首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protein extract containing ficin was immobilized on glyoxyl agarose at pH 10 and 25 °C. The free enzyme remained fully active after 24 h at pH 10. However the enzyme immobilized on the support retained only 30% of the activity after this time using a small substrate. After checking the stability of ficin preparations obtained after different enzyme-support multi-interaction times, it was found that it reached a maximum at 3 h (40-folds more stable than the free enzyme at pH 5). The immobilized enzyme was active in a wide range of pH (e.g., retained double activity at pH 10 than the free enzyme) and temperatures (e.g., at 80 °C retained three-folds more activity than the free enzyme). The activity versus casein almost matched the results using the small substrate (60%) at 55 °C. However, in the presence of 2 M of urea, it became three times more active than the free enzyme. The immobilized enzyme could be reused five cycles at 55 °C without losing activity.  相似文献   

2.
A method is described for covalent immobilization of uricase onto polyethylene terephthalate (PET) membrane with a conjugation yield of 4.44 μg/cm2 and 66.6% retention of initial activity of free enzyme. The enzyme exhibited an increase in optimum pH from pH 7.0 to 8.5 and Km for uric acid from 0.075 mM to 0.13 mM but slight decrease in temp. for maximum activity from 37 °C to 35 °C after immobilization. A colorimetric method for determination of serum uric acid was developed using immobilized uricase, which is based on measurement of H2O2 by a color reaction consisting of 3,5-dichlorobenzene sulphonic acid (DHBS), 4-aminoantipyrine and peroxidase as chromogenic system. Minimum detection limit of the method was 0.05 mM. Analytical recovery of added uric acid (5 mg/dl and 10 mg/dl) was 94.3% and 89.8%, respectively. Within and between batch coefficient of variation (CV) were <3.2% and <4.3%, respectively. A good correlation (r = 0.98) was found between uric acid values by standard enzymic colorimetric method and the present method. The immobilized uricase was reused 100 times during the span of 60 days without any considerable loss of activity, when stored in reaction buffer at 4 °C. The support chosen for the present study was biocompatible, antimicrobial, inert, impact resistant, light weight and had good shelf life.  相似文献   

3.
Hydrophobic silica aerogels modified with methyl group were applied as support to immobilize Candida rugosa lipase (CRL). At the adsorption process, different alcohols were used to intensify the immobilization of CRL. The results showed that n-butanol wetting the hydrophobic support prior to contacting with enzyme solution could promote lipase activity, but the adsorption quantity onto the support decreased. Based on this, a novel immobilization method was proposed: the support contacted with enzyme solution without any alcohols, and then the immobilized enzymes were activated by 90% (V) n-butanol solution. The experimental results showed that this method could keep high adsorption quantity (413.0 mg protein/g support) and increase the lipase specific activity by more than 50%. To improve the stability of immobilized lipase, the support after adsorption was contacted with n-octane to form an oil layer covering the immobilized lipases, thus the leakage can be decreased from over 30–4% within 24 h. By utilizing proper cosolvents, a high enzyme activity and loading capacity as well as little loss of lipase was achieved without covalent linkage between the lipase and the support. This is known to be an excellent result for immobilization achieved by physical adsorption only.  相似文献   

4.
《Process Biochemistry》2014,49(4):637-646
In this study, Purolite® A109, polystyrenic macroporous resin, was used as immobilization support due to its good mechanical properties and high particle diameter (400 μm), which enables efficient application in enzyme reactors due to lower pressure drops. The surface of support had been modified with epichlorhydrine and was tested in lipase immobilization. Optimized procedure for support modification proved to be more efficient than conventional procedure for hydroxy groups (at 22 °C for 18 h), since duration of procedure was shortened to 40 min by performing modification at 52 °C resulting with almost doubled concentration of epoxy groups (563 μmol g−1). Lipase immobilized on epoxy-modified support showed significantly improved thermal stability comparing to both, free form and commercial immobilized preparation (Novozym® 435). The highest activity (47.5 IU g−1) and thermal stability (2.5 times higher half-life than at low ionic strength) were obtained with lipase immobilized in high ionic strength. Thermal stability of immobilized lipase was further improved by blocking unreacted epoxy groups on supports surface with amino acids. The most efficient was treatment with phenylalanine, since in such a way blocked immobilized enzyme retained 65% of initial activity after 8 h incubation at 65 °C, while non-blocked derivative retained 12%.  相似文献   

5.
A non-modified and modified with NaOH and ethylenediamine ultrafiltration membranes prepared from AN copolymer have been used as carriers for the immobilization of horseradish peroxidase (HRP) enzyme. The amount of bound protein onto the membranes and the activity of the immobilized enzyme have been investigated as well as the pH and thermal optimum, and the thermal stability of the free and immobilized HRP. The experiments have proved that the modified membrane is a better support for the immobilization of HRP enzyme. The latter has shown a greater thermal stability than the free enzyme.A possible application has been studied for reducing phenol concentration in water solutions through oxidation of phenol by hydrogen peroxide, in the presence of free and immobilized HRP enzyme on modified AN copolymer membranes. A higher degree of the phenol oxidation has been observed in the presence of the immobilized enzyme. A total removal of phenol has been achieved in the presence of immobilized HRP at concentration of the hydrogen peroxide 0.5 mmol L?1 and concentration of the phenol in the model solutions within the interval 5–40 mg L?1. A high degree of phenol oxidation (95.4%) has been achieved in phenol solution with 100 mg L?1 concentration in the presence of hydrogen peroxide and immobilized HRP, which demonstrates the promising opportunity of using the enzyme for bioremediation of waste waters, containing phenol.The immobilized HRP has shown good operational stability. Deactivation of the immobilized enzyme to 50% of the initial activity has been observed after the 20th day of the enzyme operation.  相似文献   

6.
An endoxylanase from Streptomyces halstedii was stabilized by multipoint covalent immobilization on glyoxyl-agarose supports. The immobilized enzyme derivatives preserved 65% of the catalytic activity corresponding to the one of soluble enzyme that had been immobilized. These immobilized derivatives were 200 times more stable 200 times more stable than the one-point covalently immobilized derivative in experiments involving thermal inactivation at 60 °C. The activity and stability of the immobilized enzyme was higher at pH 5.0 than at pH 7.0. The optimal temperature for xylan hydrolysis was 10 °C higher for the stabilized derivative than for the non-stabilized derivative. On the other hand, the highest loading capacity of activated 10% agarose gels was 75 mg of enzyme per mL of support. To prevent diffusional limitations, low loaded derivatives (containing 0.2 mg of enzyme per mL of support) were used to study the hydrolysis of xylan at high concentration (close to 1% (w/v)). 80% of the reducing sugars were released after 3 h at 55 °C. After 80% of enzymatic hydrolysis, a mixture of small xylo-oligosaccharides was obtained (from xylobiose to xylohexose) with a high percentage of xylobiose and minimal amounts of xylose. The immobilized-stabilized derivatives were used for 10 reaction cycles with no loss of catalytic activity.  相似文献   

7.
Industrial application of α-galactosidase requires efficient methods to immobilize the enzyme, yielding a biocatalyst with high activity and stability compared to free enzyme. An α-galactosidase from tomato fruit was immobilized on galactose-containing polymeric beads. The immobilized enzyme exhibited an activity of 0.62 U/g of support and activity yield of 46%. The optimum pH and temperature for the activity of both free and immobilized enzymes were found as pH 4.0 and 37 °C, respectively. Immobilized α-galactosidase was more stable than free enzyme in the range of pH 4.0–6.0 and more than 85% of the initial activity was recovered. The decrease in reaction rate of the immobilized enzyme at temperatures above 37 °C was much slower than that of the free counterpart. The immobilized enzyme shows 53% activity at 60 °C while free enzyme decreases 33% at the same temperature. The immobilized enzyme retained 50% of its initial activity after 17 cycles of reuse at 37 °C. Under same storage conditions, the free enzyme lost about 71% of its initial activity over a period of 7 months, whereas the immobilized enzyme lost about only 47% of its initial activity over the same period. Operational stability of the immobilized enzyme was also studied and the operational half-life (t1/2 was determined as 6.72 h for p-nitrophenyl α-d-galactopyranoside (PNPG) as substrate. The kinetic parameters were determined by using PNPG as substrate. The Km and Vmax values were measured as 1.07 mM and 0.01 U/mg for free enzyme and 0.89 mM and 0.1 U/mg for immobilized enzyme, respectively. The synthesis of the galactose-containing polymeric beads and the enzyme immobilization procedure are very simple and also easy to carry out.  相似文献   

8.
In this work, an active phytase concentrated extract from soybean sprout was immobilized on a polymethacrylate-based polymer Sepabead EC-EP which is activated with epoxy groups. The immobilized enzyme exhibited an activity of 0.1 U/g of carrier and activity yield of 64.7%. The optimum temperature and pH for the activity of both free and immobilized enzymes were found as 60 °C and pH 5.0, respectively. The immobilized enzyme was more stable than free enzyme in the range of pH 3.0–8.0 and more than 70% of the original activity was recovered. Both the enzymes completely retained nearly about 84% of their original activity at 65 °C. The Km and Vmax values were measured as 5 mM and 0.63 U/mg for free enzyme and 12.5 mM and 0.71 U/mg for immobilized enzyme, respectively. Free and immobilized soybean sprout phytase enzymes were also used in the biodegradation of soymilk phytate. The immobilized enzyme hydrolysed 92.5% of soymilk phytate in 7 h at 60 °C, as compared with 98% hydrolysis observed for the native enzyme over the same period of time. The immobilization procedure on Sepabead EC-EP is very cheap and also easy to carry out, and the features of the immobilized enzyme are very attractive that the potential for practical application is considerable.  相似文献   

9.
The hydrolysis of phenolic compounds using an immobilized and highly active and stable derivative of laccase from Trametes versicolor is presented. The enzyme was immobilized on aldehyde supports. For this, the enzyme was enriched in amino groups by chemical modification of its carboxyl groups. The aminated enzyme was immobilized with a high recovered activity (over 60%). Aldehyde derivatives were more stable than soluble or aminated-soluble enzyme and the reference derivatives after incubation in different inactivating conditions (high temperatures, different pH values or presence of organic cosolvents). The most stable derivative was obtained immobilizing the chemically aminated enzyme at pH 10 on aldehyde supports with a stabilization factor approximately 280 fold after incubation at pH 7 and 55 °C. In addition, it was possible to prepare immobilized derivatives with a maximal enzyme loading of 60 mg g?1 of support. This derivative could be reused for 10 reaction cycles with negligible lost of activity.  相似文献   

10.
We have analyzed the effects of the buffer nature on the stability of immobilized lipases. Commercial phospholipase Lecitase Ultra (LU), lipase B from Candida antarctica (CALB) and lipase from Thermomyces lanuginosus (TLL) have been immobilized on octyl-glyoxyl agarose beads. The enzymes were readily inactivated using 4 M sodium phosphate but 6 M NaCl did not inactivate them. Using 2 M of sodium phosphate, the inactivation of the 3 immobilized enzymes still was very significant even at 25 °C but at lower rate than with higher phosphate concentration. Thermal stress inactivations of the immobilized enzymes revealed that even 100 mM sodium phosphate produced a significant decrease in enzyme stability; this effect was less pronounced for Lecitase but dramatic for CALB. While 6 M NaCl presented slightly positive (LU) or negative (TLL) effects on their thermal stabilities of, CALB was thermally stabilized under the same conditions. Results were very different using free enymes. Fluorescence spectroscopy revealed dramatic structural rearrangements of the immobilized enzymes in the presence of high phosphate concentration. From these results, the use of sodium phosphate does not seem to be recommended for studies on thermal stability of lipases, although this should be verified for each enzyme and immobilized preparation.  相似文献   

11.
Enzyme immobilization on magnetic nanoparticles (MNPs) has been a field of intense studies in biotechnology during the past decade. The present study suggests MNPs negatively charged by docusate sodium salt (AOT) as a support for pectinase immobilization. AOT is a biocompatible anionic surfactant which can stabilize MNPs. Electrostatic adsorption can occur between enzyme with positive charge and oppositely charged surface of MNPs (ca. 100 nm). The effect of three factors, i.e. initial enzyme concentration, aqueous pH and AOT concentration in different levels was investigated on pectinase immobilization. Maximum specific activity (1.98 U/mg enzyme) of immobilized pectinase and maximum enzyme loading of 610.5 mg enzyme/g support was attained through the experiments. Initial enzyme concentration is significantly important on both loading and activity of immobilized enzyme, while pH and AOT concentration only affect the amount of immobilized enzyme. Immobilized enzyme on MNPs was recovered easily through magnetic separation. At near pH of immobilization, protein leakage in reusability of immobilized enzyme was low and activity loss was only 10–20% after six cycles. Since pH is associated with immobilization by electrostatic adsorption, the medium pH was changed to improve the release of protein from the support, as well. MNPs properties were investigated using Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FT-IR) spectroscopy, and Dynamic Light Scattering (DLS) analysis.  相似文献   

12.
In this study, polyurethane foam (PUF) was used for immobilization of Yarrowia lipolytica lipase Lip2 via polyethyleneimine (PEI) coating and glutaraldehyde (GA) coupling. The activity of immobilized lipases was found to depend upon the size of the PEI polymers and the way of GA treatment, with best results obtained for covalent-bind enzyme on glutaraldehyde activated PEI-PUF (MW 70,000 Da), which was 1.7 time greater activity compared to the same enzyme immobilized without PEI and GA. Kinetic analysis shows the hydrolytic activity of both free and immobilized lipases on triolein substrate can be described by Michaelis–Menten model. The Km for the immobilized and free lipases on PEI-coated PUF was 58.9 and 9.73 mM, respectively. The Vmax values of free and immobilized enzymes on PEI-coated PUF were calculated as 102 and 48.6 U/mg enzyme, respectively. Thermal stability for the immobilization preparations was enhanced compared with that for free preparations. At 50 °C, the free enzyme lost most of its initial activity after a 30 min of heat treatment, while the immobilized enzymes showed significant resistance to thermal inactivation (retaining about 70% of its initial activity). Finally, the immobilized lipase was used for the production of lauryl laurate in hexane medium. Lipase immobilization on the PEI support exhibited a significantly improved operational stability in esterification system. After re-use in 30 successive batches, a high ester yield (88%) was maintained. These results indicate that PEI, a polymeric bed, could not only bridge support and immobilized enzymes but also create a favorable micro-environment for lipase. This study provides a simple, efficient protocol for the immobilization of Y. lipolytica lipase Lip2 using PUF as a cheap and effective material.  相似文献   

13.
Objective of this study is to realize appropriate enzyme immobilization onto a suitable support material and to develop a model which enables reactions catalyzed with different enzymes arranged in order. Thence, this model was potential for developing a multi-enzyme system. The reactions need more than one enzyme can be realized using immobilized form of them and the enzymes will be in one support at wanted activities. In this study, sodium alginate was used as immobilization material and glycidyl methacrylate was grafted onto sodium alginate. Thus reactive epoxy groups were added to sodium alginate which also has carboxyl groups. Average molecular weight of sodium alginate was determined using Ubbelohde viscosimetri. The molecular mass of sodium alginate was calculated as 15,900 Da. Graft polymerization was made in two steps. Firstly, sodium alginate was activated with benzophenone using UV-light at 254 nm. Secondly, glycidyl methacrylate was grafted under UV-light at 365 nm onto activated sodium alginate. Grafted glycidyl methacrylate was determined gravimetric and titrimetric. Additional groups after grafting were showed with FT-IR spectrum. 1-Ethyl-3-(3-dimetylaminopropyl)-carbodiimide was used for immobilization urease from carboxyl groups at pH 5.0. Suitable 1-ethyl-3-(3-dimetylaminopropyl)-carbodiimide/–COOH ratio was found 1/10 and immobilized product activity was 197 U/g support. Reaction medium pH was 8.0 for immobilization from epoxy group. Optimum immobilization reaction time was found as 2 h and immobilized product activity was 285 U/g support. Sequential immobilization of urease to glycidyl methacrylate grafted sodium alginate was made from –COOH and epoxy groups, respectively.  相似文献   

14.
A turbine blade reactor (TBR) was employed to cultivate rice calli immobilized in polyurethane foam as a support. In the bioreactor, rice callus could be immobilized quickly in a 3 mm cube of the support, and then attached to the stainless mesh cylinder set at the center of the bioreactor. For improving the immobilization ratio of rice callus in the bioreactor, the optimum support volume and bioreactor operation and modification were investigated. The support volume had a pronounced effect on the immobilization ratio of rice callus, and the maximum volume was found to be 60 ml. By repeating a periodic operation three times (agitating at 300 rpm for 5 min and then 50 rpm for 2 min, and then 200 rpm of constant agitation speed during the remaining time), rice calli were uniformly entrapped in almost all supports and the immobilization ratio was improved as compared with that using a constant bioreactor operation at 200 rpm. When the inoculum concentration of rice callus was increased, the callus concentration after 7-day culture increased, but the immobilization ratio decreased. To improve the immobilization efficiency further at high cell concentration, the TBR was modified by setting an air sparger inside the stainless mesh cylinder. In the modified TBR, floating of the support by attached air bubbles was avoided, and the immobilization ratio increased further and reached 86.3% when we increased the support volume to 90 ml under the periodic bioreactor operation on a daily basis. The regeneration frequency of immobilized callus was increased by periodic operation and modification of the bioreactor.  相似文献   

15.
A novel method was developed for the immobilization of glucoamylase from Aspergillus niger. The enzyme was immobilized onto polyglutaraldehyde-activated gelatin particles in the presence of polyethylene glycol and soluble gelatin, resulting in 85% immobilization yield. The immobilized enzyme has been fully active for 30 days. In addition, the immobilized enzyme retained 90 and 75% of its activity in 60 and 90 days, respectively. The enzyme optimum conditions were not affected by immobilization and the optimum pH and temperature for free and immobilized enzyme were 4 and 65 °C, respectively. The kinetic parameters for the hydrolysis of maltodextrin by free and immobilized glucoamylase were also determined. The Km values for free and immobilized enzyme were 7.5 and 10.1 g maltodextrin/l, respectively. The Vmax values for free and immobilized enzyme were estimated as 20 and 16 μmol glucose/(min μl enzyme), respectively. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes.  相似文献   

16.
《Process Biochemistry》2014,49(8):1332-1336
Keratinase from Purpureocillium lilacinum LPSC # 876 was immobilized on chitosan beads using two different cross-linking agents: glutaraldehyde and genipin. For its immobilization certain parameters were optimized such as cross-linker concentration, activation time and activation temperature. Under optimum conditions, enzyme immobilization resulted to be 96 and 92.8% for glutaraldehyde and genipin, respectively, with an activity recovery reaching up to 81% when genipin was used. The immobilized keratinase showed better thermal and pH stabilities compared to the soluble form, retaining more than 85% of its activity at pH 11 and 74% at 50 °C after 1 h of incubation. The residual activity of immobilized keratinase remained more than 60% of its initial value after five hydrolytic cycles. The results in this study support that glutaraldehyde could be replaced by genipin as an alternative cross-linking eco-friendly agent for enzyme immobilization.  相似文献   

17.
This work is aimed to immobilize partially purified horseradish peroxidase (HRP) on wool activated by multifunctional reactive center, namely cyanuric chloride. The effect of cyanuric chloride concentration, pH and enzyme concentration on immobilization of HRP was studied. FT-IR and SEM analyses were detected for wool, activated wool and immobilized wool-HRP. The wool-HRP, prepared at 2% (w/v) cyanuric chloride and pH 5.0, retained 50% of initial activity after seven reuses. The wool-HRP showed broad optimum pH at 7.0 and 8.0, which was higher than that of the soluble HRP (pH 6.0). The soluble HRP had an optimum temperature of 30 °C, which was shifted to 40 °C for immobilized enzyme. The soluble and wool-HRP were stable up to 30 and 40 °C after incubation for 1 h, respectively. The apparent kinetic constant values (Kms) of wool-HRP were 10 mM for guiacol and 2.5 mM for H2O2, which were higher than that of soluble HRP. The wool-HRP was remarkably more stable against proteolysis mediated by trypsin. The wool-HRP exhibited more resistance to heavy metal induced inhibition. The wool-HRP was more stable to the denaturation induced by urea, Triton X-100, isopropanol, butanol and dioxan. The wool-HRP was found to be the most stable under storage. In conclusion, the wool-HRP could be more suitable for several industrial and environmental purposes.  相似文献   

18.
A highly active and stable derivate of immobilized Bacillus circulans β-galactosidase was prepared for the synthesis of galacto-oligosaccharides (GOS) under repeated-batch operation. B. circulans β-galactosidase was immobilized on monofunctional glyoxyl agarose and three heterofunctional supports: amino-, carboxy-, and chelate-glyoxyl agarose. Glyoxyl agarose was the support with highest immobilization yield and stability being selected for the optimization of immobilization conditions and application in GOS synthesis. A central composite rotatable design was conducted to optimize contacted protein and immobilization time, using maximum catalytic potential as the objective function. Optimal conditions of immobilization were 28.9 mg/g and 36.4 h of contact, resulting in a biocatalyst with 595 IU/g and a half-life 89-fold higher than soluble enzyme. Immobilization process did not alter the synthetic capacity of β-galactosidase, obtaining the same GOS yield and product profile than the free enzyme. GOS yield and productivity remained unchanged along 10 repeated batches, with values of 39% (w/w) and 5.7 g GOS/g of biocatalyst·batch. Total product obtained after 10 batches of reaction was 56.5 g GOS/g of biocatalyst (1956 g GOS/g protein). Cumulative productivity in terms of mass of contacted protein was higher for the immobilized enzyme than for its soluble counterpart from the second batch of synthesis onwards.  相似文献   

19.
《Process Biochemistry》2004,39(11):1347-1361
The aim of this investigation was to obtain an efficiently immobilized intracellular lipase from Rhizomucor miehei and Yarrowia lipolytica. The activity of intracellular lipases from R. miehei and Y. lipolytica was enhanced by the addition of waste fats (beef tallow or poultry fat) to the medium and by cell immobilization on biomass support particles (BSPs, cubic particle of polypropylene or polyurethane foams). The highest intracellular activity of lipases was obtained after adding 20 and 50 BSPs to the medium of R. miehei (130.5 U) and Y. lipolytica (90.3 U), respectively. The best carrier for immobilizing intracellular lipases was polyurethane foam and the lipolytic activity of immobilized lipases was 2.1–4.3-times higher than the activity of lipases obtained from free biomass. The properties of the immobilized enzymes were very similar to the free enzymes but the immobilized intracellular lipases were more useful for the hydrolysis of waste fats. The highest reaction ratio (72%) and content of free fatty acids (68% (w/w)) in the reaction mixture was obtained after 72 h for beef tallow hydrolysis in a batch reaction with the immobilized lipases from R. miehei.  相似文献   

20.
For the quantitative evaluation of low levels of an estriol metabolite of estriol (estriol-16-glucuronide (E3-16G)) in liquid media, we developed a simple and highly sensitive immunoassay using a surface plasmon resonance (SPR) biosensor which did not require any time-consuming sample pretreatment steps. E3-16G was conjugated to ovalbumin (OVA) through an oligoethylene glycol (OEG) linker to form protein conjugates (E3-16G-OEG-OVA), which were then immobilized on a carboxymethyl dextran-coated sensor chip via amine coupling to develop inhibition immunoassays. A limit of detection (LOD) of 76 pg/mL was achieved using a rabbit anti-sheep primary antibody as a binding agent. The detection limit was further improved by using synthesized gold colloids (15 nm) as high mass labels conjugated to the primary antibody. In this Au nanoparticle-enhanced assay, the concentration of E3-16G in aqueous samples could be determined in 7.5 min at a level as low as 14 pg/mL. In addition, the high stability of the E3-16G-OEG-OVA surface gave no obvious drop in antibody-binding capability after more than 1000 binding/regeneration cycles which significantly lowered the research cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号