首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-linked enzyme aggregates (CLEA®s) were prepared from Candida rugosa lipase (CrL) using glutaraldehyde as the cross-linker. The optimum conditions of the immobilization process were determined (precipitant: ethanol, crosslinker concentration: 25 mM, enzyme concentration: 50 mg/ml, crosslinking time: 45 min.). CLEAs were shown to have several advantages compared to the free enzyme. They were more stable at 50 °C and 60 °C and had good reusability; retaining 40% of their initial activity after 15 recycles in aqueous media and remaining constant at that level thereafter, suggesting some initial leaching in water. The CLEAs catalyzed esterification reactions in cyclohexane, affording higher conversions than with the free enzyme, especially when longer fatty acids and alcohols were used as substrates.  相似文献   

2.
Isomaltulose is a structural isomer of sucrose commercially used in food industries. Glucosyltransferase produced by Erwinia sp. D12 catalyses an intramolecular transglucosylation of sucrose giving isomaltulose. An experimental Design and Response Surface Methodology were applied for the optimization of the nutrient concentration in the culture medium for enzyme production in shaken flasks at 200 rpm and 30 °C. A higher production of glucosyltransferase (7.47 Uml−1) was observed in the culture medium containing sugar cane molasses (160 gl−1), bacteriological peptone (20 gl−1) and yeast extract Prodex Lac SD® (15 gl−1) after 8 h, at 30 °C. The highest production of glucosyltransferase in the 6.6-l bioreactor (14.6 Uml−1) was obtained in the optimized culture medium after 10 h at 26 °C. When Erwinia sp. D12 cells were immobilized in sodium alginate, it was verified that sodium alginate solution A could be substituted by a cheaper one, sodium alginate solution B. Using a 40% cell suspension and 2% sodium alginate solution B for cell immobilization in a packed-bed reactor, 64.1% conversion of sucrose to isomaltulose was obtained. The packed-bed reactor with immobilized cells plus glutaraldehyde and polyethylenimine solutions remained in a pseudo-steady-state for 180 h.  相似文献   

3.
《Small Ruminant Research》2010,92(2-3):219-224
Four experiments were conducted to evaluate the effectiveness of a new controlled drug releasing device containing 0.3 g progesterone (DICO®) on ovarian control in sheep. In experiment 1, serum progesterone concentrations induced by a 14 days treatment of DICO® (n = 9) and CIDR-G® (n = 9) were compared in ovariectomized ewes. Both devices induced similar responses and no differences were recorded. In experiment 2, the onset of oestrus and the time of ovulation obtained after 14 days treatment with DICO® (n = 8) and CIDR-G® (n = 7) were compared in cyclic ewes. Both devices induced oestrus and ovulation in all of the ewes. The onset of oestrus (34.5 ± 2.8 and 30.0 ± 7.7 h), the time of ovulation (60.0 ± 9.1 and 54.9 ± 6.4 h), the ovulation rate (1.3 ± 0.5 and 1.4 ± 0.5), the follicular diameter at ovulation (7.0 ± 0.8 and 7.3 ± 1.1 mm), and the lifespan of the ovulatory follicles (8.6 ± 2.2 and 10.0 ± 2.9 days) were similar for the DICO® and CIDR-G® devices, respectively. In Experiment 3, the re-utilization of DICO® devices inserted for 6 days (i.e. short-term protocol) was evaluated in ovariectomized ewes. The females received a re-used (previously used for 6 days; n = 11) or a new DICO® (n = 11) for a period of 6 days. The re-used DICO® devices induced a lower serum progesterone concentration than the new devices (P < 0.05). However, the re-used DICO® device maintained serum progesterone concentrations above 7.1 nmol/L (i.e. >2 ng/ml) throughout treatment. In Experiment 4, the administration of eCG treatment at DICO® withdrawal was evaluated in cyclic ewes. The short-term protocol using DICO® devices for 6 days was applied with (n = 8) or without (n = 7) 300 IU eCG at the time of device withdrawal. The administration of eCG advanced ovarian follicular development, synchronizing the onset of oestrus at 36 h and the time of ovulation at 60 h from device withdrawal. In conclusion, data from these experiments show the use of DICO® or CIDR-G® devices containing 0.3 g of progesterone to have a similar efficiency in controlling serum progesterone concentrations, follicular development and the time of ovulation in sheep. The re-use of the devices, associated with the short-term protocol for 6 days is possible, although further studies on induced fertility rates are warranted.  相似文献   

4.
The present study investigates the interaction of the second generation photosensitizer Foscan® with plasma albumin and lipoproteins. Spectroscopic studies indicated the presence of monomeric and aggregated Foscan® species upon addition to plasma protein solutions. Kinetics of Foscan® disaggregation in albumin-enriched solutions were very sensitive to the protein concentration and incubation temperature. Kinetic analysis demonstrated that two types of Foscan® aggregated species could be involved in disaggregation: dimers with a rate constant of k1 = (2.30 ± 0.15) × 10−3 s−1 and higher aggregates with rate constants varying from (0.55 ± 0.04) × 10−3 s−1 for the lowest to the (0.17 ± 0.02) × 10−3 s−1 for the highest albumin concentration. Disaggregation considerably increased with the temperature rise from 15 °C to 37 °C. Compared to albumin, Foscan® disaggregation kinetics in the presence of lipoproteins displayed poorer dependency on lipoprotein concentrations and smaller variations in disaggregation rate constants. Gel-filtration chromatography analysis of Foscan® in albumin solutions demonstrated the presence of aggregated fraction of free, non-bound to protein Foscan® and monomeric Foscan®, bound to protein.  相似文献   

5.
An alkaline calcium dependent trypsin from the viscera of Goby (Zosterisessor ophiocephalus) was purified to homogeneity with a 16-fold increase in specific activity and 20% recovery. The purified trypsin appeared as a single band on sodium dodecyl sulphate-polyacrylamide gel (SDS-PAGE) and native-PAGE. The enzyme had an estimated molecular weight of 23.2 kDa.The optimum pH was 9.0, and the enzyme was extremely stable in various pH buffers between pH 7.0 and 11.0. The optimum temperature for enzyme activity was 60 °C, and the activity and stability of trypsin was highly dependent on the presence of calcium ion. At 60 °C, Ca2+ (5 mM) stimulated the protease activity by 220%. The trypsin kinetic constants, Km and kcat, were 0.312 mM and 2.03 s?1.The enzyme showed high stability towards non-ionic surfactants and oxidizing agent. In addition, the enzyme showed excellent stability and compatibility with some commercial solid and liquid detergents.  相似文献   

6.
Candida antarctica lipase B, immobilized as cross linked enzyme aggregates (CLEAs) was used to mediate the Baeyer–Villiger oxidation of cyclohexanone to ɛ-caprolactone, and the reaction was compared with the one using Novozym® 435 as catalyst. The conversion was dependent on the initial concentration of cyclohexanone, and was about 90% after 48 h at concentrations of up to 0.25 M but was decreased at higher concentrations. Caprolactone concentrations up to 0.6 M had no effect on the reaction efficiency. Among the cyclic ketones tested, the highest degree of conversion was achieved for cyclopentanone (88%) and the lowest for cyclooctanone (about 2%). The effect of methyl substitution and position of substitution on the cycloketone was studied using methylcyclohexanone and it has shown to influence the conversion efficiency. Both hydrogen peroxide and the reaction by-product acetic acid had a deleterious effect on the stability of the biocatalyst.  相似文献   

7.
Cross-linked enzyme aggregates (CLEAs) are novel type biocatalysts well suited to catalyze reactions of organic synthesis. Penicillin acylase is a versatile enzyme that can both hydrolyze and synthesize β-lactam antibiotics. CLEAs and CLEAs covered with polyionic polymers (polyethyleneimine and dextran sulfate at two different enzyme to polymer ratios) were prepared at varying cross-linking agent to enzyme ratio: 0.15 and 0.25. Results are presented on the effect of such variables on immobilization yield, specific activity, stability and performance of penicillin acylase CLEAs in the kinetically controlled synthesis of cephalexin. The cross-linking agent to enzyme ratio had no significant effect on the specific activity of the CLEAs, but affected immobilization yield, stability in ethylene glycol medium and conversion yield and productivity in the synthesis of cephalexin, being always higher at the lower cross-linking agent to enzyme ratio. Best results were obtained with CLEAs at 0.15 glutaraldehyde to enzyme protein ratio: specific activity of hydrolysis and synthesis was 708 and 325 UI/gCLEA respectively, conversion yield was 87%, specific productivity was 5.4 mmol cephalexin/(gCLEA·h) and 90% of the enzyme remained active after 170 h at operating conditions.  相似文献   

8.
Kinetics of microperoxidase-11 (MP-11) as a heme–peptide enzyme model in oxidation reaction of guaiacol (AH) by hydrogen peroxide was studied in the presence of amino acids, taking into account the inactivation of MP-11 during reaction by its suicide substrate, H2O2. Reliability of the kinetic equation was evaluated by non-linear mathematical fitting. Fitting of experimental data into a new integrated kinetic relation showed a close match between the kinetic model and the experimental data. Indeed, it was found that the mechanism of suicide-peroxide inactivation of MP-11 in the presence of amino acids is different from MP-11 and/or horseradish peroxidase. In this mechanism, amino acids compete with hydrogen peroxide for the sixth co-ordination position of iron atom in the heme group through a competitive inhibition mechanism.The proposed model can successfully determine the kinetic parameters including inactivation by hydrogen peroxide as well as the inhibitory rate constants by the amino acid inhibitor.Kinetic parameters of inactivation including the initial activity of MP-11, α0, the apparent inactivation rate constant, ki and the apparent inhibition rate constant for cysteine, kI were obtained 0.282 ± 0.006 min?1, 0.497 ± 0.013 min?1 and 1.374 ± 0.007 min?1 at [H2O2] = 1.0 mM, 27 °C, phosphate buffer 5.0 mM, pH 7.0. Results showed that inactivation and inhibition of microperoxidase as a peroxidase model enzyme occurred simultaneously even at low concentrations of hydrogen peroxide (0.4 mM). This kinetic analysis based on the suicide-substrate inactivation of microperoxidase-11, provides a tool and model for studying peroxidase models in the presence of reversible inhibitors. The introduced inhibition procedure can be used in designing activity tunable and specific protected enzyme models in the hidden and reversibly inhibited forms, which do not undergo inactivation.  相似文献   

9.
A new fungal peroxidase (Pspd) from Perenniporia subacida was purified by ammonium sulfate precipitation, DEAE-cellulose DE52 anionic exchange and Sepharose GL-6B chromatography, resulting in a high specific activity of 9.138 U mg−1, 3.622-fold higher than that of crude enzyme at the same level. Polyacrylamide gel electrophoresis and UV–vis adsorption spectrum analysis showed that the purified enzyme is a heme-containing monomer with a molecular mass of 43.0 kDa. Optimal peroxidase activity was obtained at pH 5.5 and 30 °C when using 100.0 mM n-propanol as substrate, and under these conditions, the catalytic efficiency (kcat/Km) is 1.57 s−1 μM−1. Pspd was inhibited by l-cysteine, dithiothreitol, EDTA and sodium azide, but stimulated by Mn2+, Na+, Mg2+ and K+. The enzyme is stable over a broad pH range of 7.0–8.5 after incubation for 72 h, which indicated that the enzyme is lasting alkaline-tolerant. It was worth noting that the chloride at relatively low concentrations can enhance the peroxidase activity, with concomitant increase in substrate affinity. Additionally, Pspd performed high decolorization capability toward structurally various dyes and the capability was independent of the oxidizing mediators, with 75.31% of Neutral Red (50.0 mg L−1) being decolorized by 1.5 U mL−1 pure enzyme after incubation for 72 h. These properties demonstrated that Pspd has potentials for textile dyes decolorization applications.  相似文献   

10.
The LAC4 gene of Kluyveromyces lactis encoding for β-galactosidase was overexpressed in the yeast Arxula adeninivorans to produce the enzyme, which can be used for the synthesis of β-d-galactosides. These compounds play a major role as precursors for the synthesis of glycolipids and glycoproteins in medicine or for the production of tensides.The Xplor®2 transformation/expression platform was used because it enabled stable integration of the gene in the Arxula genome and the production of high levels of the enzyme. The recombinant β-galactosidase, fused with C-terminal His-tag region (Lac4-6hp), was purified by precipitation with ammonium sulphate and FPLC using hydroxylapatite. The enzyme exhibited optimal activity at 37 to 40 °C, pH 6.5 in 50 mM sodium acetate buffer. Activity was measured by the formation of p-nitrophenol at 405 nm from the hydrolyzed chromogenic substrate, p-nitrophenyl-β-d-gal. Biochemical characterization included the calculation of KM and apparent kcat values of the enzyme. The formation of benzyl β-d-gal by 0.1 U enzyme from A. adeninivorans with transgalactosylation was six times higher than that for the prokaryotic enzyme from E. coli. Moreover, the partially purified enzyme was used for the selective hydrolysis of allyl β-d-gal in a mixture of allyl β- and allyl α-d-gal, with 4 g l−1 being hydrolysed within one day by 1 U ml−1. Thus, the recombinant β-galactosidase produced in A. adeninivorans is of potential interest for the enzymatic synthesis of benzyl β-d-gal and other galactosides as well as the selective hydrolysis of anomeric mixtures and could be used to replace difficult chemical procedures.  相似文献   

11.
《Process Biochemistry》2014,49(2):335-346
Selective purification still poses a challenge in the downstream processing of biomolecules such as proteins and especially enzymes. In this study a polyethylene glycol 3000 (PEG 3000)–phosphate aqueous two-phase system at 25 °C and pH 7 was successfully used for laccase purification and separation. Initially, the effect of phase forming components on enzyme activities in homogenous systems was studied. In the course of the extraction experiments tie lines, enzyme source, initial enzyme activities, phase ratio and sodium chloride concentrations were varied and their influence on the activity partitioning was determined. Partitioning results were validated using clear-native-PAGE and isoelectric focusing. Based on these results, the separation of laccases from Trametes versicolor and Pleurotus sapidus was investigated using the principle of superposition. Sodium chloride was used to adjust laccase partitioning in the applied aqueous two-phase system (ATPS). Finally, two modes of operation are proposed depending on the aim of the purification task. One mode with 0.133 g g−1 of PEG3000, 0.063 g g−1 of phosphate and without sodium chloride separates P. sapidus laccases from T. versicolor laccases with clearance factors of 5.23 and 6.45, respectively. The other mode of operation with 0.124 g g−1 of PEG3000, 0.063 g g−1 of phosphate and 0.013 g g−1 of sodium chloride enables a partitioning of both laccases into the bottom phase of the ATPS resulting in a purification factor of 2.74 and 96% activity recovery.  相似文献   

12.
A thermoalkaline protease with a molecular weight of 22 kDa was purified from the Bacillus cereus SIU1 strain using a combination of Q-Sepharose and Sephadex G-75 chromatography. The kinetic analyses revealed the Km, Vmax and kcat to be 1.09 mg ml?1, 0.909 mg ml?1 min?1 and 3.11 s?1, respectively, towards a casein substrate. The protease was most active and stable at pH 9.0 and between a temperature range of 45–55 °C. It was fully stable at 0.0–2.0% and moderately stable at 2.5–10.0% (w/v) sodium chloride. Phenyl methyl sulfonyl fluoride, ethylene diamine tetra acetic acid and ascorbic acid were inhibitory with regard to enzyme activity, whereas cysteine, β-mercaptoethanol, calcium, magnesium, manganese and copper at concentration of 1.0 mM increased enzyme activity. Sodium dodecyl sulfate, Triton X-100, Tween 80, hydrogen peroxide and sodium perborate significantly enhanced protease activity at 0.1 and 1.0% concentrations. In the presence of 0.1 and 1.0% (w/v) detergents, the protease was fairly stable and retained 50–76% activity. Therefore, it may have a possible application in laundry formulations. An initial analysis of the circular dichroism (CD) spectrum in the ultraviolet range revealed that the protease is predominantly a β-pleated structure and a detailed structural composition showed ~50% β-sheets. The CD-based conformational evaluation of the protease after incubation with modulators, metal ions, detergents and at different pH values, revealed that the change in the β-content directly corresponded to the altered enzyme activity. The protease combined with detergent was able to destain blood stained cloth within 30 min.  相似文献   

13.
This paper reports the validation of a liquid chromatography tandem mass spectrometry (LC-MS/MS) method that allows the quantification of 10 antiretroviral (ARV) drugs in peripheral blood mononuclear cells (PBMCs) using 6 different isotopic internal standards (IS) and its clinical application. PBMCs are isolated from blood by density gradient centrifugation and drugs are extracted with a 60% methanol (MeOH) solution containing the 6 IS. The cell extract is then injected in the HPLC system and analytes are separated on a Symmetry Shield RP18 2.1 mm × 50 mm column. The different molecules are then detected by MS/MS in electrospray positive or negative ionisation modes and data are recorded using the multiple reaction monitoring (MRM) mode. Calibration curves are constructed in the range of 0.25–125 ng/ml of cell extract by a 1/x2 weighted quadratic regression. The regression coefficients obtained are always greater than 0.99 and back calculated values always comprised in the range of ±15% from their nominal concentration. Mean extraction recoveries are greater than 80% for all analytes and the method is accurate and precise with CV and bias lower than 9.4%. The lower limits of quantification (LLOQ) of the different drugs range from 0.0125 to 0.2 ng/ml of cell extract. This method was successfully applied to a cohort of 98 HIV-infected patients treated with Kaletra® (400/100 mg of lopinavir/ritonavir (LPV/RTV) twice a day, n = 48) or with Stocrin® (600 mg once a day, n = 50) and has been tested for cellular quantification of tipranavir (TPV) in 2 patients treated with Aptivus® (500 mg twice a day). The patients treated by Kaletra® showed mean cell-associated concentrations (CC) of 1819.0 and 917.2 ng/ml, for LPV and RTV, respectively. Patients treated with Stocrin® showed mean CC of 2388.11 ng/ml while both patients under Aptivus® showed TPV CC of 4322.7 and 1078.0 ng/ml, respectively. This method can be used to analyze ARV drug concentrations within the target tissue.  相似文献   

14.
《Process Biochemistry》2014,49(4):637-646
In this study, Purolite® A109, polystyrenic macroporous resin, was used as immobilization support due to its good mechanical properties and high particle diameter (400 μm), which enables efficient application in enzyme reactors due to lower pressure drops. The surface of support had been modified with epichlorhydrine and was tested in lipase immobilization. Optimized procedure for support modification proved to be more efficient than conventional procedure for hydroxy groups (at 22 °C for 18 h), since duration of procedure was shortened to 40 min by performing modification at 52 °C resulting with almost doubled concentration of epoxy groups (563 μmol g−1). Lipase immobilized on epoxy-modified support showed significantly improved thermal stability comparing to both, free form and commercial immobilized preparation (Novozym® 435). The highest activity (47.5 IU g−1) and thermal stability (2.5 times higher half-life than at low ionic strength) were obtained with lipase immobilized in high ionic strength. Thermal stability of immobilized lipase was further improved by blocking unreacted epoxy groups on supports surface with amino acids. The most efficient was treatment with phenylalanine, since in such a way blocked immobilized enzyme retained 65% of initial activity after 8 h incubation at 65 °C, while non-blocked derivative retained 12%.  相似文献   

15.
This work reports the purification and biochemical characterization of angiotensin I-converting enzyme (ACE) from ostrich (Struthio camelus) lung. The molecular weight of the purified enzyme was approximately evaluated to be 200 kDa and the maximum enzyme activity was observed at pH 7.5. The enzyme activity was increased by detergents of Triton X-100 (0.01%), cetyltrimethylammonium bromide (CTAB) (0.1 and 1 mM) and sodium dodecyl sulfate (SDS) (0.1 mM), while decreased by Triton X-100 (1% and 10%) and SDS (1 mM and 10 mM). The secondary and tertiary structure and activity of ACE in the absence and presence of trifluoroethanol (TFE) were investigated using circular dichroism, fluorescence quenching and UV–visible spectroscopy, respectively. Our results revealed that TFE stabilizes ACE at low concentrations, while acts as a denaturant at higher concentration (20%). The Km, Kcat and Kcat/Km values of ostrich ACE towards FAPGG were 0.8 × 10?4 M, 59,240 min?1 and 74 × 107 min?1 M?1, respectively. The values of IC50 and Ki for captopril were determined to be 36.5 nM and 16.6 nM, respectively. In conclusion, ostrich lung ACE is a new enzyme which could be employed as a candidate for studying ACE structure and its natural or synthetic inhibitors.  相似文献   

16.
To achieve nitritation from complete-nitrification seed sludge at room temperature of 19 ± 1 °C, a lab-scale sequencing batch reactor (SBR) treating domestic wastewater with low C/N ratios was operated to investigate the control and optimization of nitrifying communities. Ammonia oxidizing bacteria (AOB) dominance was enhanced through the combination of low DO concentrations (<1.0 mg/L) and preset short-cycle control of aeration time. Nitritation was successfully established with NO2?-N/NOx?-N over 95%. To avoid the adverse impact of low DO concentrations on AOB activities, DO concentrations were increased to 1–2 mg/L. At the normal DO levels and temperatures, on-line control strategy of aerobic durations maintained the stability of nitritation with nitrite accumulation rate over 95% and ammonia removal above 97%. Fluorescence in-situ hybridization (FISH) analysis presented that the maximal percentage of AOB in biomass reached 10.9% and nitrite oxidizing bacteria (NOB) were washed out.  相似文献   

17.
The objective of the present study was to isolate halotolerant bacteria from the sediment sample collected from Marakanam Solar Salterns, Tamil Nadu, India using NaCl supplemented media and screened for amylase production. Among the 22 isolates recovered, two strains that had immense potential were selected for amylase production and designated as P1 and P2. The phylogenetic analysis revealed that P1 and P2 have highest homology with Pontibacillus chungwhensis (99%) and Bacillus barbaricus (100%). Their amylase activity was optimized to obtain high yield under various temperature, pH and NaCl concentration. P1 and P2 strain showed respective, amylase activity maximum at 35 °C and 40 °C; pH 7.0 and 8.0; 1.5 M and 1.0 M NaCl concentration. Further under optimized conditions, the amylase activity of P1 strain (49.6 U mL?1) was higher than P2 strain. Therefore, the amylase enzyme isolated from P. chungwhensis P1 was immobilized in sodium alginate beads. Compared to the free enzyme form (49.6 U mL?1), the immobilized enzyme showed higher amylase activity as 90.3 U mL?1. The enzyme was further purified partially and the molecular mass was determined as 40 kDa by SDS–PAGE. Thus, high activity of amylase even under increased NaCl concentration would render immense benefits in food processing industries.  相似文献   

18.
An epoxy-activated monolithic Convective Interaction Media (CIM®) disk was used for the immobilization of endodextranase D8144 from Penicillium sp. (EC 3.2.1.11) in order to produce on-line isomalto-oligosaccharides (IMOs) from Dextran T40. Enzymatic parameters, molecular weight of IMOs and performance of the IMmobilized Enzymes Reactor (IMER) were investigated. The immobilization yield of enzymes was about 45.3% (w/w), and the real specific activity close to 3.26 U mg−1. The Km values did not significantly change between free (12.8 g L−1) and immobilized enzymes (14.2 g L−1), due to the absence of diffusional limitation. The IMER system presented more than 80% of its residual activity after 5000 column volumes, highlighting the high stability of the immobilized endodextranases. Response surface methodology was used to enhance the performance of the IMER. Depending on dextran concentrations and flow rates, specific patterns of IMOs distributions were observed during the enzymatic hydrolysis. Finally, prebiotic activity was also investigated on IMOs produced by medium conditions (flow rate 0.3 mL min−1 and dextran concentrations 4% w/w) against Lactobacillus rhamnosus GG (ATCC 53103). Their scores were at least as good as two commercialized fructo-oligosaccharides (FOS), Fibrulose® F97 and Orafti® P95.  相似文献   

19.
A new bioprocess for the synthesis of lactosucrose was studied using a covalently immobilized β-galactosidase on macrospheres of chitosan. The effects of temperature and pH on the production of lactosucrose and other oligosaccharides were evaluated. At 30 °C and pH 7.0, the maximum concentration of lactosucrose reached to 79 g L−1. The change of the reaction conditions allowed to modify the qualitative profile of the final products without quantitative change in the total of oligosaccharides produced. At pH 7 and 30 °C, products profile was 79 g L−1 of lactosucrose, 37 g L−1 of galactooligosaccharides and 250 g L−1 of total oligosaccharides, while at pH 5 and 64 °C the concentrations for the same compounds were 40, 62 and 250 g L−1, respectively. The immobilization increased the thermal stability up to 260-fold. Using 300 g L−1 of sucrose and 300 g L−1 of lactose, and 8.5 mg of chitosan mL−1, 30 cycles of reuse were performed and the biocatalyst kept the maximal lactosucrose synthesis. These results fulfill some important aspects for the enzyme immobilization and oligosaccharides synthesis: the simplicity of the protocols, the high operational stability of the enzyme and the possibility of driving the final products.  相似文献   

20.
An extracellular acid phytase was purified to homogeneity from the culture supernatant of the Saccharomyces cerevisiae CY strain by ultrafiltration, DEAE-Sepharose column chromatography, and Sephacryl S-300 gel filtration. The molecular weight of the purified enzyme was estimated to be 630 kDa by gel filtration. Removing the sugar chain by endoglycosidase H digestion revealed that the molecular mass of the protein decreased to 446 kDa by gel filtration and gave a band of 55 kDa by SDS-PAGE. The purified enzyme was most active at pH 3.6 and 40 °C and was fairly stable from pH 2.5 to 5.0. The phytase displayed broad substrate specificity and had a Km value of 0.66 mM (sodium phytate, pH 3.6, 40 °C). The phytase activity was completely inhibited by Fe3+ and Hg2+, and strongly inhibited (maximum of 91%) by Ba2+, Co2+, Cu+, Cu2+, Fe2+, Mg2+, and Sn2+ at 5 mM concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号