首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Ces1g/Es-x deficiency in mice results in weight gain, insulin resistance, fatty liver and hyperlipidemia through upregulation of de novo lipogenesis and oversecretion of triacylglycerol (TG)-rich lipoproteins. Here, we show that restoration of Ces1g/Es-x expression only in the liver significantly reduced hepatic TG concentration accompanied by decreased size of lipid droplets, reduced secretion of very low-density lipoproteins and improved insulin-mediated signal transduction in the liver. Collectively, these results demonstrate that hepatic Ces1g/Es-x plays a critical role in limiting hepatic steatosis, very low-density lipoprotein assembly and in augmenting insulin sensitivity.  相似文献   

2.
The assembly of very low density lipoproteins involves the formation of a primordial, poorly lipidated apoB-containing particle in the endoplasmic reticulum, followed by the addition of neutral lipid from luminal lipid droplets (LLD). However, the lipid and protein compositions of LLD have not been determined. We have isolated LLD from mouse liver microsomes and analyzed their lipid and protein compositions. LLD are variably sized particles relatively poor in triacylglycerol (TG) content when compared with the lipid composition of cytosolic lipid droplets (CLD). They are devoid of apoB, adipophilin, and albumin but contain numerous proteins different from those found on CLD, including TG hydrolase (TGH), carboxylesterase 1 (Ces1), microsomal triglyceride transfer protein (MTP), and apoE. Ectopic expression of TGH in McArdle RH7777 hepatoma cells resulted in decreased cellular TG levels, demonstrating a role for TGH in the mobilization of hepatic neutral lipid stores. The isolation and characterization of LLD provide new supporting evidence for the two-step assembly of very low density lipoproteins.  相似文献   

3.
Elevated postprandial plasma triacylglycerol (TG) concentrations are commonly associated with obesity and the risk of cardiovascular disease. Dietary fat contributes to this condition through the production of chylomicrons. Carboxylesterases have been mainly studied for their role in drug metabolism, but recently they have been shown to participate in lipid metabolism; however, their role in intestinal lipid metabolism is unknown. Carboxylesterase1/esterase-x (Ces1/Es-x) deficient mice become obese, hyperlipidemic and develop hepatic steatosis even on standard chow diet. Here, we aimed to explore the role of Ces1/Es-x in intestinal lipid metabolism. Six-month old wild-type and Ces1/Es-x deficient mice were maintained on chow diet and intestinal lipid metabolism and plasma chylomicron clearance were analyzed. Along the intestine Ces1/Es-x protein is expressed only in proximal jejunum. Ablation of Ces1/Es-x expression results in postprandial hyperlipidemia due to increased secretion of chylomicrons. The secreted chylomicrons have aberrant protein composition, which results in their reduced clearance. In conclusion, Ces1/Es-x participates in the regulation of chylomicron assembly and secretion. Ces1/Es-x might act as a lipid sensor in enterocytes regulating chylomicron secretion rate. Ces1/Es-x might represent an attractive pharmacological target for the treatment of lipid abnormalities associated with obesity, insulin resistance and fatty liver disease.  相似文献   

4.
Apolipoprotein B (apoB)-containing lipoproteins play a critical role in whole body lipid homeostasis and the pathogenesis of atherosclerosis. The assembly of hepatic apoB-containing lipoproteins, VLDL, is governed by the availability of lipids, including triacylglycerol (TG). The majority of TG associated with VLDL is derived from the hepatic cytoplasmic lipid stores by a process involving lipolysis followed by reesterification. Microsomal triacylglycerol hydrolase (TGH) has been demonstrated to play a role in the lipolysis/reesterification process. To evaluate the potential regulatory role of TGH in hepatic VLDL assembly, we developed inducible transgenic mice expressing a human TGH minigene under the control of the mouse metallothionein promoter. Induction of human TGH by zinc resulted in liver-specific expression of the enzyme associated with 3- to 4-fold increases in lipolytic activity that could be attenuated with a TGH-specific inhibitor. Augmented TGH activity led to increased secretion of newly synthesized apoB and plasma TG levels. These results suggest that increased hepatic expression of TGH leads to a more proatherogenic plasma lipid and apoB profile.  相似文献   

5.
Hydrolysis of triglycerides is central to energy homeostasis in white adipose tissue (WAT). Hormone-sensitive lipase (HSL) was previously felt to mediate all lipolysis in WAT. Surprisingly, HSL-deficient mice show active HSL-independent lipolysis, suggesting that other lipase(s) also mediate triglyceride hydrolysis. To clarify this, we used functional proteomics to detect non-HSL lipase(s) in mouse WAT. After cell fractionation of intraabdominal WAT, most non-HSL neutral lipase activity is localized in the 100,000 x g infranatant and fat cake fractions. By oleic acid-linked agarose chromatography of infranatant followed by elution in a 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid gradient, we identified two peaks of esterase activity using p-nitrophenyl butyrate as a substrate. One of the peaks contained most of the lipase activity. In the corresponding fractions, gel permeation chromatography and SDS-PAGE, followed by tandem mass spectrometric analysis of excised Coomassie Blue-stained peptides, revealed carboxylesterase 3 (triacylglycerol hydrolase (TGH); EC 3.1.1.1). TGH is also the principle lipase of WAT fat cake extracts. Partially purified WAT TGH had lipase activity as well as lesser but detectable neutral cholesteryl ester hydrolase activity. Western blotting of subcellular fractions of WAT and confocal microscopy of fibroblasts following in vitro adipocytic differentiation are consistent with a distribution of TGH to endoplasmic reticulum, cytosol, and the lipid droplet. TGH is responsible for a major part of non-HSL lipase activity in WAT in vitro and may mediate some or all HSL-independent lipolysis in adipocytes.  相似文献   

6.
The majority of hepatic intracellular triacylglycerol (TG) is mobilized by lipolysis followed by reesterification to reassemble TG before incorporation into a very-low-density lipoprotein (VLDL) particle. Triacylglycerol hydrolase (TGH) is a lipase that hydrolyzes TG within hepatocytes. Immunogold electron microscopy in transfected cells revealed a disparate distribution of this enzyme within the endoplasmic reticulum (ER), with particularly intense localization in regions surrounding mitochondria. TGH is localized to the lumen of the ER by the C-terminal tetrapeptide sequence HIEL functioning as an ER retention signal. Deletion of HIEL resulted in secretion of catalytically active TGH. Mutation of HIEL to KDEL, which is the consensus ER retrieval sequence in animal cells, also resulted in ER retention and conservation of lipolytic activity. However, KDEL-TGH was not as efficient at mobilizing lipids for VLDL secretion and exhibited an altered distribution within the ER. TGH is a glycoprotein, but glycosylation is not required for catalytic activity. TGH does not hydrolyze apolipoprotein B-associated lipids. This suggests a mechanism for vectored movement of TGs onto developing VLDL in the ER as TGH may mobilize TG for VLDL assembly, but will not access this lipid once it is associated with VLDL.  相似文献   

7.
Triacylglycerol hydrolase (TGH) is an enzyme that catalyzes the lipolysis of intracellular stored triacylglycerol (TG). Peroxisomal proliferator-activated receptors (PPAR) regulate a multitude of genes involved in lipid homeostasis. Polyunsaturated fatty acids (PUFA) are PPAR ligands and fatty acids are produced via TGH activity, so we studied whether dietary fats and PPAR agonists could regulate TGH expression. In 3T3-L1 adipocytes, TGH expression was increased 10-fold upon differentiation, compared to pre-adipocytes. 3T3-L1 cells incubated with a PPARγ agonist during the differentiation process resulted in a 5-fold increase in TGH expression compared to control cells. Evidence for direct regulation of TGH expression by PPARγ could not be demonstrated as TGH expression was not affected by a 24-h incubation of mature 3T3-L1 adipocytes with the PPARγ agonist. Feeding mice diets enriched in fatty acids for 3 weeks did not affect hepatic TGH expression, though a 3-week diet enriched in fatty acids and cholesterol increased hepatic TGH expression 2-fold. Two weeks of clofibrate feeding did not significantly affect hepatic TGH expression or microsomal lipolytic activities in wild-type or PPARα-null mice, indicating that PPARα does not regulate hepatic TGH expression. Therefore, TGH expression does not appear to be directly regulated by PPARs or fatty acids in the liver or adipocytes.  相似文献   

8.
Hepatic expression profiling has revealed miRNA changes in liver diseases, while hepatic miR-155 expression was increased in murine non-alcoholic fatty liver disease, suggesting that miR-155 might regulate the biological process of lipid metabolism. To illustrate the effects of miR-155 gain of function in transgenic mouse liver on lipid metabolism, transgenic mice (i.e., Rm155LG mice) for the conditional overexpression of mouse miR-155 transgene mediated by Cre/lox P system were firstly generated around the world in this study. Rm155LG mice were further crossed to Alb-Cre mice to realize the liver-specific overexpression of miR-155 transgene in Rm155LG/Alb-Cre double transgenic mice which showed the unaltered body weight, liver weight, epididymal fat pad weight and gross morphology and appearance of liver. Furthermore, liver-specific overexpression of miR-155 transgene resulted in significantly reduced levels of serum total cholesterol, triglycerides (TG) and high-density lipoprotein (HDL), as well as remarkably decreased contents of hepatic lipid, TG, HDL and free fatty acid in Rm155LG/Alb-Cre transgenic mice. More importantly, microarray data revealed a general downward trend in the expression profile of hepatic genes with functions typically associated with fatty acid, cholesterol and triglyceride metabolism, which is likely at least partially responsible for serum cholesterol and triglyceride lowering observed in Rm155LG/Alb-Cre mice. In this study, we demonstrated that hepatic overexpression of miR-155 alleviated nonalcoholic fatty liver induced by a high-fat diet. Additionally, carboxylesterase 3/triacylglycerol hydrolase (Ces3/TGH) was identified as a direct miR-155 target gene that is potentially responsible for the partial liver phenotypes observed in Rm155LG/Alb-Cre mice. Taken together, these data from miR-155 gain of function study suggest, for what we believe is the first time, the altered lipid metabolism and provide new insights into the metabolic state of the liver in Rm155LG/Alb-Cre mice.  相似文献   

9.
Mobilization of hepatic triacylglycerol stores provides substrates for mitochondrial β-oxidation and assembly of VLDLs; however, the identity of lipolytic enzymes involved in the regulation of this process remains largely unknown. Arylacetamide deacetylase (AADA) shares homology with hormone-sensitive lipase and therefore could potentially participate in hepatic lipid metabolism, including the regulation of hepatic triacylglycerol levels. We have established McArdle-RH7777 (rat hepatoma) cell lines stably expressing mouse AADA cDNA and performed metabolic labeling as well as lipid mass analyses. Expression of AADA cDNA in McArdle-RH7777 cells significantly reduced intracellular triacylglycerol levels and apolipoprotein B secretion and increased fatty acid oxidation.  相似文献   

10.
11.
12.
Fatty acids released from adipose triacylglycerol stores by lipolysis provide vertebrates with an important source of energy. We investigated the role of microsomal triacylglycerol hydrolase (TGH) in the mobilization of adipocyte triacylglycerols through inactivation of the TGH activity by RNA interference or chemical inhibition. Attenuation of TGH activity resulted in decreased basal but not isoproterenol-stimulated efflux of fatty acids from 3T3-L1 adipocytes. Lack of TGH activity was accompanied by accumulation of cellular triacylglycerols and cholesteryl esters without any changes in the expression of enzymes catalyzing triacylglycerol synthesis (diacylglycerol acyltransferases 1 and 2) or degradation (adipose triglyceride lipase and hormone-sensitive lipase). Inhibition of TGH-mediated lipolysis also did not affect insulin-stimulated Glut4 translocation from intracellular compartments to the plasma membrane or glucose uptake into adipocytes. These data suggest that TGH plays a role in adipose tissue triacylglycerol metabolism and may be a suitable pharmacological target for lowering fatty acid efflux from adipose tissue without altering glucose import.  相似文献   

13.
Hepatic triacylglycerol lipase (EC 3.1.1.3) hydrolyzes water-insoluble fatty acid esters, e.g., trioleoylglycerol (lipase activity) and water-soluble fatty acid esters, e.g., tributyrin (esterase activity). Esterase activity of hepatic triacylglycerol lipase is enhanced by triolein emulsion and phospholipid vesicles [1]. The catalytic mechanism and structure of human hepatic triacylglycerol lipase isolated from human post-heparin plasma and the effect of trypsin treatment on the lipase and esterase activities of the enzyme were examined. Treatment of hepatic triacylglycerol lipase with trypsin resulted in loss of its lipase activity, but had no effect on its esterase activity. Chromatography of hepatic triacylglycerol lipase on Bio-Gel A5m showed that hepatic triacylglycerol lipase binds to dipalmitoylphosphatidylcholine vesicles. However, on chromatography of the trypsin-treated enzyme after incubation with dipalmitoylphosphatidylcholine vesicles, a part of hepatic triacylglycerol lipase that retained esterase activity was eluted separately from the dipalmitoylphosphatidylcholine vesicles. Addition of vesicles of dipalmitoylphosphatidylcholine to the trypsin-treated enzyme did not enhance its esterase activity. These results are consistent with the hypothesis that hepatic triacylglycerol lipase has a catalytic site that hydrolyzes tributyrin and a lipid interface recognition site, and that these sites are different: trypsin modified the lipid interface recognition site of the hepatic triacylglycerol lipase but not the catalytic site.  相似文献   

14.
A number of intracellular lipase/esterase have been reported in adipose tissue either by functional assays of activity or through proteomic analysis. In the current work, we have studied the relative expression level of 12 members of the lipase/esterase family that are found in white adipose tissue. We found that the relative mRNA levels of ATGL and HSL are the most abundant, being 2-3 fold greater than TGH or ADPN; whereas other intracellular neutral lipase/esterases were expressed at substantially lower levels. High fat feeding did not alter the mRNA expression levels of most lipase/esterases, but did reduce CGI-58 and WBSCR21. Likewise, rosiglitazone treatment did not alter the mRNA expression levels of most lipase/esterases, but did increase ATGL, TGH, CGI-58 and WBSCR21, while reducing ADPN. WAT from HSL-/- mice showed no compensatory increase in any lipase/esterases, rather mRNA levels of most lipase/esterases were reduced. In contrast, BAT from HSL-/- mice showed an increase in ATGL expression, as well as a decrease in ES-1, APEH and WBSCR21. Analysis of the immunoreactive protein levels of some of the lipases confirmed the results seen with mRNA. In conclusion, these data highlight the complexity of the regulation of the expression of intracellular neutral lipase/esterases involved in lipolysis.  相似文献   

15.
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester (CE) and triglyceride (TG) between lipoproteins in plasma. However, short term suppression of CETP biosynthesis in cells alters cellular cholesterol homeostasis, demonstrating an intracellular role for CETP as well. The consequences of chronic CETP deficiency in lipid-storing cells normally expressing CETP have not been reported. Here, SW872 adipocytes stably expressing antisense CETP cDNA and synthesizing 20% of normal CETP were created. CETP-deficient cells had 4-fold more CE but an approximately 3-fold decrease in cholesterol biosynthesis. This phenotype of cholesterol overload is consistent with the observed 45% reduction in low density lipoprotein receptor and 2.5-fold increase in ABCA1 levels. However, cholesterol mass in CETP-deficient adipocytes was actually reduced. Strikingly, CETP-deficient adipocytes stored <50% of normal TG, principally reflecting reduced synthesis. The hydrolysis of cellular CE and TG in CETP-deficient cells was reduced by >50%, although hydrolase/lipase activity was increased 3-fold. Notably, the incorporation of recently synthesized CE and TG into lipid storage droplets in CETP-deficient cells was just 40% of control, suggesting that these lipids are inefficiently transported to droplets where the hydrolase/lipase resides. The capacity of cellular CETP to transport CE and TG into storage droplets was directly demonstrated in vitro. Overall, chronic CETP deficiency disrupts lipid homeostasis and compromises the TG storage function of adipocytes. Inefficient CETP-mediated translocation of CE and TG from the endoplasmic reticulum to their site of storage may partially explain these defects. These studies in adipocytic cells strongly support a novel role for CETP in intracellular lipid transport and storage.  相似文献   

16.
It is recognized that the majority of very low density lipoprotein (VLDL) associated triacylglycerol (TG) is synthesized from fatty acids and partial acylglycerols generated by lipolysis of intra-hepatic storage rather than made de novo. Triacylglycerol hydrolase (TGH) is involved in mobilizing stored TG. Modulating the ability of TGH to hydrolyze stored lipids represents a potentially regulated and rate limiting step in VLDL assembly. Phosphorylation of lipases and carboxylesterases trigger diverse but functionally significant events. We explored the potential for regulating the mobilization of hepatic TG through phosphorylation of TGH. Insulin is known to suppress VLDL secretion from liver, and glucagon can be considered an opposing hormone. However, neither insulin nor glucagon treatment of hepatocytes led to phosphorylation of TGH or changes in its activity. Augmenting intracellular TG stores by incubations with oleic acid also did not lead to changes in TGH activity. Therefore, changes in phosphorylation state are not a mechanism for regulating TGH activity, access to TG substrate pools or for TGH-mediated contributions to VLDL assembly and secretion.  相似文献   

17.
The mechanism of action of hepatic triacylglycerol lipase (EC 3.1.1.3) was examined by comparing the hydrolysis of a water-soluble substrate, tributyrin, with that of triolein by hepatic triacylglycerol lipase purified from human post-heparin plasma. The hydrolyzing activities toward tributyrin and triolein were coeluted from heparin-Sepharose at an NaCl concentration of 0.7 M. The maximal velocity of hepatic triacylglycerol lipase (Vmax) for tributyrin was 17.9 mumol/mg protein per h and the Michaelis constant (Km) value was 0.12 mM, whereas the Vmax for triolein was 76 mumol/mg per h and the Km value was 2.5 mM. The hydrolyses of tributyrin and triolein by hepatic triacylglycerol lipase were inhibited to similar extends by procainamide, NaF, Zn2+, Cu2+, Mn2+, SDS and sodium deoxycholate. Triolein hydrolysis was inhibited by the addition of tributyrin. Triolein hydrolysis was also inhibited by the addition of dipalmitoylphosphaidylcholine vesicles. In contrast, the additions of triolein emulsified with Triton X-100 and dipalmitoylphosphatidylcholine vesicles enhanced the rate of tributyrin hydrolysis by hepatic triacylglycerol lipase. In the presence of dipalmitoylphosphatidylcholine, the Vmax and Km values of hepatic triacylglycerol lipase for tributyrin were 41 mumol/mg protein per h and 0.12 mM, respectively, indicating that the enhancement of hepatic triacylglycerol lipase activity for tributyrin by dipalmitoylphosphatidycholine vesicles was mainly due to increase in the Vmax. The enhancement of hepatic triacylglycerol lipase activity for tributyrin by phospholipid was not correlated with the amount of tributyrin associated with the phospholipid vesicles. On Bio-Gel A5m column chromatography, glycerol tri[1-14C]butyrate was not coeluted with triolein emulsion, and hepatic triacylglycerol lipase activity was associated with triolein emulsion even in the presence of 2 mM tributyrin. These results suggest that hepatic triacylglycerol lipase has a catalytic site for esterase activity and a separate site for lipid interface recognition, and that on binding to a lipid interface the conformation of the enzyme changes, resulting in enhancement of the esterase activity.  相似文献   

18.
Elevated blood triacylglycerol (TG) is a significant contributing factor to the current epidemic of obesity-related health disorders, including type-2 diabetes, nonalcoholic fatty liver disease, and cardiovascular disease. The observation that mice lacking the enzyme sn-glycerol-3-phosphate acyltransferase are protected from insulin resistance suggests the possibility that the regulation of TG synthesis be a target for therapy. Five-week-old Zucker Diabetic Fatty (ZDF) rats were fed a diet containing (R)-α-lipoic acid (LA, ∼200 mg/kg body weight per day) for 5 weeks. LA offset the rise in blood and liver TG by inhibiting liver lipogenic gene expression (e.g. sn-glycerol-3-phosphate acyltransferase-1 and diacylglycerol O-acyltransferase-2), lowering hepatic TG secretion, and stimulating clearance of TG-rich lipoproteins. LA-induced TG lowering was not due to the anorectic properties of LA, as pair-fed rats developed hypertriglyceridemia. Livers from LA-treated rats exhibited elevated glycogen content, suggesting dietary carbohydrates were stored as glycogen rather than becoming lipogenic substrate. Although AMP-activated protein kinase (AMPK) reportedly mediates the metabolic effects of LA in rodents, no change in AMPK activity was observed, suggesting LA acted independently of this kinase. The hepatic expression of peroxisome proliferator activated receptor α (PPARα) target genes involved in fatty acid β-oxidation was either unchanged or decreased with LA, indicating a different mode of action than for fibrate drugs. Given its strong safety record, LA may have potential clinical applications for the treatment or prevention of hypertriglyceridemia and diabetic dyslipidemia.  相似文献   

19.
20.
Carbachol (CCh) reduced the levels of [3H]arachidonic acid in triacylglycerol (TG) of pancreatic acinar cells. In cells prelabeled with [14C]glycerol, CCh reduced [14C]TG and increased [14C]diacylglycerol levels. Using [3H]triolein as exogenous substrate, CCh enhanced TG lipase activity 3-fold in a particulate fraction derived from intact acinar cells. These results portray a mechanism for generating diacylglycerol and arachidonic acid in exocrine pancreas involving agonist stimulation of TG hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号