首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Process Biochemistry》2007,42(4):740-744
The conversion of glycerol to 1,3-propanediol (PDO) using Klebsiella pneumoniae M5al under anaerobic condition was scaled up from scale 5 to 5000 l in series. A simple strategy for scale-up was to transfer the optimized conditions of a lab scale bioreactor to pilot-scale fermentation. Multistage inocula were developed and their fermentation abilities were assessed in a small-scale fermenter. The experimental results showed that inoculum development in the early steps of a scale-up process could influence the outcomes of a large scale fermentation. Through three-stage liquid inoculum development and a pulse addition of (NH4)2SO4 and yeast extract at 30 h of fermentation, the best results in a 5000 l fermentation were achieved leading to 58.8 g l−1 1,3-propanediol with a yield of 0.53 mol mol−1 glycerol and productivity of 0.92 g l−1 h−1. This is the first report on pilot-scale 1,3-propanediol production using K. pneumoniae.  相似文献   

2.
《Process Biochemistry》2010,45(7):1036-1042
A recombinant strain of Escherichia coli with CYP102A1 gene was developed for the demethylation of colchicine into their derivatives. The CYP102A1 gene responsible for demethylation was isolated from Bacillus megaterium ACBT03 and amplified using suitable primers. The amplified product was cloned into pET28a+ expression vector using host E. coli BL21(DE3) cells. The CYP3A4 (product of CYP102A1 gene) protein expression and other parameters like substrate toxicity, product toxicity and enzyme activity were optimized in shake flasks; and further scaled-up to 5 l bioreactor with 3 l working volume. In 5 l bioreactor, dissolved oxygen (DO) was optimized for maximum specific growth and enhanced 3-demethylated colchicine (3-DMC) production. The optimized conditions from shake flasks were scaled-up to 70 l bioreactor and resulted into ∼80% conversion of 20 mM colchicine in 48 h with a volumetric productivity of 6.62 mg l−1 h−1. Scale-up factors were measured as volumetric oxygen transfer coefficient (kLa) i.e., 56 h−1 and impeller tip velocity (Vtip) i.e., 7.065 m s−1, respectively. The kinetic parameters Km, kcat, and kcat/Km of the CYP3A4 enzyme using colchicine as the substrate were determined to be 271 ± 30 μM, 8533 ± 25 min−1, and 31.49 μM min−1, respectively, when IPTG induced recombinant E. coli culture was used.  相似文献   

3.
《Process Biochemistry》2007,42(3):352-362
The effects of medium components and environmental factors on the production of mycelial biomass and polysaccharide–peptide complexes (exobiopolymers) by Cordyceps sphecocephala J-201 were investigated in submerged cultures. The optimal temperature and initial pH for the production of both mycelial biomass and exobiopolymers in flask cultures were found to be 25 °C and pH 4–5, respectively. The optimal combination of the media constituents was as follows (g l−1): sucrose 40, yeast extract 6, polypepton 2, KH2PO4 0.46, K2HPO4 1, and MgSO4·7H2O 0.5. The results of bioreactor culture revealed that the maximum concentration of mycelial biomass (28.2 g l−1) was obtained at an agitation speed of 300 rpm and at an aeration rate of 2 vvm, whereas maximum exobiopolymer production (2.5 g l−1) was achieved at a milder agitation speed (150 rpm). There was a significant variance in mycelial morphology between different aeration conditions. Looser mycelial pellets were developed, and their size and hairiness increased as the aeration rate increased from 0.5 to 2.0 vvm, resulting in enhanced exobiopolymer production. The apparent viscosities of fermentation broth increased rapidly towards the end of fermentations at the conditions of high aeration rate and agitation speed, which were mainly due to high amount of mycelial biomass rather than exobiopolymers at the later stages of fermentation. The three different exobiopolymers (FR-I, -II, and -III) were fractionated by a gel filtration chromatography on Sepharose CL-6B. The carbohydrate and protein contents in each fraction were significantly different and the molecular weights of FR-I, FR-II, and FR-III were determined to be 1831, 27, and 2.2 kDa, respectively. The compositional analysis revealed that the three fractions of crude exobiopolymers consisted of acidic and nonpolar amino acids, such as aspartic acid, glutamic acid, glycine, and valine in protein moiety, and of mainly mannose and galactose in sugar moiety.  相似文献   

4.
The effect of aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor was investigated. B. trispora formed hyphae, zygophores and zygospores during the fermentation. The zygospores were the morphological form responsible for β-carotene production. Both aeration and agitation significantly affected β-carotene concentration, productivity, biomass and the volumetric mass transfer coefficient (KLa). The highest β-carotene concentration (1.5 kg m−3) and the highest productivity (0.08 kg m−3 per day) were obtained at low impeller speed (150 rpm) and high aeration rate (1.5 vvm). Also, maximum productivity (0.08 kg m−3 per day) and biomass dry weight (26.4 kg m−3) were achieved at high agitation speed (500 rpm) and moderate aeration rate (1.0 vvm). Conversely, the highest value of KLa (0.33 s−1) was observed at high agitation speed (500 rpm) and high aeration rate (1.5 vvm). The experiments were arranged according to a central composite statistical design. Response surface methodology was used to describe the effect of impeller speed and aeration rate on the most important fermentation parameters. In all cases, the fit of the model was found to be good. All fermentation parameters (except biomass concentration) were strongly affected by the interactions among the operation variables. β-Carotene concentration and productivity were significantly influenced by the aeration, agitation, and by the positive or negative quadratic effect of the aeration rate. Biomass concentration was principally related to the aeration rate, agitation speed, and the positive or negative quadratic effect of the impeller speed and aeration rate, respectively. Finally, the volumetric mass transfer coefficient was characterized by the significant effect of the agitation speed, while the aeration rate had a small effect on KLa.  相似文献   

5.
We report for the first time kinetic and thermodynamic properties of soluble acid invertase (SAI) of sugarcane (Saccharum officinarum L.) salt sensitive local cultivar CP 77-400 (CP-77). The SAI was purified to apparent homogeneity on FPLC system. The crude enzyme was about 13 fold purified and recovery of SAI was 35%. The invertase was monomeric in nature and its native molecular mass on gel filtration and subunit mass on SDS-PAGE was 28 kDa. SAI was highly acidic having an optimum pH lower than 2. The acidic limb was missing. Proton transfer (donation and receiving) during catalysis was controlled by the basic limb having a pKa of 2.4. Carboxyl groups were involved in proton transfer during catalysis. The kinetic constants for sucrose hydrolysis by SAI were determined to be: km = 55 mg ml?1, kcat = 21 s?1, kcat/km = 0.38, while the thermodynamic parameters were: ΔH* = 52.6 kJ mol?1, ΔG* = 71.2 kJ mol?1, ΔS* = ?57 J mol?1 K?1, ΔG*E–S = 10.8 kJ mol?1 and ΔG*E–T = 2.6 kJ mol?1. The kinetics and thermodynamics of irreversible thermal denaturation at various temperatures 53–63 °C were also determined. The half -life of SAI at 53 and 63 °C was 112 and 10 min, respectively. At 55 °C, surprisingly the half -life increased to twice that at 53 °C. ΔG*, ΔH* and ΔS* of irreversible thermal stability of SAI at 55 °C were 107.7 kJ mol?1, 276.04 kJ mol?1 and 513 J mol?1K?1, respectively.  相似文献   

6.
Tetrastigma hemsleyanum Diels et Gilg was grown under full sunlight and moderate and high levels of shade for one month to evaluate its photosynthetic and chlorophyll fluorescence response to different light conditions. The results showed that T. hemsleyanum attained greatest leaf size and Pn when cultivated with 67% shade. Leaves of seedlings grown with 90% shade were the smallest. Leaf color of plants grown under full sunlight and 50% shade was yellowish-green. The Pn value increased rapidly as PPFD increased to 200 μmol m?2 s?1 and then increased slowly to a maximum, followed by a slow decrease as PPFD was increased to 1000 μmol m?2 s?1. Pn was highest for the 67% shade treatment and the LSP for this shade treatment was 600 μmol m?2 s?1. Full sunlight and 50% shade treatments resulted in significant reduction of ETR and qP and increased NPQ. Chl a, Chl b and total chlorophyll content increased and Chl a/b values decreased with increased shading. Results showed that light intensity greater than that of 50% shade depressed photosynthetic activity and T. hemsleyanum growth. Irradiance less than that of 75% shade limited carbon assimilation and led to decreased plant growth. Approximately 67% shade is suggested to be the optimum light irradiance condition for T. hemsleyanum cultivation.  相似文献   

7.
Fermentation kinetics of growth and β-carotene production by Rhodotorula glutinis DM28 in batch and continuous cultures using fermented radish brine, a waste generated from fermented vegetable industry, as a cultivation medium were investigated. The suitable brine concentration for β-carotene production by R. glutinis DM28 was 30 g l?1. Its growth and β-carotene production obtained by batch culture in shake flasks were 2.2 g l?1 and 87 μg l?1, respectively, while, in a bioreactor were 2.6 g l?1 and 186 μg l?1, respectively. Furthermore, its maximum growth rate and β-carotene productivity in continuous culture obtained at the dilution rate of 0.24 h?1 were 0.3 g l?1 h?1 and 19 μg l?1 h?1, respectively, which were significantly higher than those in the batch. Therefore, improved growth rate and β-carotene productivity of R. glutinis in fermented radish brine could be accomplished by continuous cultivation.  相似文献   

8.
The hybrid bioreactor landfill was promising in solid waste management. In the work, the nitrogen removal and nitrogen transformation in hybrid bioreactor landfill with sequencing of facultative anaerobic and aerobic conditions was explored. The result showed that the combination of facultative anaerobic and aerobic conditions in the hybrid bioreactor landfill was indeed effective in eliminating ammonia both from the leachate and the refuse thoroughly. About 72% of nitrogen was reduced from the landfilled fresh refuse through the operation of 357 days. At the end of the experiment, the concentrations of COD, ammonia, nitrate and TN in the leachate decreased to 399.2 mg l?1, 20.6 mg N l?1, 3.7 mg N l?1 and 25.3 mg N l?1, respectively.  相似文献   

9.
The effects of two anion/Cl? channel inhibitors, Zn2+ and niflumic acid (NA), on seedling photosynthetic and fluorescent parameters of two Glycine soja populations (salt-tolerant BB52; salt-sensitive N23227) and Glycine max cultivar (salt-tolerant Lee68) were studied and compared under salt stress. Treatments with Zn2+ and NA only (10, 20 μmol L?1) were also imposed for comparisons. Results showed that, there were non-toxic and non-nutritional effects of Zn2+ and NA treatments alone on seed germination and seedling growth of soybeans. Under 150 mmol L?1 NaCl for 6 d, leaf chlorophyll and carotenoid contents, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), and the maximum photochemical efficiency of photosystem II (PS II) (Fv/Fm) except the stomatal limitation (Ls) significantly decreased in three kinds of soybean seedlings when compared with their control plants. The NaCl stress plus additional 20 μmol L?1 Zn showed an obvious enhancement of leaf chlorophyll and carotenoid contents, Pn, Gs, Ci and Tr, especially for the G. max cultivar Lee68, but the supplementation of 20 μmol L?1 NA showed the reverse effects.  相似文献   

10.
Meriem Alami  Dusan Lazar  Beverley R. Green 《BBA》2012,1817(9):1557-1564
Aureococcus anophagefferens is a picoplanktonic microalga that is very well adapted to growth at low nutrient and low light levels, causing devastating blooms (“brown tides”) in estuarine waters. To study the factors involved in long-term acclimation to different light intensities, cells were acclimated for a number of generations to growth under low light (20 μmol photons m? 2 s? 1), medium light (60 or 90 μmol photons m? 2 s? 1) and high light (200 μmol photons m? 2 s? 1), and were analyzed for their contents of xanthophyll cycle carotenoids (the D pool), fucoxanthin and its derivatives (the F pool), Chls c2 and c3, and fucoxanthin Chl a/c polypeptides (FCPs). Higher growth light intensities resulted in increased steady state levels of both diadinoxanthin and diatoxanthin. However, it also resulted in the conversion of a significant fraction of fucoxanthin to 19′-butanoyloxyfucoxanthin without a change in the total F pool. The increase in 19′-butanoyloxyfucoxanthin was paralleled by a decrease in the effective antenna size, determined from the slope of the change in F0 as a function of increasing light intensity. Transfer of acclimated cultures to a higher light intensity showed that the conversion of fucoxanthin to its derivative was a relatively slow process (time-frame of hours). We suggest the replacement of fucoxanthin with the bulkier 19′-butanoyloxyfucoxanthin results in a decrease in the light-harvesting efficiency of the FCP antenna and is part of the long-term acclimative response to growth at higher light intensities.  相似文献   

11.
Effects of medium components on intracellular glucose isomerase (GI) production were investigated by Bacillus thermoantarcticus. The highest GI activity was obtained as 1630 U dm?3 in the medium containing (g dm?3): 10.6, birchwood-xylan; 5.6, yeast extract; 5.9 (NH4)2SO4 at T = 55 °C in 33 cm?3 shake-flasks. When birchwood-xylan was replaced with oat spelt- or beechwood-xylan, GI activity decreased to 1372 and 1308 U dm?3, respectively. Effects of pH at uncontrolled-pH (pHUC = 6.0) and controlled-pH (pHC = 6.0) operations, and oxygen transfer at the air inlet rate of 0.5 vvm and agitation rates of 300, 500 and 700 min?1, were investigated in 3.0 dm3 bioreactor system with 1.65 dm3 working volume in the designed medium. The highest GI activity was attained at 500 min?1, 0.5 vvm, pHUC = 6 as 1840 U dm?3 where cell concentration was 2.3 g dm?3. The use of agricultural waste xylan, as the carbon source resulted in concomitant production of xylanase and GI. The highest xylanase activity was attained as 9300 U dm?3 at 500 min?1 and 0.5 vvm. KLa varied between 0.008–0.033 s?1 whereas the highest oxygen uptake rate was 0.002 mmol dm?3 s?1. Initially biochemical reaction limitations were effective; thereafter, mass transfer resistances became more effective.  相似文献   

12.
The introduced shrub Tamarix ramosissima invades riparian zones, but loses competitiveness under flooding. Metabolic effects of flooding could be important for T. ramosissima, but have not been previously investigated. Photosynthesis rates, stomatal conductance, internal (intercellular) CO2, transpiration, and root alcohol dehydrogenase (ADH) activity were compared in T. ramosissima across soil types and under drained and flooded conditions in a greenhouse. Photosynthesis at 1500 μmol quanta m−2 s−1 (A1500) in flooded plants ranged from 2.3 to 6.2 μmol CO2 m−2 s−1 during the first week, but A1500 increased to 6.4–12.7 μmol CO2 m−2 s−1 by the third week of flooding. Stomatal conductance (gs) at 1500 μmol quanta m−2 s−1 also decreased initially during flooding, where gs was 0.018 to 0.099 mol H2O m−2 s−1 during the first week, but gs increased to 0.113–0.248 mol H2O m−2 s−1 by the third week of flooding. However, photosynthesis in flooded plants was reduced by non-stomatal limitations, and subsequent increases indicate metabolic acclimation to flooding. Root ADH activities were higher in flooded plants compared to drained plants, indicating oxygen stress. Lower photosynthesis and greater oxygen stress could account for the susceptibility of T. ramosissima at the onset of flooding. Soil type had no effect on photosynthesis or on root ADH activity. In the field, stomatal conductance, leaf water potential, transpiration, and leaf δ13C were compared between T. ramosissima and other flooded species. T. ramosissima had lower stomatal conductance and water potential compared to Populus deltoides and Phragmites australis. Differences in physiological responses for T. ramosissima could become important for ecological concerns.  相似文献   

13.
A functional bacterial consortium that can effectively hydrolyze cellobiose and produce bio-hydrogen was isolated by a concentration-to-extinction approach. The sludge from a cattle feedlot manure composting plant was incubated with 2.5–20 g l?1 cellobiose at 35 °C and pH 6.0. The microbial diversity of serially concentrated suspensions significantly decreased following increasing cellobiose concentration, finally leaving only two viable strains, Clostridium butyricum strain W4 and Enterococcus saccharolyticus strain. This consortium has a maximum specific hydrogen production rate of 2.19 mol H2 mol hexose?1 at 5 g l?1 cellobiose. The metabolic pathways shifted from ethanol-type to acetate-butyrate type as cellobiose concentration increased from 2.5 to >7 g l?1. The concentration-to-extinction approach is effective for isolating functional consortium from natural microflora. In this case the functional strains of interest are more tolerant to the increased loadings of substrates than the non-functional strains.  相似文献   

14.
The kinetics of a stomatal response to sudden increases or decreases of CO2 concentrations ([CO2]) was studied in 13 plant species growing in the field. Plants were well supplied with water. In each plant, gas exchange measurements were made on a fully developed leaf that was first left to achieve steady-state stomatal conductance (gs) at 400 μmol (CO2) mol−1) and then exposed to a step change of [CO2] (to 700 μmol mol−1 in one experiment; and to 700 and back to 400 μmol mol−1 in a second experiment). Porometric data were captured in intervals of 3 s until a new steady state was reached.A comparison of t1/2, the half-time needed to achieve new gs, indicates similar responses of stomata in grasses when compared to herbs. The stomata of C4 plants responded in approximately 5 min, the highest closure rate was detected in Echinochloa crus-galli and Digitaria sanguinalis. Opening rates were similar to closing rates and the response as a whole was rather symmetric. In C3 plants, the full response of stomata was much slower. Analysis revealed differences in absolute rates of gs change between C3 and C4 plants. These differences can be related to the specificities of the type of photosynthetic metabolism. C4 photosynthesis enables plants to reduce gs, which can hasten further changes of diffusivity in response to the environmental signals. A possible coupling of C4 metabolism to the regulation of guard cells also has to be taken into account when explaining the observed results.  相似文献   

15.
A highly chitinolytic strain Penicillium ochrochloron MTCC 517 was procured from MTCC, Chandigarh, India. Culture medium supplemented with 1% chitin was found to be suitable for maximum production of chitinase. Purification of extracellular chitinase was done from the culture medium by organic solvent precipitation and DEAE-cellulose column chromatography. The chitinase was purified 6.92-fold with 29.9% yield. Molecular mass of purified chitinase was found to be 64 kDa by SDS-PAGE. The chitinase showed optimum temperature 40 °C and pH 7.0. The enzyme activity was completely inhibited by Hg2+, Zn2+, K+ and NH4+. The enzyme kinetic study of purified chitinase revealed the following characteristics, such as apparent Km 1.3 mg ml?1, Vmax 5.523 × 10?5 moles l?1 min?1 and Kcat 2.37 s?1 and catalytic efficiency 1.82 s?1 M?1. The enzyme hydrolyzed colloidal chitin, glycol chitin, chitosan, glycol chitosan, N,N′-diacetylchitobiose, p-nitrophenyl N-acetyl-β-d-glucosaminide and 4-methylumbelliferyl N-acetyl-β-d-glucosaminide. The chitinase of P. ochrochloron MTCC 517 is an exoenzyme, which gives N-acetylglucosamine as the main hydrolyzate after hydrolysis of colloidal chitin. Protoplasts with high regeneration capacity were obtained from Aspergillus niger using chitinase from P. ochrochloron MTCC 517. Since it also showed antifungal activity, P. ochrochloron MTCC 517 seems to be a promising biocontrol agent.  相似文献   

16.
Five bacterial strains screened from a batch of 39 samples could convert glycerol anaerobically to 1,3-propanediol (1,3-PD). One of the strains, XJ-Li, which could synthesize 1,3-PD with a higher concentration, was identified and characterized. Phylogenetic analysis of the strain XJ-Li included the study of morphology, physiological and biochemical characteristics. In addition, 16SrDNA sequences were created. The results indicated that this strain is a member of Klebsiella pneumoniae. The optimal cultivation parameters for pH and temperature were determined as 8.0 and 40 °C, respectively. The optimized nitrogen source and carbon source were 6.0 g/L of (NH4)2SO4 and 20 g/L of glycerol, respectively. After 8 h in batch fermentation, both the 1,3-PD concentration and glycerol consumption reached the maximum, with 12.2 g/L of 1,3-PD and 1.53 g/L h of productivity, and a molar yield of 1,3-PD to glycerol of 0.75. Fed-batch fermentation also indicated a higher molar yield of 0.70, and the concentration of 1,3-PD reached 38.1 g/L after 66.4 g/L of glycerol consumption. The results of batch and fed-batch fermentations demonstrated that K. pneumoniae XJ-Li would be an excellent 1,3-PD producer.  相似文献   

17.
A novel method for real-time investigating the binding interaction between human serum albumin (HSA) and salicylic acid with capacitive sensing technique was successfully proposed. HSA was immobilized on the surface of a gold electrode modified with an insulating poly (o-phenylenediamine) (o-PD) film and colloid Au nanoparticles layers. The bioactivity of HSA was remained and major binding sites were available because of the excellent biocompatibility of gold nanoparticles. The capacitance and interfacial electron resistance of the sensor were altered, owing to the binding of HSA to salicylic acid. The time courses of the capacitance change were acquired with capacitive sensing technique during the binding process. Based on the capacitance response curves with time, the response model for the binding was derived in theory and the corresponding regression parameters were determined by fitting the real-time experimental data to the model. The binding and the dissociation rate constants (k1 and k 1) were estimated to be 54.8 (mol l 1) 1 s 1 and 2.9 × 10 3 s 1, respectively. And the binding equilibrium constant (Ka) was calculated to be 1.89 × 104 (mol l 1) 1.  相似文献   

18.
Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses; therefore, the knowledge of the volumetric mass transfer coefficient (kLa) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the kLa values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium, in the absence of biomass. Aeration and agitation were selected as the independent variables using a 22 full factorial design. Both variables showed statistically significant effects on kLa, and the highest values of this parameter in both media for simple fermentation (241 s−1) and extractive fermentation with ATPS (70.3 s−1) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The kLa values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N3D2) and superficial gas velocity (Vs) determined in distilled water (α = 0.39 and β = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (α = 0.38 and β = 0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (α = 0.50 and β = 1.0). A reasonable agreement was found between the experimental data of kLa for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions.  相似文献   

19.
This study was conducted to evaluate the importance of aeration in free and immobilized cell systems in an aerated bioreactor for xylitol production from an oat hull hemicellulosic hydrolysate using an integrated process. The aeration rate (AR) or oxygen mass transfer coefficient (kLa) demonstrated a significant role in controlling cell (Candida guilliermondii FTI 20037) regeneration and bioconversion performance in free and immobilized cell systems. In the free cell system, an aeration rate of 1.25 vvm corresponding to kLa of 15.8 1/h resulted in maximum values of product yield (Yp/s: 0.87 g/g), productivity (Qp: 0.57 g/l/h), and final xylitol concentration (Pf: 55 g/l) from the hydrolysate with a 74.5 g/l xylose concentration. However, in the aerated immobilized cell system, maximum and almost similar results (almost Pf: 54 g/l, Qp: 0.57 g/l/h and Yp/s: 0.84 g/g) were obtained with aeration rates from 1.25 to 1.5 vvm using composites based on polypropylene (PP) and partially delignified fiber (PDF). Composites based on acid treated fiber (ATF) containing a high amount of lignin showed some inhibitory impact on xylose uptake and xylitol formation (Pf: 47 g/l and Qp < 0.49 g/l/h) with the optimal aeration rate of 1.5 vvm in the initial cycle of the bioconversion; this inhibition impact could be resolved in the next consecutive cycles. The surface modifier polyethyleneimine (PEI) slightly enhanced cell retention in the immobilized form on the ATF-based cell support. This investigation helps fill in the knowledge gaps existing on the integrated processing of the lignocellulosic biomass for xylitol bioproduction and biorefinery industry; however, more scale-up studies are recommended for commercialization.  相似文献   

20.
《Aquatic Botany》2005,83(2):129-140
Bisexual populations of the charophyte Chara canescens (Desv. et Loisel. in Loisel., 1810) containing male and female individuals are rarely found. Two experiments were carried out to study whether male and female algae from the same site exhibit different physiological capacities, especially with respect to light acclimation.Algae from two different shore levels and from laboratory cultures acclimated to six irradiance conditions (35–500 μmol photons m−2 s−1) were compared. Field measurements showed that both female and male algae of C. canescens are able to acclimate to daily changes in solar irradiance. The quantum yield of Photosystem II (PSII) decreased with increasing irradiance in the morning and increased with decreasing irradiance in the afternoon. Growth experiments showed increasing growth rates from 35 μmol photons m−2 s−1 (∼7 mg FW) up to 500 μmol photons m−2 s−1 (∼27 mg FW) in female and male C. canescens. The irradiance saturation point for photosynthesis (Ek) was about 140 μmol m−2 s−1 for both sexes within the whole range of acclimation irradiances. The maximum photosynthesis rate at saturating irradiances (Pmax) of male algae was highest at Ek, whereas Pmax of female algae was highest at 500 μmol photons m−2 s−1. The photosynthetic efficiency in the light-limited range (α) increased in female C. canescens and decreased in male C. canescens. The ratio of the non-photochemical quenching parameter (NPQ) to the relative electron transport rates rETR(MT) increased in both sexes with irradiance, but showed a steeper increase in male than in female algae. Pigment analysis showed similar acclimation pattern for male and female C. canescens. Chl a/Chl b ratios of both sexes were constant over the whole range of Eg, whereas Chl a/carotenoid ratios in male and female C. canescens decreased from 70 μmol photons m−2 s−1 upwards. Pigment analysis pointed out that the carotenes α-, β- and γ-carotene were more prominent in male than in female algae.Our results indicate that female C. canescens are more efficient in light acclimation than male algae from the same site. Nevertheless, further investigations of bisexual C. canescens populations resolving CO2-uptake mechanisms and/or genetic differences are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号