首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Misfolded human islet amyloid polypeptide (hIAPP) in pancreatic islets is associated with the loss of insulin-secreting beta cells in type 2 diabetes. Insulin secretion impairment and cell apoptosis can be due to mitochondrial dysfunction in pancreatic beta cells. Currently, there is little information about the effect of hIAPP on mitochondrial function. In this study, we used INS-1E rat insulinoma beta cells as a model to investigate the role of mitochondria in hIAPP-induced apoptosis and the protective effects of phycocyanin (PC). We demonstrated that hIAPP induced apoptosis in INS-1E cells was associated with the disruption of mitochondrial function, as evidenced by ATP depletion, mitochondrial mass reduction, mitochondrial fragmentation and loss of mitochondrial membrane potential (ΔΨ(m)). Further molecular analysis showed that hIAPP induced changes in the expression of Bcl-2 family members, release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria into cytosol, activation of caspases and cleavage of poly (ADP-ribose) polymerase. Interestingly, the hIAPP-induced mitochondrial dysfunction in INS-1E cells was effectively restored by co-treatment of PC. Moreover, there was crosstalk between the extrinsic and intrinsic apoptotic pathways as demonstrated by cleavage of Bid by caspase-8 in the apoptotic process triggered by hIAPP. Taken together, we demonstrated for the first time the involvement of mitochondrial dysfunction in hIAPP-induced INS-1E cell apoptosis. Attenuation of mitochondrial dysfunction provides a mechanism for the protective effects of PC.  相似文献   

2.
Deposit of amyloid peptides in the cells is related to various amyloidosis diseases. A variety of nanomaterials have been developed to resist amyloid deposit. Most of the research on the inhibition of nanomaterials against amyloid aggregation are undertaken in solution, while the membranes that may mediate fibrillar aggregation and affect interaction of inhibitors with amyloid peptides in biotic environment are little taken into account. In this study, we synthesized three kinds of gold nanoclusters modified with cysteine (C@AuNCs), glutathione (GSH@AuNCs) and a peptide derived from the core region of hIAPP fibrillation (C-HL-8P@AuNCs), and investigated their inhibitory activities against hIAPP fibrillation in the absence and presence of lipid vesicles (POPC/POPG 4:1 LUVs) by the experiments of ThT fluorescence kinetics, AFM and CD. We also explored the inhibitions of hIAPP-induced membrane damage and cytotoxicity by peptide@AuNCs using fluorescent dye leakage and cell viability assays. Our study revealed that the inhibitory efficiency of these peptide@AuNCs against hIAPP fibrillation follows C-HL-8P@AuNCs≅GSH@AuNCs>C@AuNCs in lipid-free solution and C-HL-8P@AuNCs≫GSH@AuNCs>C@AuNCs in lipid membrane environment. Compared with the results obtained in lipid-free solution, the inhibitions of hIAPP fibrillation observed in lipid membrane environment were more associated with the inhibitions of hIAPP-induced damages of lipid vesicles and INS-1 cells (C-HL-8P@AuNCs≫GSH@AuNCs>C@AuNCs). An additional hydrophobic interaction with the homologous core region of hIAPP, which is only provided by C-HL-8P@AuNCs and largely suppressed in lipid-free solution, enhanced in the membrane environment and therefore made C-HL-8P@AuNCs much more powerful than GSH@AuNCs and C@AuNCs in the inhibitions of hIAPP fibrillation and cytotoxicity.  相似文献   

3.
Loss of pancreatic β-cell mass is deleterious for type 2 diabetes patients since it reduces insulin production, critical for glucose homeostasis. The main research axis developed over the last few years was to generate new pancreatic β-cells or to transplant pancreatic islets as occurring for some specific type 1 diabetes patients. We evaluate here a new paradigm consisting in preservation of β-cells by prevention of human islet amyloid polypeptide (hIAPP) oligomers and fibrils formation leading to pancreatic β-cell death. We review the hIAPP physiology and the pathology that contributes to β-cell destruction, deciphering the various cellular steps that could be involved. Recent progress in understanding other amyloidosis such as Aβ, Tau, α-synuclein or prion, involved in neurodegenerative processes linked with inflammation, has opened new research lines of investigations to preserve neuronal cells. We evaluate and estimate their transposition to the pancreatic β-cells preservation. Among them is the control of reactive oxygen species (ROS) production occurring with inflammation and the possible implication of the mitochondrial translocator protein as a diagnostic and therapeutic target. The present review also focuses on other amyloid forming proteins from molecular to physiological and physiopathological points of view that could help to better decipher hIAPP-induced β-cell death mechanisms and to prevent hIAPP fibril formation.  相似文献   

4.
Human islet amyloid polypeptide (hIAPP) forms amyloid fibrils in pancreatic islets of patients with type 2 diabetes mellitus (DM2). The formation of hIAPP fibrils has been shown to cause membrane damage which most likely is responsible for the death of pancreatic islet β-cells during the pathogenesis of DM2. Previous studies have shown that the N-terminal part of hIAPP, hIAPP1-19, plays a major role in the initial interaction of hIAPP with lipid membranes. However, the exact role of this N-terminal part of hIAPP in causing membrane damage is unknown. Here we investigate the structure and aggregation properties of hIAPP1-19 in relation to membrane damage in vitro by using membranes of the zwitterionic lipid phosphatidylcholine (PC), the anionic lipid phosphatidylserine (PS) and mixtures of these lipids to mimic membranes of islet cells. Our data reveal that hIAPP1-19 is weakly fibrillogenic in solution and not fibrillogenic in the presence of membranes, where it adopts a secondary structure that is dependent on lipid composition and stable in time. Furthermore, hIAPP1-19 is not able to induce leakage in membranes of PC/PS or PC bilayers, indicating that the membrane interaction of the N-terminal fragment by itself is not responsible for membrane leakage under physiologically relevant conditions. In bilayers of the anionic lipid PS, the peptide does induce membrane damage, but this leakage is not correlated to fibril formation, as it is for mature hIAPP. Hence, membrane permeabilization by the N-terminal fragment of hIAPP in anionic lipids is most likely an aspecific process, occurring via a mechanism that is not relevant for hIAPP-induced membrane damage in vivo.  相似文献   

5.
6.
7.
Cystathionine gamma-lyase (CSE) is a key enzyme in the trans-sulfuration pathway, which uses L-cysteine to produce hydrogen sulfide (H2S). Functional changes of pancreatic beta cells induced by endogenous H2S have been reported, but the effect of the CSE/H2S system on pancreatic beta cell survival has not been known. In this study, we demonstrate that H2Sat physiologically relevant concentrations induced apoptosis of INS-1E cells, an insulin-secreting beta cell line. Transfection of INS-1E cells with a recombinant defective adenovirus containing the CSE gene (Ad-CSE) resulted in a significant increase in CSE expression and H2S production. Ad-CSE transfection also stimulated apoptosis. The other two end products of CSE-catalyzed enzymatic reaction, ammonium and pyruvate, had no effects on INS-1E cell apoptosis, indicating that overexpression of CSE may stimulate INS-1E cell apoptosis via increased endogenous production of H2S. Both exogenous H2S (100 microM) and Ad-CSE transfection inhibited ERK1/2 but activated p38 MAPK. Interestingly, BiP and CHOP, two indicators of endoplasmic reticulum (ER) stress, were up-regulated in H2S-and CSE-mediated apoptosis in INS-1E cells. After suppressing CHOP mRNA expression, H2S-induced apoptosis of INS-1E cells was significantly decreased. Inhibition of p38 MAPK, but not of ERK1/2, inhibited the expression of BiP and CHOP and decreased H2S-stimulated apoptosis, suggesting that p38 MAPK activation functions upstream of ER stress to initiate H2S-induced apoptosis. It is concluded that H2S induces apoptosis of insulin-secreting beta cells by enhancing ER stress via p38 MAPK activation. Our findings may help unmask a novel role of CSE/H2S system in regulating pancreatic functions under physiological condition and in diabetes.  相似文献   

8.
BackgroundPrevious studies suggested that fibrillar human IAPP (hIAPP) is more likely to deposit in β-cells, resulting in β-cell injury. However, the changes in the conformation of hIAPP in lipid environment and the mechanism involved in β-cell damage are unclear.MethodsSynthetic hIAPP was incubated with five types of free fatty acids and phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), which constitute the cell membrane. Thioflavin-T fluorescence assay was conducted to analyze the degree of hIAPP fibrosis, and circular dichroism spectroscopy was performed to detect the β-fold formation of hIAPP. Furthermore, INS-1 cells were infected with human IAPP delivered by a GV230-EGFP plasmid. The effects of endogenous hIAPP overexpression induced by sodium palmitate on the survival, endoplasmic reticulum (ER) stress, and apoptosis of INS-1 cells were evaluated.ResultsThe five types of free fatty acids can accelerate the fibrosis of hIAPP. Sodium palmitate also maintained the stability of fibrillar hIAPP. POPS, not POPC, accelerated hIAPP fibrosis. Treatment of INS-1 cells with sodium palmitate increased the expression of hIAPP, activated ER stress and ER stress-dependent apoptosis signaling pathways, and increased the apoptotic rate.ConclusionFree fatty acids and anionic phospholipid can promote β-fold formation and fibrosis in hIAPP. High lipid induced the overexpression of hIAPP and aggravated ER stress and apoptosis in INS-1 cells, which caused β-cell death in high lipid environment.General significanceOur study reveals free fatty acids and hIAPP synergistically implicated in endoplasmic reticulum stress and apoptosis of islet β-cells.  相似文献   

9.
In type 2 diabetes mellitus, pancreatic stellate cells (PSCs) are present within and surrounding pancreatic islets and may cause progressive fibrosis and deterioration of pancreatic beta cell function. However, it is unknown whether pancreatic beta cells influence the biological behavior of PSCs. In the present study, we examined the impact of pancreatic beta cells on the proliferation, migration and extracellular matrix (ECM) production of PSCs. PSCs were treated with conditioned media from INS-1 cells (supernatant, SN). Although the proliferation of PSCs incubated with INS-1-SN was increased compared to control, INS-1-SN treatment induced matrix metalloproteinase-2 activity and reduced the production of ECM and TGF-β1. In addition, PSCs treated with INS-1-SN reduced the secretion of cytokines that are known to mediate pancreatic beta cell death, such as FADD, Fas, IFN-γ, IL-1, TNF-α, and TRAIL. Our findings suggest that pancreatic beta cells may ameliorate islet fibrosis and the progression of islet dysfunction.  相似文献   

10.
Whether reactive oxygen species (ROS) mediate beta-amyloid (A beta) neurotoxicity remains controversial. Naive PC12 cells (PC12) and nerve growth factor-differentiated PC12 cells (dPC12) were used to study the role of ROS in cell death induced by A beta(25-35). The viability of PC12 and dPC12 cells decreased by 30-40% after a 48-hour exposure to 20 microM A beta(25-35). Microscopic examination showed that A beta(25-35) induced necrosis in PC12 cells and apoptosis in dPC12 cells. Vitamin E (100 microM) and other antioxidants protected PC12 cells, but not dPC12 cells, against the cytotoxic effect of A beta(25-35). Since H(2)O(2) has been proposed to be involved in A beta toxicity, the effects of H(2)O(2) on PC12 and dPC12 cells were studied. Differentiated PC12 cells appeared to be significantly more resistant to H(2)O(2) than naive PC12 cells. These data suggest that ROS may mediate A beta(25-35) toxicity in PC12 cells but not in dPC12 cells. Because the intracellular levels of ROS were elevated during the differentiation of PC12 cells, the baseline levels of ROS in these two model cell types may determine the intracellular mediators for A beta(25-35) toxicity. Therefore, the protective effects of antioxidants against A beta may depend upon the redox state of the cells.  相似文献   

11.
Human islet amyloid polypeptide (hIAPP) forms amyloid deposits in non-insulin-dependent diabetes mellitus (NIDDM). Pre-fibrillar hIAPP oligomers (in contrast to monomeric IAPP or mature fibrils) increase membrane permeability, suggesting an important role in the disease. In the first structural study of membrane-associated hIAPP, lamellar neutron diffraction shows that oligomeric hIAPP inserts into phospholipid bilayers, and extends across the membrane. Rifampicin, which inhibits hIAPP-induced membrane permeabilisation in functional studies, prevents membrane insertion. In contrast, rat IAPP (84% identical to hIAPP, but non-amyloidogenic) does not insert into bilayers. Our findings are consistent with the hypothesis that membrane-active pre-fibrillar hIAPP oligomers insert into beta cell membranes in NIDDM.  相似文献   

12.
Islets from patients with type 2 diabetes exhibit β cell dysfunction, amyloid deposition, macrophage infiltration, and increased expression of proinflammatory cytokines and chemokines. We sought to determine whether human islet amyloid polypeptide (hIAPP), the main component of islet amyloid, might contribute to islet inflammation by recruiting and activating macrophages. Early aggregates of hIAPP, but not nonamyloidogenic rodent islet amyloid polypeptide, caused release of CCL2 and CXCL1 by islets and induced secretion of TNF-α, IL-1α, IL-1β, CCL2, CCL3, CXCL1, CXCL2, and CXCL10 by C57BL/6 bone marrow-derived macrophages. hIAPP-induced TNF-α secretion was markedly diminished in MyD88-, but not TLR2- or TLR4-deficient macrophages, and in cells treated with the IL-1R antagonist (IL-1Ra) anakinra. To determine the significance of IL-1 signaling in hIAPP-induced pancreatic islet dysfunction, islets from wild-type or hIAPP-expressing transgenic mice were transplanted into diabetic NOD/SCID recipients implanted with mini-osmotic pumps containing IL-1Ra (50 mg/kg/d) or saline. IL-1Ra significantly improved the impairment in glucose tolerance observed in recipients of transgenic grafts 8 wk following transplantation. Islet grafts expressing hIAPP contained amyloid deposits in close association with F4/80-expressing macrophages. Transgenic grafts contained 50% more macrophages than wild-type grafts, an effect that was inhibited by IL-1Ra. Our results suggest that hIAPP-induced islet chemokine secretion promotes macrophage recruitment and that IL-1R/MyD88, but not TLR2 or TLR4 signaling is required for maximal macrophage responsiveness to prefibrillar hIAPP. These data raise the possibility that islet amyloid-induced inflammation contributes to β cell dysfunction in type 2 diabetes and islet transplantation.  相似文献   

13.
A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.  相似文献   

14.
15.
16.
17.
Phoenixin (PNX) is a recently discovered neuropeptide which modulates appetite, pain sensation and neurons of the reproductive system in the central nervous system. PNX is also detectable in the circulation and in peripheral tissues. Recent data suggested that PNX blood levels positively correlate with body weight as well as nutritional status suggesting a potential role of this peptide in controlling energy homeostasis. PNX is detectable in endocrine pancreas, however it is unknown whether PNX regulates insulin biosynthesis or secretion. Using insulin producing INS-1E cells and isolated rat pancreatic islets we evaluated therefore, whether PNX controls insulin expression, secretion and cell proliferation. We identified PNX in pancreatic alpha as well as in beta cells. Secretion of PNX from pancreatic islets was stimulated by high glucose. PNX stimulated insulin mRNA expression in INS-1E cells. Furthermore, PNX enhanced glucose-stimulated insulin secretion in INS-1E cells and pancreatic islets in a time-dependent manner. Stimulation of insulin secretion by PNX was dependent upon cAMP/Epac signalling, while potentiation of cell growth and insulin mRNA expression was mediated via ERK1/2- and AKT-pathway. These results indicate that PNX may play a role in controlling glycemia by interacting with pancreatic beta cells.  相似文献   

18.
The amyloid deposits of human islet amyloid polypeptide (hIAPP) are found in type 2 diabetes patients. hIAPP monomer is intrinsically disordered in solution, whereas it can form amyloid fibrils both in vivo and in vitro. Extensive evidence suggests that hIAPP causes the disruption of cellular membrane, and further induces cytotoxicity and the death of islet β-cells in pancreas. The presence of membrane also accelerates the hIAPP fibril formation. hIAPP oligomers and protofibrils in the early stage of aggregation were reported to be the most cytotoxic, disrupting the membrane integrity and giving rise to the pathological process. The detailed molecular mechanisms of hIAPP-membrane interactions and membrane disruption are complex and remain mostly unknown. Here in this review, we focus on recent computational studies that investigated the interactions of full length and fragmentary hIAPP monomers, oligomers and protofibrils with anionic, zwitterionic and mixed anionic-zwitterionic lipid bilayers. We mainly discuss the binding orientation of monomers at membrane surface, the conformational ensemble and the oligomerization of hIAPP inside membranes, the effect of lipid composition on hIAPP oligomers/protofibrils-membrane interactions, and the hIAPP-induced membrane perturbation. This review provides mechanistic insights into the interactions between hIAPP and lipid bilayers with different lipid composition at an atomistic level, which is helpful to understand the hIAPP cytotoxicity mediated by membrane. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.  相似文献   

19.
BackgroundIron overload can result in a disorder in glucose metabolism. However, the underlining mechanism through which iron overload induces beta cell death remains unknown.MethodsAccording to the concentration of ferric ammonium citrate (FAC) and N-acetylcysteine, INS-1 cells were randomly divided into four groups: normal control (FAC 0 μM) group, FAC 80 μM group, FAC 160 μM group, FAC 160μM + NAC group. Cell proliferation was assessed by Cell Counting Kit-8. Reactive oxygen species (ROS) level was further evaluated using flow cytometer with a fluorescent probe. The mitochondrial membrane potential was detected by JC-1 kit, and transmission electron microscopy was used to observe the mitochondrial changes. The related protein expressions were detected by western bolt to evaluate mitophagy status.ResultsIt was shown that FAC treatment decreased INS-1 cell viability in vitro, resulted in a decline in mitochondrial membrane potential, increased oxidative stress level and suppressed mitophagy. Furthermore, these effects could be alleviated by the ROS scavenger.ConclusionsWe proved that increased iron overload primarily increased oxidative stress and further suppressed mitophagy via PTEN-induced putative kinase 1/Parkin pathway, resulting in cytotoxicity in INS-1 cells.  相似文献   

20.
The aim of this study is to investigate the effect of mitochondrial metabolism on high glucose/palmitate (HG/PA)-induced INS-1 beta cell death. Long-term treatment of INS-1 cells with HG/PA impaired energy-producing metabolism accompanying with depletion of TCA cycle intermediates. Whereas an inhibitor of carnitine palmitoyl transferase 1 augmented HG/PA-induced INS-1 cell death, stimulators of fatty acid oxidation protected the cells against the HG/PA-induced death. Furthermore, whereas mitochondrial pyruvate carboxylase inhibitor phenylacetic acid augmented HG/PA-induced INS-1 cell death, supplementation of TCA cycle metabolites including leucine/glutamine, methyl succinate/α-ketoisocaproic acid, dimethyl malate, and valeric acid or treatment with a glutamate dehydrogenase activator, aminobicyclo-heptane-2-carboxylic acid (BCH), significantly protected the cells against the HG/PA-induced death. In particular, the mitochondrial tricarboxylate carrier inhibitor, benzene tricarboxylate (BTA), also showed a strong protective effect on the HG/PA-induced INS-1 cell death. Knockdown of glutamate dehydrogenase or tricarboxylate carrier augmented or reduced the HG/PA-induced INS-1 cell death, respectively. Both BCH and BTA restored HG/PA-induced reduction of energy metabolism as well as depletion of TCA intermediates. These data suggest that depletion of the TCA cycle intermediate pool and impaired energy-producing metabolism may play a role in HG/PA-induced cytotoxicity to beta cells and thus, HG/PA-induced beta cell glucolipotoxicity can be protected by nutritional or pharmacological maneuver enhancing anaplerosis or reducing cataplerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号