significantly increased in a dose-dependent manner after H2O2 treatment, whereas the acetylation levels of the NF-κB p65 subunit and p53 were decreased. EX527 (a specific SIRT1 inhibitor) conferred protection to the HUVECs against H2O2, as indicated by an improved cell viability, adhesion, an enhanced migratory ability, a decreased apoptotic index, decreased reactive oxygen species (ROS) production and reductions in several biochemical parameters. Immunofluorescence and Western blot analyses demonstrated that H2O2 treatment up-regulated SIRT1, phosphorylated-JNK (p-JNK), p-p38MAPK, and p-ERK expression. EX527 pretreatment reversed these effects on SIRT1, p-JNK, and p-p38MAPK but further increased the p-ERK levels. Similar results were confirmed in SIRT1 siRNA experiments. In summary, SIRT1 signaling pathway inhibition imparts protection against acute endothelial OSI, and modulation of MAPKs (JNK, p38MAPK, and ERK) may be involved in the protective effect of SIRT1 inhibition.  相似文献   

18.
The mammalian target of rapamycin complex 1(mTORC1) integrates diverse signals to control cell growth, proliferation, survival, and metabolism. Role of reactive oxygen species (ROS) on mTORC1 signaling remains obscure and mechanisms through which ROS modulate mTORC1 are not known. We demonstrate that low doses ROS exposure stimulate mTORC1 while high concentrations or long-term ROS treatment decrease mTORC1 activity in vivo and in a variety of cell lines. The dose/time needed for inhibition or activation are cell type-dependent. In HEK293 cells hydrogen peroxide (H2O2) stimulates phosphorylation of AMP-activated kinase (AMPK) (T172) and Raptor (S792), enhances association of activated AMPK with Raptor. Furthermore, AMPK inhibitor compound c inhibits H2O2-induced Raptor (S792) phosphorylation and reverses H2O2-induced de-phosphorylation of mTORC1 downstream targets p70-S6K1 (T389), S6 (S235/236) and 4E-BP1 (T37/46). H2O2 also stimulates association of endogenous protein phosphatase 2A catalytic subunit (PP2Ac) with p70-S6K1. Like compound c, inhibitor of PP2A, okadaic acid partially reverses inactivation of mTORC1 substrates induced by H2O2. Moreover, inhibition of PP2A and AMPK partially rescued cells from H2O2-induced cell death. High doses of H2O2 inhibit while low doses of H2O2 activate mTORC1 both in TSC2?/? P53?/? and TSC2+/+ P53?/? MEFs. These data suggest that PP2A and AMPK-mediated phosphorylation of Raptor mediate H2O2-induced inhibition of mTORC1 signaling.  相似文献   

19.
Oxidative stress plays an important role in the pathological processes of various neurodegenerative diseases. Ugonin K, a flavonoid isolated from the rhizomes of Helminthostachys zeylanica, possesses potent antioxidant property. In this study, we investigate the neuroprotective effects of ugonin K on hydrogen peroxide (H2O2)-induced apoptosis in SH-SY5Y cells. Incubation of SH-SY5Y cells with H2O2 for 24 h induced cell death measured with MTT assay. Hoechst 33258 staining confirmed that the reduced cell viability by H2O2 was due to apoptosis. In addition, H2O2 increased the expression of 17-kDa cleaved fragment of caspase-3 which could be reversed by pretreatment with ugonin K. Pretreatment with ugonin K attenuated H2O2-induced cell death in a dose-dependent manner. Neuroprotective effect of ugonin K was abolished by ERK and PI3K inhibitors. Pretreatment with JNK kinase and p38 MAPK inhibitors had no effect on ugonin K-mediated protection against H2O2-induced apoptosis. Western blotting with anti-phospho-ERK1/2 and anti-phospho-Akt (pS473) antibodies showed that ugonin K increased both ERK1/2 and Akt phosphorylation. These results suggest that ugonin K by activation of ERK1/2 and PI3K/Akt signal pathways protects SH-SY5Y cells from H2O2-induced apoptosis.  相似文献   

20.
Barley is a major crop worldwide. It has been reported that barley seeds have an effect on scavenging ROS. However, little has been known about the functional role of the barley on the inhibition of DNA damage and apoptosis by ROS. In this study, we purified 3,4-dihydroxybenzaldehyde from the barley with silica gel column chromatography and HPLC and then identified it by GC/MS. And we firstly investigated the inhibitory effects of 3,4-dihydroxybenzaldehyde purified from the barley on oxidative DNA damage and apoptosis induced by H2O2, the major mediator of oxidative stress and a potent mutagen. In antioxidant activity assay such as DPPH radical and hydroxyl radical scavenging assay, Fe2+ chelating assay, and intracellular ROS scavenging assay by DCF-DA, 3,4-dihydroxybenzaldehyde was found to scavenge DPPH radical, hydroxyl radical and intracellular ROS. Also it chelated Fe2+. In in vitro oxidative DNA damage assay and the expression level of phospho-H2A.X, it inhibited oxidative DNA damage and its treatment decreased the expression level of phospho-H2A.X. And in oxidative cell death and apoptosis assay via MTT assay and Hoechst 33342 staining, respectively, the treatment of 3,4-dihydroxybenzaldehyde attenuated H2O2-induced cell death and apoptosis. These results suggest that the barley may exert the inhibitory effect on H2O2-induced tumor development by blocking H2O2-induced oxidative DNA damage, cell death and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号