首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Vav1 functions in the hematopoietic system as a specific GDP/GTP nucleotide exchange factor regulated by tyrosine phosphorylation. An intact C-terminal SH3 domain of Vav1 (Vav1SH3C) was shown to be necessary for Vav1-induced transformation, yet the associating protein(s) necessary for this activity have not yet been identified. Using a proteomics approach, we identified Sam68 as a Vav1SH3C-associating protein. Sam68 (Src-associated in mitosis of 68 kD) belongs to the heteronuclear ribonucleoprotein particle K (hnRNP-K) homology (KH) domain family of RNA-binding proteins. The Vav1/Sam68 interaction was observed in vitro and in vivo. Mutants of Vav1SH3C previously shown to lose their transforming potential did not associate with Sam68. Co-expression of Vav1 and Sam68 in Jurkat T cells led to increased localization of Vav1 in the nucleus and changes in cell morphology. We then tested the contribution of Sam68 to known functions of Vav1, such as focus-forming in NIH3T3 fibroblasts and NFAT stimulation in T cells. Co-expression of oncogenic Vav1 with Sam68 in NIH3T3 fibroblasts resulted in a dose-dependent increase in foci, yet no further enhancement of NFAT activity was observed in Jurkat T cells, as compared to cells overexpressing only Vav1 or Sam68. Our results strongly suggest that Sam68 contributes to transformation by oncogenic Vav1.  相似文献   

2.
Vav is a recently described proto-oncogene expressed only in hematopoietic cells which contains an SH2 and two SH3 domains and shares homology with the Dbl GDP-GTP exchange factor and BCR. p95Vav is phosphorylated on tyrosine residues in response to stimulation of the T cell antigen receptor, cross-linking of IgE or IgM receptors and stimulation of immature hematopoietic cells by Steel factor. Monoclonal antibodies to human Vav were generated and used to examine the events which regulate tyrosine phosphorylation of p95Vav in myeloid cells. In the factor-dependent MO7e cell line, p95Vav was rapidly phosphorylated on tyrosine residues in a dose- and time-dependent manner by GM-CSF, IL-3 and Steel factor. Introduction of the BCR/ABL oncogene into this cell line resulted in factor-independent proliferation and constitutive phosphorylation of p95Vav. Tyrosine phosphorylation of p95Vav was also substantially increased by treatment of cytokine-deprived cells with the tyrosine phosphatase inhibitor sodium vanadate. Since many of the cytokines known to induce tyrosine phosphorylation of p95Vav are also known to activate JAK family tyrosine kinases, we looked for an interaction of p95Vav with JAK kinases. p95Vav co-precipitated with JAK2 in MO7e cells stimulated with GM-CSF, but not in unstimulated cells. Also, JAK2 was found to be constitutively associated with p95Vav in vivo when expressed at high levels in insect cells using baculovirus vectors. A fusion protein consisting of glutathione-S-transferase and the SH2 domain of p95Vav (GST-Vav-SH2) precipitated JAK2, suggesting that this interaction is mediated by the SH2 domain of p95Vav.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2, also referred to SH3BP2) regulates immune receptor-mediated signal transduction. In this report we focused on the molecular mechanism of 3BP2 function in B cell receptor (BCR) signaling. Engagement of BCR induces tyrosine phosphorylation of 3BP2. Genetic analysis demonstrated that Syk is critical for BCR-mediated tyrosine phosphorylation of 3BP2. Mutational analysis of 3BP2 revealed that both Tyr183 and Src homology 2 (SH2) domain are necessary for 3BP2-mediated BCR-induced activation of nuclear factor of activated T cells (NFAT). Point mutation of Tyr183 or Arg486 in the SH2 domain of 3BP2 diminished BCR-mediated tyrosine phosphorylation of 3BP2. Endogenous 3BP2 forms a complex with tyrosine-phosphorylated cellular signaling molecules. Peptide binding experiments demonstrated that only phosphorylated Tyr183 in 3BP2 could form a complex with the SH2 domain(s) of phospholipase Cγ2 and Vav1 from B cell lysates. These interactions were represented by using bacterial glutathione S-transferase-phospholipase Cγ2 or -Vav1 SH2 domain. Furthermore, pulldown and Far Western experiments showed that the 3BP2-SH2 domain directly binds to B cell linker protein (BLNK) after BCR stimulation. These results demonstrated that 3BP2 induces the protein complex with cellular signaling molecules through phosphorylation of Tyr183 and SH2 domain leading to the activation of NFAT in B cells.  相似文献   

5.
Vav2 is a member of the Vav family that serves as a guanine nucleotide exchange factor for the Rho family of Ras-related GTPases. Unlike Vav1, whose expression is restricted to cells of hematopoietic origin, Vav2 is broadly expressed. Recently, Vav2 has been identified as a substrate for the epidermal growth factor (EGF) receptor; however, the mechanism by which Vav2 is activated in EGF-treated cells is unclear. By the means of an in vitro protein kinase assay, we show here that purified and activated EGF receptor phosphorylates Vav2 exclusively on its N-terminal domain. Furthermore, EGF receptor phosphorylates Vav2 on all three possible phosphorylation sites, Tyr-142, Tyr-159, and Tyr-172. In intact cells we also show that Vav2 associates with the activated EGF receptor in an Src homology 2 domain-dependent manner, with Vav2 Src homology 2 domain binding preferentially to autophosphorylation sites Tyr-992 and Tyr-1148 of the EGF receptor. Treatment of cells with EGF results in stimulation of exchange activity of Vav2 as measured on Rac; however, the intensity of the exchange activity does not show any correlation with the level of Vav2 tyrosine phosphorylation. Introducing a point mutation into the Vav2 pleckstrin homology domain or treatment of cells with the phosphatidylinositol 3-kinase inhibitor LY294002 prior to EGF stimulation inhibits Vav2 exchange activity. Although phosphorylation mutants of Vav2 can readily induce actin rearrangement in COS7 cells, pleckstrin homology domain mutant does not stimulate membrane ruffling. These results suggest that EGF regulates Vav2 activity basically through phosphatidylinositol 3-kinase activation, whereas tyrosine phosphorylation of Vav2 may rather be necessary for mediating protein-protein interactions.  相似文献   

6.
We have identified Socs1 as a downstream component of the Kit receptor tyrosine kinase signalling pathway. We show that the expression of Socs1 mRNA is rapidly increased in primary bone marrow-derived mast cells following exposure to Steel factor, and Socs1 inducibly binds to the Kit receptor tyrosine kinase via its Src homology 2 (SH2) domain. Previous studies have shown that Socs1 suppresses cytokine-mediated differentiation in M1 cells inhibiting Janus family kinases. In contrast, constitutive expression of Socs1 suppresses the mitogenic potential of Kit while maintaining Steel factor-dependent cell survival signals. Unlike Janus kinases, Socs1 does not inhibit the catalytic activity of the Kit tyrosine kinase. In order to define the mechanism by which Socs1-mediated suppression of Kit-dependent mitogenesis occurs, we demonstrate that Socs1 binds to the signalling proteins Grb-2 and the Rho-family guanine nucleotide exchange factors Vav. We show that Grb2 binds Socs1 via its SH3 domains to putative diproline determinants located in the N-terminus of Socs1, and Socs1 binds to the N-terminal regulatory region of Vav. These data suggest that Socs1 is an inducible switch which modulates proliferative signals in favour of cell survival signals and functions as an adaptor protein in receptor tyrosine kinase signalling pathways.  相似文献   

7.
Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr174, Tyr183 and Tyr446 in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr183 and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr174, Tyr183 and Tyr426 of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr426 is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr426 was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr426 following BCR stimulation.  相似文献   

8.
Crkl is an adapter protein and phosphotyrosine-containing substrate implicated in transformation by the bcr-abl oncogene and in signaling by cytokines. When phosphorylated, Crkl binds through its Src homology 2 (SH2) domain to other tyrosine phosphoproteins such as paxillin and Cbl. Overexpression of Crkl in fibroblasts induces transformation. Here we examine the role of Crkl in hematopoietic cells and find that overexpression of Crkl confers a signal leading to increased adhesion to fibronectin. In both fibroblasts and hematopoietic cells, individual mutations or deletions of each SH2 and SH3 domain abrogated transformation and adhesion, respectively, indicating that interactions with other proteins such as Cbl and paxillin (SH2 domain) and Abl, Sos, and C3G (N-terminal SH3 domain) are essential for biological activity. In vivo and in vitro tryptic phosphopeptide mapping studies show that Crkl is phosphorylated on multiple tyrosine residues when overexpressed or when activated by Bcr-Abl. Mutation at tyrosine 207, a residue conserved in c-Crk, abrogates all in vivo tyrosine phosphorylation of Crkl. Despite this loss of phosphotyrosine, mutation at this site enhanced Crkl function as measured by complex formation with SH2 binding proteins, signal transduction to Jun Kinase, and fibroblast transformation. These observations implicate Crkl in cellular adhesion and demonstrate that Y207 functions as a negative regulatory site.  相似文献   

9.
Vav family proteins are guanine nucleotide exchange factors for the Rho/Rac family of small GTP-binding proteins. In addition, they have domains that mediate protein-protein interactions, including one Src homology 2 (SH2) and two Src homology 3 (SH3) domains. Vav1, Vav2, and Vav3 play a crucial role in the regulation of phospholipase C gamma (PLC gamma) isoforms by immuno-tyrosine-based activation motif (ITAM)-coupled receptors, including the T- and B-cell antigen receptors. We have reported in platelets, however, that Vav1 and Vav2 are not required for activation of PLC gamma 2 in response to stimulation of the ITAM-coupled collagen receptor glycoprotein VI (GPVI). Here we report that Vav3 is tyrosinephosphorylated upon activation of GPVI but that Vav3-deficient platelets also exhibit a normal response upon activation of the ITAM receptor. In sharp contrast, platelets deficient in both Vav1 and Vav3 show a marked inhibition of aggregation and spreading upon activation of GPVI, which is associated with a reduction in tyrosine phosphorylation of PLC gamma 2. The phenotype of Vav1/2/3 triple-deficient platelets is similar to that of Vav1/3 double-deficient cells. These results demonstrate that Vav3 and Vav1 play crucial but redundant roles in the activation of PLC gamma 2 by GPVI. This is the first time that absolute redundancy between two protein isoforms has been observed with respect to the regulation of PLC gamma 2 in platelets.  相似文献   

10.
11.
p95vav associates with the nuclear protein Ku-70.   总被引:6,自引:1,他引:5       下载免费PDF全文
The proto-oncogene vav is expressed solely in hematopoietic cells and plays an important role in cell signaling, although little is known about the proteins involved in these pathways. To gain further information, the Src homology 2 (SH2) and 3 (SH3) domains of Vav were used to screen a lymphoid cell cDNA library by the yeast two-hybrid system. Among the positive clones, we detected a nuclear protein, Ku-70, which is the DNA-binding element of the DNA-dependent protein kinase. In Jurkat and UT7 cells, Vav is partially localized in the nuclei, as judged from immunofluorescence and confocal microscopy studies. By using glutathione S-transferase fusion proteins derived from Ku-70 and coimmunoprecipitation experiments with lysates prepared from human thymocytes and Jurkat and UT7 cells, we show that Vav associates with Ku-70. The interaction of Vav with Ku-70 requires only the 150-residue carboxy-terminal portion of Ku-70, which binds to the 25 carboxy-terminal residues of the carboxy SH3 domain of Vav. A proline-to-leucine mutation in the carboxy SH3 of Vav that blocks interaction with proline-rich sequences does not modify the binding of Ku-70, which lacks this motif. Therefore, the interaction of Vav with Ku-70 may be a novel form of protein-protein interaction. The potential role of Vav/Ku-70 complexes is discussed.  相似文献   

12.
CD19 is required for the development of B1 and marginal zone B cells, for Ab responses, and for B cell memory. CD19 immunoprecipitates contain a complex of cytoplasmic proteins, including Lyn, Vav, phospholipase Cgamma2 (PLCgamma2), Grb2, and the p85 subunit of phosphatidylinositol 3-kinase. Which of these bind directly to CD19 and the strengths of the interactions are unknown. These issues are important in understanding the signaling functions of CD19, which are crucial for normal B cell physiology. Using purified, recombinant proteins, we now show that each of these signaling proteins contains at least one Src homology 2 (SH2) domain that interacts directly with the phosphorylated CD19 cytoplasmic domain. The affinities of binding of the SH2 domains of Vav, p85, and Grb2 to CD19 are each in the nanomolar range by surface plasmon resonance (Biacore) analysis. Binding of Lyn and PLCgamma2 do not fit 1:1 modeling. However, analyses of binding data (Lyn) and competition experiments (PLCgamma2) suggest that these bind with comparable affinity. Competition experiments demonstrate that SH2 domains whose binding is dependent on the same CD19 tyrosine(s) compete for binding, but these SH2 domains do not impede binding of different SH2 domains to other CD19 tyrosines. We conclude that binding to the CD19 cytoplasmic domain is multimeric, high affinity, and competitive. The high affinity of the interactions also suggests that tyrosines that were nonessential in vivo are nevertheless functional. A preliminary structural model suggests that CD19 forms a signaling complex containing multiple cytoplasmic proteins in close proximity to each other and to the plasma membrane.  相似文献   

13.
Vav proteins are multidomain signaling molecules critical for mediating signals downstream of several surface receptors, including the antigen receptors of T and B lymphocytes. The catalytic guanine nucleotide exchange factor (GEF) activity of the Vav Dbl homology (DH) domain is thought to be controlled by an intramolecular autoinhibitory mechanism involving an N-terminal extension and phosphorylation of tyrosine residues in the acidic region (AC). Here, we report that the sequences surrounding the Vav1 AC: Tyr(142), Tyr(160), and Tyr(174) are evolutionarily conserved, conform to consensus SH2 domain binding motifs, and bind several proteins implicated in TCR signaling, including Lck, PI3K p85alpha, and PLCgamma1, through direct interactions with their SH2 domains. In addition, the AC tyrosines regulate tyrosine phosphorylation of Vav1. We also show that Tyr(174) is required for the maintenance of TCR-signaling microclusters and for normal T cell development and activation. In this regard, our data demonstrate that while Vav1 Tyr(174) is essential for maintaining the inhibitory constraint of the DH domain in both developing and mature T cells, constitutively activated Vav GEF disrupts TCR-signaling microclusters and leads to defective T cell development and proliferation.  相似文献   

14.
Hepatitis C virus (HCV) infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin''s lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A) protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV) implied that NS5A was tyrosine phosphorylated by pervanadate (PV) treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST)-fusion proteins of various Src homology 2 (SH2) domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3) domain. Substitution of Arg176 to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr334 was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.  相似文献   

15.
Vav is a guanine nucleotide exchange factor for the Rho/Rac family predominantly expressed in hematopoietic cells and implicated in cell proliferation and cytoskeletal organization. The oncogenic tyrosine kinase Bcr-Abl has been shown to activate Rac-1, which is important for Bcr-Abl induced leukemogenesis. Previous studies by Matsuguchi et al. (Matsuguchi, T., Inhorn, R. C., Carlesso, N., Xu, G., Druker, B., and Griffin, J. D. (1995) EMBO J. 14, 257-265) describe enhanced phosphorylation of Vav in Bcr-Abl-expressing Mo7e cells yet fail to demonstrate association of the two proteins. Here, we report the identification of a direct complex between Vav and Bcr-Abl in yeast, in vitro and in vivo. Furthermore, we show tyrosine phosphorylation of Vav by Bcr-Abl. Mutational analysis revealed that the SH2 domain and the C-terminal SH3 domain as well as a tetraproline motif directly adjacent to the N-terminal SH3 domain of Vav are important for establishing this phosphotyrosine dependent interaction. Activation of Rac-1 by Bcr-Abl was abrogated by co-expression of the Vav C terminus encoding the SH3-SH2-SH3 domains as a dominant negative construct. Bcr-Abl transduced primary bone marrow from Vav knock-out mice showed reduced proliferation in a culture cell transformation assay compared with wild-type bone marrow. These results suggest, that Bcr-Abl utilizes Vav as a guanine nucleotide exchange factor to activate Rac-1 in a process that involves a folding mechanism of the Vav C terminus. Given the importance of Rac-1 activation for Bcr-Abl-mediated leukemogenesis, this mechanism may be crucial for the molecular pathogenesis of chronic myeloid leukemia and of importance for other signal transduction pathways leading to the activation of Rac-1.  相似文献   

16.
Vav2 is a member of the Vav family that serves as guanine nucleotide exchange factors (GEFs) for the Rho family of Ras-related GTPases. Unlike Vav1, whose expression is restricted to cells of hematopoietic origin, Vav2 is broadly expressed. Recently, Vav2 has been identified as a substrate for the EGF receptor. Here, we show that in EGF-treated COS7 cells Vav2 is phosphorylated on tyrosine residues and associates with the EGF receptor. In addition, introducing point mutations into the SH2 domain of green fluorescens protein (GFP)-Vav2 fusion protein leads to the loss of Vav2 tyrosine phosphorylation in response to EGF. To investigate further the mechanism of Vav2 phosphorylation, N-terminal (NT) domain of Vav2 was transiently expressed in COS7 cells as GFP fusion protein. Whereas the NT domain of Vav2 is a preferred substrate for the activated EGF receptor in vitro, we could not detect tyrosine phosphorylation of the GFP-NT construct in EGF-treated cells. However, when the SH2 domain of Vav2 was fused to its NT domain, NT domain proved to be a substrate for the EGF receptor in vivo. These data suggest that membrane-targeting of Vav2 through its SH2 domain is an important event in the phosphorylation and activation of Vav2 in response to EGF.  相似文献   

17.
The guanine nucleotide exchange factor (GEF) Vav1 is an essential signal transducer protein in the hematopoietic system, where it is expressed physiologically. It is also involved in several human malignancies. Tyrosine phosphorylation at the Vav1 amino terminus plays a central role in regulating its activity; however, the role of carboxyl terminal tyrosine residues is unknown. We found that mutation of either Tyr-826 (Y826F) or Tyr-841 (Y841F) to phenylalanine led to loss of Vav1 GEF activity. When these Vav1 mutants were ectopically expressed in pancreatic cancer cells lacking Vav1, they failed to induce growth in agar, indicating loss of transforming potential. Furthermore, although Y841F had no effect on Vav1-stimulated nuclear factor of activated T cells (NFAT) activity, Y826F doubled NFAT activity when compared with Vav1, suggesting that Tyr-826 mediates an autoinhibitory effect on NFAT activity. SH2 profiling revealed that Shc, Csk, Abl, and Sap associate with Tyr-826, whereas SH2-B, Src, Brk, GTPase-activating protein, and phospholipase C-γ associate with Tyr-841. Although the mutations in the Tyr-826 and Tyr-841 did not affect the binding of the carboxyl SH3 of Vav1 to other proteins, binding to several of the proteins identified by the SH2 profiling was lost. Of interest is Csk, which associates with wild-type Vav1 and Y841F, yet it fails to associate with Y826F, suggesting that loss of binding between Y826F and Csk might relieve an autoinhibitory effect, leading to increased NFAT. Our data indicate that GEF activity is critical for the function of Vav1 as a transforming protein but not for NFAT stimulation. The association of Vav1 with other proteins, detected by SH2 profiling, might affect other Vav1-dependent activities, such as NFAT stimulation.  相似文献   

18.
pp60(c-src) is a prototypical nonreceptor tyrosine kinase and may play a role in diseases as diverse as cancer and osteoporosis. In Src, the SH3 domain (Src homology 3) binds proteins at specific, proline-rich sequences, while the SH2 domain (Src homology 2) binds phosphotyrosine-containing sequences. Inhibition of Src SH3 and SH2 domain function is of potential therapeutic value because of their importance in signaling pathways involved in disease states. We have developed dual-wavelength fluorescent peptide probes for both the Src SH3 and the Src SH2 domains, which allow the simultaneous measurement of compounds binding to each domain in assays based on the technique of fluorescence polarization. We demonstrate the utility of these probes in a dual-binding assay (suitable for high-throughput screening) to study the interactions of various peptides with these domains, including a sequence from the rat protein p130(CAS) which has been reported to bind simultaneously to both Src SH3 and SH2 domains. Utilizing this dual-binding assay, we confirm that sequences from p130(CAS) can simultaneously bind Src via both its SH3 and its SH2 domains. We also use the dual-binding assay as an internal control to identify substances which inhibit SH3 and SH2 binding via nonspecific mechanisms.  相似文献   

19.
alpha-Synuclein is a presynaptic protein involved in the pathogenesis of several neurodegenerative diseases, such as Parkinson's disease. Pyk2/related adhesion focal tyrosine kinase (RAFTK) tyrosine kinase is an upstream regulator of Src family kinases in the central nervous system that is involved in alpha-synuclein phosphorylation. The present study reports the cloning and characterization of a novel adaptor protein, Pyk2/RAFTK-associated protein (PRAP), that specifically binds to Pyk2/RAFTK and inhibits alpha-synuclein tyrosine phosphorylation. PRAP contains a coiled-coil domain, a pleckstrin homology domain, and a SH3 domain; the SH3 domain binds to the proline-rich domain of Pyk2/RAFTK. PRAP was observed to be present throughout the brain, including substantia nigra dopaminergic neurons, in which it localized to the cytoplasm. PRAP was found to function as a substrate for Src family kinases, such as c-Src or Fyn, but not for Pyk2/RAFTK. Hyperosmotic stress induced phosphorylation of tyrosine 125 of alpha-synuclein via Pyk2/RAFTK, which acted through Src family kinases. Such phosphorylation was inhibited by PRAP expression, suggesting that PRAP negatively regulates alpha-synuclein phosphorylation following cell stress. In conclusion, PRAP functions as a downstream target for Pyk2/RAFTK and plays a role in alpha-synuclein phosphorylation.  相似文献   

20.
To identify the novel substrate of c-kit which is important for hematopoietic stem cell self-renewal or differentiation, CD34-low/negative, Sca-1-positive, c-kit-positive, and lineage marker-negative (CD34(low/-)Sca-1(+)c-kit(+)Lin(-)) cells were sorted by a fluorescence-activated cell sorter from mouse bone marrow cells and a yeast two-hybrid cDNA library was constructed. By screening with c-kit as bait, we cloned a novel cDNA, designed STAP-1, encoding an adaptor protein with a Pleckstrin homology domain, the Src homology 2 (SH2) domain, and a number of tyrosine phosphorylation sites. RT-PCR analysis revealed that STAP-1 expression is restricted in the bone marrow cell fraction expressing c-kit. The highest expression was observed in the CD34(low/-)Sca-1(+)c-kit(+)Lin(-) stem cell-enriched fraction. The murine myeloid cell line, M1, expressed a high level of STAP-1. However, the expression was strongly repressed in response to leukemia inhibitory factor (LIF) which induced monocytic differentiation of M1 cells, suggesting that STAP-1 is associated with the undifferentiated cell type. A two-hybrid assay indicated that STAP-1 bound not only to c-kit but also to c-fms but not to JAK2 or Pyk2. In 293 cells, STAP-1 was tyrosine-phosphorylated by activated c-kit. An in vitro binding assay suggested that the STAP-1 SH2 domain interacted with several tyrosine-phosphorylated proteins including c-kit and STAT5. These suggest that STAP-1 functions as an adaptor molecule downstream of c-kit in hematopoietic stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号