首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serratia marcescens TKU011, a protease- and chitosanase-producing bacterium, the optimized condition for protease and chitosanase production was found after the media were heated at 121 °C for 120 min and the culture was shaken at 25 °C for 5 days in 100 mL of medium containing 1% squid pen powder (SPP) (w/v), 0.1% K2HPO4, and 0.05% MgSO4. An extracellular metalloprotease with novel properties of solvent stable, and alkaline was purified from the culture supernatant of S. marcescens TKU011 with squid pen wastes as the sole carbon/nitrogen source. The enzyme was a monomeric protease with a molecular mass of 48–50 kDa by SDS–PAGE and gel filtration chromatography. The optimum pH, optimum temperature, pH stability, and thermal stability of TKU011 protease were 8, 50 °C, pH 5–11, and <40 °C, respectively. Besides protease and chitosanase, with this method, deproteinization of squid pen for β-chitin, the production of peptide and reducing sugar may be useful for biological applications.  相似文献   

2.
Using fishery-processing wastes of squid pen powder (SPP) as the sole carbon and nitrogen (C/N) source, Serratia marcescens TKU011 produced prodigiosin. The culture was incubated in 50 mL of medium in an Erlenmeyer flask (250 mL) containing 1.5% SPP at 30 °C for 1 day and then changed to 25 °C for 2 more days. The culture broth had high prodigiosin (0.978 mg/mL). S. marcescens TKU011 grown under illumination conditions in a shaking culture exhibited higher prodigiosin production than when grown under dark conditions contrary to previous reports. The culture supernatant reduced surface tension of water, and the surfactant activity increased when prodigiosin production increased. In this study, the fishery-processing waste, squid pen, was used to produce prodigiosin at greater quantities than reported in other studies, and we found that the prodigiosin had a novel property of insecticidal activity. This method has the potential for developing mass production of prodigiosin.  相似文献   

3.
A nattokinase was purified from the culture supernatant of Pseudomonas sp. TKU015 with shrimp shell wastes as the sole carbon/nitrogen source. The molecular masses of TKU015 nattokinase determined by SDS-PAGE and gel filtration were approximately 21 and 24 kDa, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of TKU015 nattokinase were 7, 50 °C, pH 4–11, and less than 50 °C, respectively. TKU015 nattokinase was inhibited completely by PMSF, indicating that the TKU015 nattokinase was serine protease. The results of peptide mass mapping showed that two tryptic peptides of the nattokinase were identical to a chitin binding protein from Bacillus cereus ATCC 14579 (GenBank accession number gi30020946) with 23% sequence coverage. With this method, Pseudomonas sp. TKU015 produces a nattokinase/fibrinolytic enzyme and may be considered as a new source for thrombolytic agents.  相似文献   

4.
A fungus with protease and chitinase activities was isolated from the soil. It has been identified as Aspergillus fumigatus Fresenius TKU003. A. fumigatus TKU003 produced proteases and chitinases when it was grown in a medium containing shrimp and crab shell powder (SCSP) of marine waste. An extracellular protease was purified from the culture supernatant of A. fumigatus TKU003. The molecular weight of TKU003 protease was 124 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The pI for TKU003 protease was 8.3. The optimum pH, optimum temperature, pH stability, and thermal stability of TKU003 protease was pH 8, 40 °C, 6–10, and 50 °C, respectively. The activity of the enzyme was strongly inhibited by PMSF. TKU003 serine protease, same as most other serine proteases of A. fumigatus, belongs to protease with alkaline pI. The unique characteristics of TKU003 protease is its high molecular weight.  相似文献   

5.
《Process Biochemistry》2014,49(2):223-229
An extremely alkaline chitinase from Streptomyces sp. CS495 was isolated from a Korean soil sample, purified by single-step chromatography, and biochemically characterized. The extracellular chitinase was purified 7.0 fold with a 33.9% yield by Sepharose Cl-6B column. The molecular mass of the enzyme (Ch495) was approximately 41 kDa. Ch495 was found to be stable over a broad pH range (5–12.5) and to 50 °C and have an optimum temperature of 60 °C. Ch495 had Km and Vmax values of 1.34 ± 2.9 mg/mL and 889 ± 3.6 mmol/min, respectively using different concentrations of colloidal chitin. N-terminal sequence of Ch495 was APREKINLLYFLGYF. HPLC and TLC analysis of Ch495 shows the production of produced N-acetyl d-glucosamine (GlcNAc) as minor and diacetylchitobiose (GlcNAc)2 as major products. Ch495 shows antifungal activity against Fusarium solani and Aspergillus brasiliensis which can be used for the biological control of fungus. As being simple in purification, extreme alkalophilic, stable in broad range of pH, ability to produce oligosaccharides, and antifungal activity shows that Ch495 has potential applications in industries as for chitooligosaccharides production used as medical prebiotics or/and for the biological control of plant pathogens in agriculture.  相似文献   

6.
Pseudomonas aeruginosa K187, a protease- and chitinase-producing bacterium, exhibited protease and chitinase activity after three and five days of incubation, respectively. The protease and chitinase were both produced by using 1% squid pen powder (SPP) (w/v) as sole carbon and nitrogen source. After fermentation, the deproteinization rate of the recovered squid pen gradually increased up to 68% on the fourth day. After five days of fermentation, the production of GlcNAc, (GlcNAc)2, (GlcNAc)3, (GlcNAc)4 and (GlcNAc)5 were 1.18 mg/mL, 0.76 mg/mL, 1.02 mg/mL, 0.93 mg/mL and 0.90 mg/mL, respectively. The culture supernatant of K187 also exhibited activity of enhancing vegetable growth. For Brassica chinensis Linn treated with the fifth day culture supernatant, the total weight and total length increased up to 529% and 148%, respectively, compared to the control group. With this method, the production of protease, chitinase, N-acetyl chitooligosaccharides and biofertilizers may be useful for biological applications.  相似文献   

7.
Substrate inhibition hinders chitinolytic β-N-acetyl-d-hexosaminidases in producing N-acetyl-d-glucosamine (GlcNAc), the valuable chemical widely applied in medical and food industries. Here we focused on a promising chitinolytic enzyme, OfHex1 from the insect, Ostrinia furnacalis. By structural analysis of OfHex1, five residues nearby the active pocket including V327, E328, Y471, V484 and W490 were chosen and nine mutants including V327G, E328Q, E328A, Y471V, V484R, W490A, W490H, V327G/V484R/W490A and V327G/Y471V/W490H were constructed and recombinantly expressed in Pichia pastoris. The best-performing mutant, W490A, obtained by a higher yield of 5 mg/L, did not show substrate inhibition even when 5 mM of the substrates, (GlcNAc)2–4, were applied. The kcat/Km values for (GlcNAc)2–4 are 239.8, 111.3 and 79.8 s?1 mM?1, respectively. Besides, the pH stability of the mutant ranges from pH 4 to 11 and the thermal stability is up to 50 °C. This work suggests the W490A mutant might be an ideal biocatalyst for GlcNAc production from chitin.  相似文献   

8.
N-Succinylamino acid racemase (NSAAR) with N-acylamino acid racemase (NAAAR) activity together with a d- or l-aminoacylase allows the total transformation of N-acetylamino acid racemic mixtures into optically pure d- or l-amino acids, respectively. In this work we have cloned and expressed the N-succinylamino acid racemase gene from the thermophilic Bacillus-related species Geobacillus kaustophilus CECT4264 in Escherichia coli BL21 (DE3). G. kaustophilus NSAAR (GkNSAAR) was purified in a one-step procedure by immobilized cobalt affinity chromatography and showed an apparent molecular mass of 43 kDa in SDS-gel electrophoresis. Size exclusion chromatography analysis determined a molecular mass of about 150 kDa, suggesting that the native enzyme is a homotetramer. Optimum reaction conditions for the purified enzyme were 55 °C and pH 8.0, using N-acetyl-d-methionine as substrate. GkNSAAR showed a gradual loss of activity at preincubation temperatures over 60 °C, suggesting that it is thermostable. As activity was greatly enhanced by Co2+, Mn2+ and Ni2+ but inhibited by metal-chelating agents, it is considered a metalloenzyme. The Co2+-dependent activity profile of the enzyme was studied with no detectable inhibition at higher metal ion concentrations. GkNSAAR showed activity towards both aliphatic and aromatic N-acetylamino acids such as N-acetyl-methionine and N-acetyl-phenylalanine, respectively, with kcat/Km values ranging from 1 × 103 to 9 × 103 s?1 M?1. Kinetic parameters were better for N-acetyl-d-amino acids than for N-acetyl-l-specific ones.  相似文献   

9.
A functional urea cycle with both cytosolic (ARG I) and mitochondrial (ARG II) arginase activity is present in the liver of an ureogenic air-breathing teleost, Heteropneustes fossilis. Antibodies against mammalian ARG II showed no cross-reactivity with the H. fossilis ARG II. ARG II was purified to homogeneity from H. fossilis liver. Purified ARG II showed a native molecular mass of 96 kDa. SDS–PAGE showed a major band at 48 kDa. The native enzyme, therefore, appears to be a homodimer. The pI value of the enzyme was 7.5. The purified enzyme showed maximum activity at pH 10.5 and 55 °C. The Km of purified ARG II for l-arginine was 5.25 ± 1.12 mM. l-Ornithine and Nω-hydroxy-l-arginine showed mixed inhibition with Ki values 2.16 ± 0.08 and 0.02 ± 0.004 mM respectively. Mn+ 2 and Co+ 2 were effective activators of arginase activity. Antibody raised against purified H. fossilis ARG II did not cross-react with fish ARG I, and mammalian ARG I and ARG II. Western blot with the antibodies against purified H. fossilis hepatic ARG II showed cross reactivity with a 96 kDa band on native PAGE and a 48 kDa band on SDS–PAGE. The molecular, immunological and kinetic properties suggest uniqueness of the hepatic mitochondrial ARG II in H. fossilis.  相似文献   

10.
The psychrotrophic Sanguibacter antarcticus KOPRI 21702T, isolated from Antarctic seawater, produced a cold-adapted chitinolytic enzyme that is a new 55 kDa family 18 chitinase (Chi21702). Chi21702 exhibited high activities toward pNP-(GlcNAc)2 and pNP-(GlcNAc)3 with no activity for pNP-GlcNAc, indicating that it prefers chitin chains longer than dimers, just as endochitinases do. A mixture of GlcNAc and GlcNAc2 was produced as a main product by Chi21702 activity from chitin oligosaccharides and swollen chitin, while less GlcNAc3 was produced. These results show that Chi21702 has an endochitinase activity, randomly hydrolyzing chitin at internal sites. Chi21702 displayed chitinase activity at 0–40 °C (optimal temperature of 37 °C), maintained its activity at pH 4–11 (optimal pH of 7.6). Interestingly, Chi21702 exhibited relative activities of 40% and 60% at 0 and 10 °C, respectively, in comparison to 100% at 37 °C, which is higher than those of the previously characterized, cold-adapted, chitinases from bacterial strains.  相似文献   

11.
An extracellular acid phytase was purified to homogeneity from the culture supernatant of the Saccharomyces cerevisiae CY strain by ultrafiltration, DEAE-Sepharose column chromatography, and Sephacryl S-300 gel filtration. The molecular weight of the purified enzyme was estimated to be 630 kDa by gel filtration. Removing the sugar chain by endoglycosidase H digestion revealed that the molecular mass of the protein decreased to 446 kDa by gel filtration and gave a band of 55 kDa by SDS-PAGE. The purified enzyme was most active at pH 3.6 and 40 °C and was fairly stable from pH 2.5 to 5.0. The phytase displayed broad substrate specificity and had a Km value of 0.66 mM (sodium phytate, pH 3.6, 40 °C). The phytase activity was completely inhibited by Fe3+ and Hg2+, and strongly inhibited (maximum of 91%) by Ba2+, Co2+, Cu+, Cu2+, Fe2+, Mg2+, and Sn2+ at 5 mM concentrations.  相似文献   

12.
《Inorganica chimica acta》2006,359(6):1855-1869
A series of discrete, mononuclear palladium(II)–methyl complexes, together with several palladium(II)–chloro analogues, of pyridine-functionalised bis-NHC ligands have been prepared via ligand transmetallation from the silver(I)-NHC complexes. The reported complexes comprise examples with both the methylene-bridged 2,6-bis[(3-R-imidazolin-2-yliden-1-yl)methyl]pyridine (RCNC; R = Mes, dipp, tBu) and planar 2,6-bis(3-R-imidazolin-2-yliden-1-yl)pyridine (RCNC; R = Mes, dipp) ligands and, when combined with the previously reported MeCNC/MeCNC examples, cover a broad spectrum of ligand substituent steric and electronic properties, including the bulky Mes and dipp groups frequently used in catalytic applications. The palladium(II) complexes have been characterised by a variety of methods, including single crystal X-ray crystallography, with the shielding of the Pd–Me groups in the proton NMR spectra of some of the N-aryl substituted examples correlated with the proximity of the aryl rings to the methyl group in the solid state structures. The [PdMe(RCNC/RCNC)]+ complexes undergo thermal degradation via reductive methyl-NHC coupling to give 2-methyl-3-R-imidazolium-1-yl species with relative stabilities in the order of [PdMe(MesCNC)]BF4 > [PdMe(MeCNC)]BF4  [PdMe(MesCNC)]BF4 > [PdMe(MeCNC)]BF4 > [PdMe(tBuCNC)]BF4  [PdMe(tBuCNC)]BF4 (not isolable). A comparison of the activity of the complexes as precatalysts in a model Heck coupling reaction shows greatest activity in those species bearing bulkier N-substituents, with complexes bearing RCNC ligands generally more efficient precatalysts than those bearing RCNC ligands.  相似文献   

13.
《Process Biochemistry》2004,39(11):1599-1605
Fusarium oxysporum F3 produced N-acetyl-β-d-glucosaminidase when grown on wheat bran and chitin as carbon sources in solid-state fermentation. The initial moisture content and pH of growth medium were 65% and 6.0, respectively, and the enzyme yield 23.6 U g−1 carbon source. Two isozymes of N-acetyl-β-d-glucosaminidase, called N-acetyl-β-d-glucosaminidases I and II, were isolated from the culture filtrate of F. oxysporum F3. The filtrate was subjected to ammonium sulphate fractionation followed by anion exchange, gel filtration, hydrophobic interaction and cation exchange chromatography. The optimum pH of isozymes I and II was 5.0 and 6.0, respectively, whereas maximum activity of both isozymes was obtained at 40 °C. The Km of isozymes I and II was 49.6 and 48.6 μM and the Vmax 1.24 and 0.26 μmol mg−1 min−1, respectively, on p-nitrophenyl N-acetyl-β-d-glucosaminide as substrate. The molecular mass of isozymes I and II was calculated to be 67 kDa by SDS–PAGE.  相似文献   

14.
Novel trinuclear Ni(II) complex [Ni3(pmdien)3(btc)(H2O)3](ClO4)3 · 4H2O, 1 where pmdien = N,N,N′,N′,N″-pentamethyldiethylenetriamine, H3btc = 1,3,5-benzenetricarboxylic (trimesic) acid, has been prepared and structurally characterized. Three nickel atoms are bridged by btc trianion and their coordination sphere is completed by three N atoms of pmdien and O atom of the water molecule. The three nickel(II) magnetic centers are equivalent and their coordination spheres are completed to deformed octahedrons. Magnetic susceptibility was measured over the temperature range 1.8–300 K and zJ = ?0.19 cm?1, D = 3.79 cm?1, g = 2.18 parameters were calculated.  相似文献   

15.
All possible isomers of N-β-d-glucopyranosyl aryl-substituted oxadiazolecarboxamides were synthesised. O-Peracetylated N-cyanocarbonyl-β-d-glucopyranosylamine was transformed into the corresponding N-glucosyl tetrazole-5-carboxamide, which upon acylation gave N-glucosyl 5-aryl-1,3,4-oxadiazole-2-carboxamides. The nitrile group of the N-cyanocarbonyl derivative was converted to amidoxime which was ring closed by acylation to N-glucosyl 5-aryl-1,2,4-oxadiazole-3-carboxamides. A one-pot reaction of protected β-d-glucopyranosylamine with oxalyl chloride and then with arenecarboxamidoximes furnished N-glucosyl 3-aryl-1,2,4-oxadiazole-5-carboxamides. Removal of the O-acetyl protecting groups by the Zemplén method produced test compounds which were evaluated as inhibitors of glycogen phosphorylase. Best inhibitors of these series were N-(β-d-glucopyranosyl) 5-(naphth-1-yl)-1,2,4-oxadiazol-3-carboxamide (Ki = 30 μM), N-(β-d-glucopyranosyl) 5-(naphth-2-yl)-1,3,4-oxadiazol-2-carboxamide (Ki = 33 μM), and N-(β-d-glucopyranosyl) 3-phenyl-1,2,4-oxadiazol-5-carboxamide (Ki = 104 μM). ADMET property predictions revealed these compounds to have promising oral drug-like properties without any toxicity.  相似文献   

16.
Mutations in the second EF-hand (D61N, D63N, D65N, and E72A) of S100B were used to study its Ca2 + binding and dynamic properties in the absence and presence of a bound target, TRTK-12. With D63NS100B as an exception (D63NKD = 50 ± 9 μM), Ca2 + binding to EF2-hand mutants were reduced by more than 8-fold in the absence of TRTK-12 (D61NKD = 412 ± 67 μM, D65NKD = 968 ± 171 μM, and E72AKD = 471 ± 133 μM), when compared to wild-type protein (WTKD = 56 ± 9 μM). For the TRTK-12 complexes, the Ca2 +-binding affinity to wild type (WT + TRTKKD = 12 ± 10 μM) and the EF2 mutants was increased by 5- to 14-fold versus in the absence of target (D61N + TRTKKD = 29 ± 1.2 μM, D63N + TRTKKD = 10 ± 2.2 μM, D65N + TRTKKD = 73 ± 4.4 μM, and E72A + TRTKKD = 18 ± 3.7 μM). In addition, Rex, as measured using relaxation dispersion for side‐chain 15N resonances of Asn63 (D63NS100B), was reduced upon TRTK-12 binding when measured by NMR. Likewise, backbone motions on multiple timescales (picoseconds to milliseconds) throughout wild type, D61NS100B, D63NS100B, and D65NS100B were lowered upon binding TRTK-12. However, the X-ray structures of Ca2 +-bound (2.0 Å) and TRTK-bound (1.2 Å) D63NS100B showed no change in Ca2 + coordination; thus, these and analogous structural data for the wild-type protein could not be used to explain how target binding increased Ca2 +-binding affinity in solution. Therefore, a model for how S100B–TRTK‐12 complex formation increases Ca2 + binding is discussed, which considers changes in protein dynamics upon binding the target TRTK-12.  相似文献   

17.
18.
A novel extracellular α-galactosidase, named Aga-F78, from Rhizopus sp. F78 ACCC 30795 was induced, purified and characterized in this study. This soybean-inducible α-galactosidase was purified to homogeneity by ammonium sulfate precipitation and fast protein liquid chromatography (FPLC), with a yield of 14.6% and a final specific activity of 74.6 U mg−1. Aga-F78 has an estimated relative molecular mass of 78 kDa from SDS-PAGE while native mass of 210 kDa and 480 kDa from non-denaturing gradient PAGE. This α-galactosidase had no N- or O-glycosylated. Amino acid sequences of three internal fragments were determined, and fragment 1, NQLVLDLTR, shared high homology with bacterial and fungal GH-36 α-galactosidases. The optimum pH and temperature on activity of Aga-F78 were 4.8 and 50 °C, respectively. The properties of pH and temperature stability, effect of ions and chemicals were also studied. Furthermore, the resistant to neutral and alkaline proteases and substrate specificity of natural substrates (melibiose, raffinose, stachyose and guar gum) were also studied to enlarged the application of Aga-F78 in more fields. Kinetic studies revealed a Km and Vmax of 2.9 mmol l−1 and 246.1 μmol (mg min)−1, respectively, using pNPG as substrate. To our knowledge, this is the first report of purification and characterization of α-galactosidase from Rhizopus with some special properties, which may aid its utilization in the food and feed industries.  相似文献   

19.
We have developed a culture system for efficient production of chitosanase by Bacillus sp. TKU004. TKU004 was cultivated by using squid pen powder as the sole carbon/nitrogen source. The effects of autoclave treatments of the medium on the production of chitosanase were investigated. Autoclave treatment of squid pen powder for 45 min remarkably promoted enzyme productivity. When the culture medium containing an initial squid pen powder concentration of 3% was autoclaved for 45 min, the chitosanase activity was optimal and reached 0.14-0.16 U/mL. In addition, extracellular surfactant-stable chitosanase was purified from the TKU004 culture supernatant. The antioxidant activity of TKU004 culture supernatant was determined through the scavenging ability of DPPH, with 70% per mL. With this method, we have shown that marine wastes can be utilized efficiently through prolonged autoclave treatments to generate a high value-added product, and have revealed its hidden potential in the production of functional foods.  相似文献   

20.
Xylitol-2-dehydrogenase from Candida albicans was cloned and overexpressed in Escherichia coli. The purified recombinant XDH has an apparent molecular weight of 40 kDa which belongs to the medium chain alcohol dehydrogenase family and exclusively uses NAD+ as a cofactor. The recombinant caXDH has a KM of 8.8 mM and 37.7 μM using the substrate xylitol and NAD+, respectively, and its catalytic efficiency is 53,200 min?1 mM?1. Following site-directed mutagenesis, one of the engineered caXDHs with six mutations at Ser95Cys, Ser98Cys, Tyr101Cys, Asp206Ala, Ile207Arg, and Phe208Ser shifted its cofactor dependence from NAD+ to NADP+ in which the KM and kcat/KM towards NADP+ are 119 μM and 26,200 min?1 mM?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号