首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development caused by mutations in the gene TCOF1. Its gene product, treacle, consists mainly of a central repeat domain, which shows it to be structurally related to the nucleolar phosphoprotein Nopp140. Treacle remains mostly uncharacterized to date. Herein we show that it, like Nopp140, is a highly phosphorylated nucleolar protein. However, treacle fails to colocalize with Nopp140 to Cajal (coiled) bodies. As in the case of Nopp140, casein kinase 2 appears to be responsible for the unusually high degree of phosphorylation as evidenced by its coimmunoprecipitation with treacle. Based on these and other observations, treacle and Nopp140 exhibit distinct but overlapping functions. The majority of TCOF1 mutations in TCS lead to premature termination codons that could affect the cellular levels of the full-length treacle. We demonstrate however, that the cellular amount of treacle varies less than twofold among a collection of primary fibroblasts and lymphoblasts and regardless of whether the cells were derived from TCS patients or healthy individuals. Therefore, cells of TCS patients possess a mechanism to maintain wild-type levels of full-length treacle from a single allele.  相似文献   

2.
3.
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, and mutations in the TCOF1 gene are responsible for over 90% of TCS cases. The knowledge about the molecular mechanisms responsible for this syndrome is relatively scant, probably due to the difficulty of reproducing the pathology in experimental animals. Zebrafish is an emerging model for human disease studies, and we therefore assessed it as a model for studying TCS. We identified in silico the putative zebrafish TCOF1 ortholog and cloned the corresponding cDNA. The derived polypeptide shares the main structural domains found in mammals and amphibians. Tcof1 expression is restricted to the anterior-most regions of zebrafish developing embryos, similar to what happens in mouse embryos. Tcof1 loss-of-function resulted in fish showing phenotypes similar to those observed in TCS patients, and enabled a further characterization of the mechanisms underlying craniofacial malformation. Besides, we initiated the identification of potential molecular targets of treacle in zebrafish. We found that Tcof1 loss-of-function led to a decrease in the expression of cellular proliferation and craniofacial development. Together, results presented here strongly suggest that it is possible to achieve fish with TCS-like phenotype by knocking down the expression of the TCOF1 ortholog in zebrafish. This experimental condition may facilitate the study of the disease etiology during embryonic development.  相似文献   

4.
5.
Advances in surgical techniques for correction of craniofacial anomalies have necessitated the development of objective pre- and postoperative quantitative assessments. Standard anthropometric techniques, supplemented by additional methods oriented to specific clinical problems, have proved useful in defining surface dysmorphology in craniofacial patients. A series of 77 surface measurements of the head and face and 41 proportions were determined in 20 preoperative patients with Treacher Collins syndrome, a rare congenital defect of the first and second branchial arches. To permit comparison with age- and sex-specific data for healthy North American children, the patient data were converted to standard (Z) scores. To test the hypothesis Z = 0, Student's t-test was performed on all variables. The anthropometric findings verified many of the clinical findings in this syndrome. In addition, a number of previously unreported defects were found. The cranium was low and short with a low, narrow forehead and a narrow cranial base. The face was narrow and shallow, the mandible long and narrow, and the lower face receding. The eye fissures were short with an antimongoloid inclination, but the orbits were hyperteloric. The nasal root was high and wide, the nasofrontal angle open, and the bridge inclination low. The labial fissure was narrow, and the ears were microtic. Except in the nasal root the defects were hypoplastic. Most of these defects were either horizontal or anteroposterior. Recognition of the defective areas and their contribution to disproportions of the head and face is important in the development of surgical strategies.  相似文献   

6.
Nop56p is a component of the box C/D small nucleolar ribonucleoprotein complexes that direct 2'-O-methylation of pre-rRNA during its maturation. Genetic analyses in yeast have shown that Nop56p plays important roles in the early steps of pre-rRNA processing. However, its precise function remains elusive, especially in higher eukaryotes. Here we describe the proteomic characterization of human Nop56p (hNop56p)-associated pre-ribosomal ribonucleoprotein complexes. Mass spectrometric analysis of purified pre-ribosomal ribonucleoprotein complexes identified 61 ribosomal proteins, 16 trans-acting factors probably involved in ribosome biogenesis, and 29 proteins whose function in ribosome biogenesis is unknown. Identification of pre-rRNA species within hNop56p-associated pre-ribosomal ribonucleoprotein complexes, coupled with the known functions of yeast orthologs of the probable trans-acting factors identified in human, demonstrated that hNop56p functions in the early to middle stages of 60 S subunit synthesis in human cells. Interestingly, the nucleolar phosphoprotein treacle, which is responsible for the craniofacial disorder associated with Treacher Collins syndrome, was found to be a constituent of hNop56p-associated pre-rRNP complexes. The association of hNop56p and treacle within the complexes was independent of rRNA integrity, indicating a direct interaction. In addition, the protein compositions of the treacle-associated and hNop56p-associated pre-ribosomal ribonucleoprotein complexes were very similar, suggesting functional similarities between these two complexes with respect to ribosome biogenesis in human cells.  相似文献   

7.
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development. The major features of the disease include midface hypoplasia, micrognathia, microtia, conductive hearing loss and cleft palate. Current procedures of surgical treatment of TCS are discussed and novel findings concerning the genetic background of TCS are described. The TCS locus has been mapped to chromosome 5q31.3-32. The TCOF1 gene contains 26 exons and encodes a 1411 amino acid protein named treacle. In the TCOF1 gene 51 mutations have been identified. Most of these mutations are insertions or deletions, which result in an introduction of a premature termination codon into the reading frame. Mutational spectra support the hypothesis that TCS results from haploinsufficiency of treacle.  相似文献   

8.
Three-dimensional osseous surface re-formation imaging from CT scans was used to examine the facial skeletons of 14 living patients with mandibulofacial dysostosis. Partial to complete aplasia of the zygomatic process of the temporal bone, mild hypoplasia to aplasia of the frontal process of the zygoma, antimongoloid slant of the transverse orbital axis, and hypoplasia of the medial pterygoid plates and muscles are common to all patients examined. Deformities of the zygoma, zygomatic process of the frontal bone, mandible, and lateral pterygoid plates and muscles vary from minimal to severe, including aplasia. The body of the zygoma is the least affected part of the bone. Right-left asymmetry characterizes these deformities in all patients. The most consistent skeletal aplasia (cleft) in mandibulofacial dysostosis involves the zygomatic process of the temporal bone rather than the zygoma itself.  相似文献   

9.
Treacher Collins syndrome (TCS) is a congenital disorder of craniofacial development arising from mutations in TCOF1, which encodes the nucleolar phosphoprotein Treacle. Haploinsufficiency of Tcof1 perturbs mature ribosome biogenesis, resulting in stabilization of p53 and the cyclin G1-mediated cell-cycle arrest that underpins the specificity of neuroepithelial apoptosis and neural crest cell hypoplasia characteristic of TCS. Here we show that inhibition of p53 prevents cyclin G1-driven apoptotic elimination of neural crest cells while rescuing the craniofacial abnormalities associated with mutations in Tcof1 and extending life span. These improvements, however, occur independently of the effects on ribosome biogenesis; thus suggesting that it is p53-dependent neuroepithelial apoptosis that is the primary mechanism underlying the pathogenesis of TCS. Our work further implies that neuroepithelial and neural crest cells are particularly sensitive to cellular stress during embryogenesis and that suppression of p53 function provides an attractive avenue for possible clinical prevention of TCS craniofacial birth defects and possibly those of other neurocristopathies.  相似文献   

10.
Treacher Collins syndrome (TCS) is associated with an abnormal differentiation of the first and second pharyngeal arches during fetal development. This causes mostly craniofacial deformities, which require numerous corrective surgeries. TCS is an autosomal dominant disorder and it occurs in the general population at a frequency of 1 in 50,000 live births. The syndrome is caused by mutations in the TCOF1 gene, which encodes the serine/alanine-rich protein named Treacle. Over 120 mutations of the TCOF1 gene responsible for TCS have been described. About 70% of recognized mutations are deletions, which lead to a frame shift, formation of a termination codon, and shortening of the protein product of the gene. Herewith, a new heterozygotic insertion, c.484_668ins185bp, was described in two monozygotic twin sisters suffering from TCS. This mutation was absent in their father, brother, and uncle, indicating a de novo origin. The insertion causes a shift in the reading frame and premature termination of translation at 167 aa. The novel insertion is the longest ever found in the TCOF1 gene and the only one found among monozygotic twin sisters.  相似文献   

11.
Mapping the Treacher Collins syndrome locus to 5q31.3----q33.3.   总被引:10,自引:0,他引:10  
Treacher Collins syndrome is an autosomal dominant disorder of abnormal craniofacial development. Linkage analysis was performed in Treacher Collins families with restriction fragment length or microsatellite polymorphisms associated with eight loci previously mapped to 5q31----qter. Positive lod scores were obtained for four loci, D5S119, D5S207, D5S209, and D5S210, which map to 5q31.3----q33.3. The Treacher Collins syndrome locus was linked closest to locus D5S210, which is associated with microsatellite polymorphisms, with a maximum lod score of 8.65 at theta = 0.02. The Treacher Collins syndrome locus was excluded from locus ADRB2R, which maps to 5q31----q32, and loci D5S22, D5S61, and D5S43, which map to 5q34----qter. There was no evidence for genetic heterogeneity among eight families with variable expression of the condition.  相似文献   

12.
13.
Ptx1 belongs to an expanding family of bicoid-related vertebrate homeobox genes. These genes, like their Drosophila homolog, seem to play a role in the development of anterior structures and, in particular, the brain and facies. We report the chromosomal localization of mouse Ptx1, and the cloning, sequencing, and chromosomal localization of the human homolog PTX1. The putative encoded proteins share 100% homology in the homeodomain and are 88% and 97% conserved in the N- and C-termini respectively. Intron/exon boundaries are also conserved. Murine Ptx1 was localized, by interspecific backcrossing, to Chr 13 within 2.6 cM of Caml. The gene resides centrally on Chromosome (Chr) 13 in a region syntenic with human Chr 5q. Subsequent analysis by fluorescent in situ hybridization places the human gene, PTX1, on 5q31, a region associated with Treacher Collins Franceschetti Syndrome. Taken together with the craniofacial expression pattern of Ptx1 during early development, the localization of the gene in this chromosomal area is consistent with an involvement in Treacher Collins Franceschetti Syndrome. Received: 3 May 1997 / Accepted: 1 July 1997  相似文献   

14.
15.
Mutations in the human gene TCOF1 cause a mandibulofacial dysostosis known as Treacher Collins syndrome (TCS). An infant rhesus macaque (Macaca mulatta) that displayed the TCS phenotype was identified at the California National Primate Research Center. The TCOF1 coding region was cloned from a normal rhesus macaque and sequenced. The rhesus macaque homolog of TCOF1 is 91.6% identical in cDNA sequence and 93.8% identical in translated protein sequence compared to human TCOF1. Sequencing of TCOF1 in the TCS-affected rhesus macaque showed no mutations within the coding region or splice sites; however, real-time quantitative PCR showed an 87% reduction of spleen TCOF1 mRNA level in the TCS affected macaque when compared with normal macaque spleen. Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers DQ085095 and DQ085096.  相似文献   

16.
17.
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. We have studied 12 unrelated TCS families with multiple affected individuals for linkage to five chromosome 5 markers. There is strong evidence demonstrating linkage to three of these markers. Multipoint linkage analysis places the mutation causing TCS in the interval between the gene for the glucocorticoid receptor and the anonymous marker D5S22, with a maximum multipoint lod score of 9.1.  相似文献   

18.
The clinical use of a temporal periosteal bone flap for the reconstruction of a malar bone in a patient with the Treacher Collins syndrome is presented. The temporal muscle functions as an axial carrier of the periosteum that induces osteogenesis in young children, whereas the bone segments may serve as a nucleus for further bone formation from the periosteum. Correction of the eyelid coloboma was obtained by the rotation and advancement of a temporopalpebral flap.  相似文献   

19.
Ear defects in patients affected by Treacher Collins syndrome necessitate the replacement of the existing anatomic residuals of the ears with custom-made prostheses. This paper describes a multidisciplinary protocol involving both medicine and computer-aided design/computer-aided manufacturing for manufacturing ear prostheses. Using innovative prototyping technologies together with conventional silicone processing procedures, a step-by-step procedure is presented. The complete workflow includes laser scanning of the defective regions of a patient's face, the use of 3D anatomic models from an ear digital library and rapid prototyping of both substructures for bar anchoring and moulds for silicone processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号