首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new carbonic anhydrase (CA, EC 4.2.1.1) from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 was identified and characterized. The bacterial carbonic anhydrase gene was expressed in Escherichia coli yielding an active enzyme, which was purified in large amounts. The recombinant protein (SspCA) was found to belong to the α-CA class and displays esterase activity. The kinetic parameters were determined by using CO2 and p-nitrophenylacetate (p-NpA) as substrates. The bacterial enzyme presented specific activity comparable to that of bovine carbonic anhydrase (bCA II) but it showed biochemical properties never observed for the mammalian enzyme. The thermophilic enzyme, in fact, was endowed with high thermostability and with unaltered residual activity after prolonged exposure to heat up to 100°C. SspCA and the bovine carbonic anhydrase (bCA II) were immobilized within a polyurethane (PU) foam. The immobilized bacterial enzyme was found to be active and stable at 100°C up to 50?h.  相似文献   

2.
Two forms of alpha-galactosidase, I and II, exist in Vicia faba seeds and these have been purified 3660- and 337-fold respectively. They behaved as homogeneous preparations when examined by ultracentrifugation, disc electrophoresis and gel filtration. The apparent molecular weights of enzymes I and II, as determined by gel filtration, were 209000 and 38000 respectively. The carbohydrate contents of enzymes I and II were 25% and 2.8% respectively, and the enzymes differed in their aromatic amino acid compositions. Enzyme I was split into six inactive subunits in the presence of 6m-urea. alpha-Galactosidases I and II showed different pH optima and K(m) and V(max.) values with p-nitrophenyl alpha-d-galactoside and raffinose as substrates, and also differed in their thermal stabilities.  相似文献   

3.
4.
1. The hydrolysis of a variety of galactosides and other glycosides by alpha-galactosidases I and II of Vicia faba was studied. 2. The effect of temperature on kinetic parameters was also examined. 3. Both enzymes are inhibited by excess of substrate (p-nitrophenyl alpha-d-galactoside); with enzyme I this is competitive and is caused by the galactosyl moiety. 4. Enzyme I is inhibited by oligosaccharides possessing terminal non-reducing galactose residues and to a smaller extent by l-arabinose and d-fucose. 5. The effect of pH on K(m) and V(max.) values suggests that carboxyl and imidazole groups are involved in the catalytic activity of enzyme I. 6. Photo-oxidation experiments with enzyme I also suggest that an imidazole group is present at the active site.  相似文献   

5.
-Galactosidase activity in Rhodothermus marinus is dependent on the composition of the growth media. A maximum of 46 U g–1 cell dry weight was obtained using minimal medium with galactooligo- or polysaccharides as single carbon source. An enzyme hydrolysing both high and low molecular weight galacto-saccharides was partly purified from the cell fractions. The molecular weight was 200 kDa (native) and 50 kDa (monomer). It was optimally active at 85°C, with a half-life of 2 h at 75°C, and had a broad pH range (4–8).  相似文献   

6.
Epimedin C, a major flavonoid extracted from Herba Epimedii, is a precursor of minor flavonoid icaritin that is a desired drug candidate with remarkable anti-cancer activities. For enhancing the biotransformation efficiency of icaritin, a novel α-l-rhamnosidase gene was cloned from hyperthermophiles Thermotoga petrophila DSM 13995. TpeRha displayed optimal activity at a pH of 4.5 and a temperature of 90 °C. The Km and Kcat of TpeRha for p-nitrophenyl-α-l-rhamnopyranoside were 2.99 mM and 651.73 s−1, respectively. It displayed broad catalytic ability in cleavage of the outer and inner rhamnopyranosyl moieties on the C-3 carbon of epimedin C. Further, this enzyme was utilized to improve the efficiency of the co-conversion system in transforming epimedin C into icaritin, in combined with a thermostable β-glucosidase Tpebgl1. In addition, a transformation pathway (epimedin C -icariin - icariside I - icaritin) with a high efficiency for icaritin production was screened. After a two-stage transformation under optimized conditions (90 °C, pH 4.5, 80 U/mL of TpeRha and 1.2 U/mL of Tpebgl1), 1 g/L of epimedin C was transformed into 0.4337 g/L of icaritin within 150 min, with a corresponding molar conversion rate of 96.9 %. This is the first report of enzymatic transformation on preparing icaritin from epimedin C by using thermostable glycosidase.  相似文献   

7.

Two genes (agal1 and agal2) encoding α-galactosidases were identified by sequence-based screening approaches. The gene agal1 was identified from a data set of a sequenced hot spring metagenome, and the deduced amino-acid sequence exhibited 99% identity to an α-galactosidase from the thermophilic bacterium Dictyoglomus thermophilum. The gene agal2 was identified from the whole genome sequence of the thermophile Meiothermus ruber. The amino-acid sequences exhibited structural motifs typical for glycoside hydrolase (GH) family 36 members and were also differentiated into different subgroups of this family. Recombinant production of the heat-active GH36b enzyme Agal1 (87 kDa) and GH36bt enzyme Agal2 (57 kDa) was carried out in E. coli. Agal1 exhibited a specific activity of 1502.3 U/mg at 80 °C, pH 6.5, and Agal2 225.4 U/mg at 60–70 °C, pH 6.5. Half-lives of 14 h (Agal1) and 39 h (Agal2) were obtained at 50 °C, and Agal1 showed half-lives of 4 and 2 h at 70 and 80 °C, respectively. In addition to the natural substrates melibiose, raffinose, and stachyose, 4NP α-d-galactopyranoside was hydrolyzed. Galactose was also liberated from locust bean gum. Both heat-active enzymes are attractive candidates for application in food and feed industry for high-temperature processes for the degradation of raffinose family oligosaccharides.

  相似文献   

8.
An alpha-L-arabinofuranosidase gene was identified in a sequenced genome of a novel thermophilic bacterium, which belongs to the recently described phylum of Thermomicrobia. Amino acid sequence comparison of the enzyme (designated AraF) revealed similarity to glycoside hydrolases of family 51. The gene was cloned into Escherichia coli and its recombinant product expressed and purified. The enzyme appeared to be a hexamer. AraF was optimally active at 70 degrees C (over 10 min) and pH 6 having 92% residual activity after 1 h at 70 degrees C. AraF had a Km) value of 0.6 mM and V(max) value of 122 U mg(-1) on p-nitrophenyl-alpha-L-arabinofuranoside. AraF was almost equally active on branched arabinan and debranched arabinan, properties not previously found in alpha-L-arabinofuranosidases in GH family 51.  相似文献   

9.
α‐L ‐arabinofuranosidases (EC 3.2.1.55) participate in the degradation of a variety of L ‐arabinose‐containing polysaccharides and interact synergistically with other hemicellulases in the production of oligosaccharides and bioconversion of lignocellulosic biomass into biofuels. In this work, the structure of a novel thermostable family 51 (GH51) α‐L ‐arabinofuranosidase from Thermotoga petrophila RKU‐1 (TpAraF) was determined at 3.1 Å resolution. The TpAraF tertiary structure consists of an (α/β)‐barrel catalytic core associated with a C‐terminal β‐sandwich domain, which is stabilized by hydrophobic contacts. In contrast to other structurally characterized GH51 AraFs, the accessory domain of TpAraF is intimately linked to the active site by a long β‐hairpin motif, which modifies the catalytic cavity in shape and volume. Sequence and structural analyses indicate that this motif is unique to Thermotoga AraFs. Small angle X‐ray scattering investigation showed that TpAraF assembles as a hexamer in solution and is preserved at the optimum catalytic temperature, 65°C, suggesting functional significance. Crystal packing analysis shows that the biological hexamer encompasses a dimer of trimers and the multiple oligomeric interfaces are predominantly fashioned by polar and electrostatic contacts.  相似文献   

10.
The purification and characterization of an extracellular α-l-arabinofuranosidase (α-l-AFase) from Chaetomium sp. was investigated in this report. The α-l-AFase was purified to homogeneity with a purification fold of 1030. The purified α-l-AFase had a specific activity of 20.6 U mg?1. The molecular mass of the enzyme was estimated to be 52.9 kDa and 51.6 kDa by SDS–PAGE and gel filtration, respectively. The optimal pH and temperature of the enzyme were pH 5.0 and 70 °C, respectively. The enzyme was stable over a broad pH range of 4.0–10.0 and also exhibited excellent thermostability, i.e., the residual activities reached 75% after treatment at 60 °C for 1 h. The enzyme showed strict substrate specificity for the α-l-arabinofuranosyl linkage. The Km and Vmax values for p-nitrophenyl (pNP)-α-l-arabinofuranoside were calculated to be 1.43 mM and 68.3 μmol min?1 mg?1 protein, respectively. Furthermore, the gene encoding α-l-AFase was cloned and sequenced and found to contain a catalytic domain belonging to the glycoside hydrolase (GH) family 43 α-l-AFase. The deduced amino acid sequence of the gene showed the highest identity (67%) to the putative α-l-AFase from Neurospora crassa. This is the first report on the purification, characterization and gene sequence of an α-l-AFase from Chaetomium sp.  相似文献   

11.
Bacillus stearothermophilus L1 was isolated by enrichment culture using an alkaline extract of pulp as the carbon source at 65°C and pH 9.0. The bacterium produced extracellular xylanase and -l-arabinofuranosidase (EC 3.2.1.55). The xylanase activity was high when the cells were grown in the presence of d-xylose, whereas the arabinofuranosidase activity was high when grown in media containing l-arabinose. The arabinofuranosidase was purified 59-fold with an 80% yield by DEAE Sephacel and Sephadex G-100 chromatography. The purified enzyme had an apparent molecular mass of 110 000 kDa and consisted of two subunits of 52 500 kDa and 57 500 kDa. Using p-nitrophenyl--l-arabinofuranosidase as the substrate, the enzyme had a Michaelis constant (K m) of 2.2 × 10–4 m, maximum reaction velocity (Vmax) of 11o mol min–1 mg–1, temperature optimum of 70°C and pH optimum of 7.0 (50% activity at pH 8.0). The enzyme was specific for the furanoside configuration. The purified enzyme partially delignified softwood Kraft pulp. Treatment of the pulp with 38 units ml–1 of -l-arabinofuranosidase at 65°C for 2 h at pH 8.0 and 9.0 led to lignin releases of 2.3% and 2.1%, respectively. The enzyme acted synergistically with a thermophilic xylanase in the delignification process, yielding a 19.2% release of lignin. Correspondence to: Eugene Rosenberg  相似文献   

12.
Two neutral β-galactosidase isozymes were purified from human liver. The initial step of purification was removal of the acidic β-galactosidases by adsorption on concanavalin A-Sepharose 4B conjugate. Subsequent purification steps included ammonium sulfate precipitation, diethylaminoethyl cellulose column chromatography, Sephadex G-100 gel filtration, and preparative polyacrylamide-gel isoelectric focusing. The final step of purification was affinity chromatography of the separated isoelectric forms on ?-aminocaproyl-β-d-galactosylamine-Sepharose 4B conjugate. The purified β-galactosidase isozymes had activity toward both β-d-galactoside and β-d-glucoside derivatives of 4-methylumbelliferone and p-nitrophenol with a pH optimum around 6.2. These enzyme forms were also found to possess lactosylceramidase II activity with a pH optimum in the range of 5.4 to 5.6, but not lactosylceramidase I activity and no activity toward galactosylceramide or GM1-ganglioside. The molecular weight was found to be in the range of 37,500–39,500 for the two neutral isozymes and they had similar Km and V values; the more acidic form (designated β-galactosidase N1) was more heat stable than the other form (designated β-galactosidase N2). Antibodies evoked against the N1 and N2 β-galactosidases gave identical precipitin lines retaining enzymatic activity. No cross-reactivity was observed between the neutral and the acidic isozymes when examined with the respective antisera.  相似文献   

13.
Two alpha-galactosidases were purified to homogeneity from the enzymatic complex of the mycelial fungus Penicillium canescens using chromatography on different sorbents. Substrate specificity, pH- and temperature optima of activity, stability under different pH and temperature conditions, and the influence of effectors on the catalytic properties of both enzymes were investigated. Genes aglA and aglC encoding alpha-galactosidases from P. canescens were isolated, and amino acid sequences of the proteins were predicted. In vitro feed testing (with soybean meal and soybean byproducts enriched with galactooligosaccharides as substrates) demonstrated that both alpha-galactosidases from P. canescens could be successfully used as feed additives. alpha-Galactosidase A belonging to the 27th glycosyl hydrolase family hydrolyzed galactopolysaccharides (galactomannans) and alpha-galactosidase C belonging to the 36th glycosyl hydrolase family hydrolyzed galactooligosaccharides (stachyose, raffinose, etc.) of soybean with good efficiency, thus improving the digestibility of fodder.  相似文献   

14.
15.
16.
A gene encoding acidic, thermostable and raw starch hydrolysing α-amylase was cloned from an extreme thermophile Geobacillus thermoleovorans and expressed. The ORF of 1650 bp encodes a 515 amino acid protein (Gt-amy) with a signal peptide of 34 amino acids at the N-terminus. Seven conserved sequences of GH-13 family have been found in its sequence. The specific enzyme activity of recombinant Gt-amy is 1723 U mg−1 protein with a molecular mass of 59 kDa. It is optimally active at pH 5.0 and 80 °C with t1/2 values of 283, 184 and 56 min at 70, 80 and 90 °C, respectively. The activation energy required for its temperature deactivation is 84.96 kJ mol−1. Ca2+ strongly inhibits Gt-amy at 10 mM concentration, and inhibition kinetics with Ca2+ reveals that inhibition occurs as a result of binding to a lower affinity secondary Ca2+ binding site in the active centre in a mixed-type inhibition manner. The Km and kcat of the Gt-amy are 0.315 mg mL−1 and 2.62 × 103 s−1, respectively. Gt-amy is Ca2+-independent at the concentration used in industrial starch saccharification, and hydrolyses raw corn and wheat starches efficiently, and thus, is applicable in starch saccharification at the industrial sub-gelatinization temperatures.  相似文献   

17.
Ap-nitrophenyl--d-maltoside-hydrolyzing -glucosidase was purified and characterized from aBacillus subtilis high-temperature growth transformant (H-17), previously generated by transformation ofBacillus subtilis 25S withBacillus caldolyticus C2 DNA. The enzyme showed endo-oligo-1,4-glucosidase activity owing to its hydrolysis of linear malto-oligosaccharides to maltose and glucose, and pullulan hydrolase activity owing to its hydrolysis of pullulan to glucose, maltose, and (iso)panose. The enzyme was inactive againstp-nitrophenyl--d-glucopyranoside, maltose, isomaltose, isomaltotriose, and panose, but slightly hydrolyzed starch. The native structure of the enzyme is a dimer composed of two identical subunits of Mr 55,000. The enzyme had a pI of 4.8, pH optimum of 7.5, was 80% inhibited by 5 mM Tris-HCl, and had a Km value of 1.46 mM for the chromogenic substratep-nitrophenyl--d-maltoside. The enzyme showed optimal activity between 65° and 68°C, and retained 100% of initial activity after incubation at 65°C for 1 h. A minimum concentration of 0.02% 2-mercaptoethanol or 0.005 mM EDTA was required for thermostability. These physiochemical characteristics are similar to those for the previously described corresponding enzyme fromB. subtilis 25S, except that the same enzyme from the transformed strain was thermolabile. Amino acid analysis showed higher levels of alanine, glycine, and proline residues in the H-17 enzyme, compared with 25S. This may account for the enhanced thermostability, owing to increased internal hydrophobicity.Florida Agricultural Experiment Station Journal Series No. R-01123.  相似文献   

18.
Summary A novel thermostable pullulanase, secreted by the thermophilic anaerobic bacterium Clostridium thermosulfurogenes EM1, was purified and characterized. Applying anion exchange chromatography and gel filtration the enzyme was purified 47-fold and had a specific activity of 200 units/mg. The molecular mass of this thermostable enzyme was determined to be 102 000 daltons and consisted of a single subunit. The enzyme was able to attack specifically the -1,6-glycosidic linkages in pullulan and caused its complete hydrolysis to maltotriose. Surprisingly and unlike the enzyme from Klebsiella pneumoniae, the purified enzyme from this anaerobic thermophile exhibited, in addition to its debranching and pullulanase activity, an -1,4 hydrolysing activity as well. By the action of this single polypeptide chain various branched and linear polysaccharides were completely converted to two major products, namely maltose and maltotriose. The K m values of this enzyme for pullulan and amylose were determined to be 1.33 mg/ml and 0.38 mg/ml, respectively. This debranching enzyme displays a temperature optimum at 60°–65° C and a pH optimum at 5.5–6.0. The application of this new class of pullulanase (pullulanase type II) in industry will significantly enhance the starch saccharification process. Offprint requests to: G. Antranikian  相似文献   

19.
A novel endo-β-1,4-glucanase (EG)-producing strain was isolated and identified as Penicillium purpurogenum KJS506 based on its morphology and internal transcribed spacer (ITS) rDNA gene sequence. P. purpurogenum produced one of the highest levels of EG (5.6 U mg-protein?1) with rice straw and corn steep powder as carbon and nitrogen sources, respectively. The extracellular EG was purified to homogeneity by sequential chromatography of P. purpurogenum culture supernatants on a DEAE sepharose column, a gel filtration column, and then on a Mono Q column with fast protein liquid chromatography. The purified EG was a monomeric protein with a molecular weight of 37 kDa and showed broad substrate specificity with maximum activity towards lichenan. P. purpurogenum EG showed t1/2 value of 2 h at 70 °C and catalytic efficiency of 118 ml mg?1 s?1, one of the highest levels seen for EG-producing microorganisms. Although EGs have been reported elsewhere, the high catalytic efficiency and thermostability distinguish P. purpurogenum EG.  相似文献   

20.
Yi SH  Alli I  Park KH  Lee B 《New biotechnology》2011,28(6):806-813
After the complete gene of a β-galactosidase from human isolate Bifidobacterium breve B24 was isolated by PCR and overexpressed in E. coli, the recombinant β-galactosidase was purified to homogeneity and characterized for the glycoside transferase (GT) and glycoside hydrolase (GH) activities on lactose. One complete ORF encoding 691 amino acids (2,076 bp) was the structural gene, LacA (galA) of the β-gal gene. The recombinant enzyme shown by activity staining and gel-filtration chromatography was composed of a homodimer of 75 kDa with a total molecular mass of 150 kDa. The K(m) value for lactose (95.58 mM) was 52.5-fold higher than the corresponding K(m) values for the synthetic substrate ONPG (1.82 mM). This enzyme with the optimum of pH 7.0 and 45°C could synthesize approximately 42.00% of GOS from 1M of lactose. About 97.00% of lactose in milk was also quickly hydrolyzed by this enzyme (50 units) at 45°C for 5h to produce 46.30% of glucose, 46.60% of galactose and 7.10% of GOS. The results suggest that this recombinant β-galactosidase derived from a human isolate B. breve B24 may be suitable for both the hydrolysis and synthesis of galacto-oligosaccharides (GOS) in milk and lactose processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号