首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Elevated levels of chromosomal aberrations (CAs) in peripheral blood lymphocytes, widely used as a cytogenetic biomarker of genotoxic effects, have been linked to cancer predisposition. However, tobacco smoking, occupational carcinogen exposure, or time since CA analysis do not appear to explain the cancer predictivity of CAs. Alternatively, the observed CA-cancer association could reflect unidentified exposures or individual susceptibility. We assessed the effects of genetic polymorphisms of DNA repair proteins and xenobiotic-metabolizing enzymes (XMEs) on the levels of CAs and sister chromatid exchanges (SCEs) in peripheral lymphocytes of 145 (CAs) and 60 (SCEs) healthy Caucasians. Genotypes of DNA repair genes X-ray repair cross-complementation group 1 (XRCC1 codons 194, 280, 399) and 3 (XRCC3 codon 241 [corrected]), and XME genes glutathione-S-transferase (GST) M1 and T1 and N-acetyl transferase 2 (NAT2) were determined using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP)-based methods. After Poisson regression adjustment for age, sex, smoking, country, and genotypes, a higher frequency of chromosome-type breaks was observed for NAT2 slow acetylators (in nonsmokers) and GSTT1 null subjects (in smokers). Individuals carrying variant alleles for XRCC1 codons 280 and 194 showed a decreased level of chromosome-type breaks. The effect of GSTM1 null and XRCC1 codon 399 genotypes on the frequency of CAs was modified by smoking. In linear regression models adjusting for age, sex, smoking, and genotypes, none of the polymorphisms significantly affected SCE frequency, although GSTT1 null subjects had a slightly elevated SCE level. Our results are in line with earlier findings on the influence of NAT2, GSTT1, and GSTM1 polymorphisms on the level of lymphocyte chromosome damage and suggest that also XRCC1 polymorphism affects CA frequencies, thus apparently influencing DNA repair phenotype. It remains to be examined whether these or other genetic polymorphisms could explain the observed cancer risk predictivity of high CA frequency.  相似文献   

3.
Hatao Kato 《Chromosoma》1977,59(3):179-191
By taking advantage of the fact that fluorescent light (FL) induces strand breaks only in bromodeoxyuridine(BrdU)-substituted DNA, and that those breaks eventually lead to the formation of sister chromatid exchanges (SCEs), the response of SCEs to FL was studied carefully in Chinese hamster chromosomes in which, out of four DNA strands, BrdU-substitution had occurred either in one or three strands. The FL-induced SCE frequency did not differ greatly between these two types of chromosomes. However, when they were submitted to caffeine treatment, a drastic increase in the frequency was detected in the trifilarly-substituted chromosomes while a significant decrease occurred in the unifilarly-substituted chromosomes. Based on these results, a working hypothesis was developed that the SCE can arise by at least two different mechanisms, one operating at replicating points probably utilizing the machinery of DNA replication, and the other acting only in the post-replicational DNA portion, probably in a similar fashion as assumed in a general model of crossing over in the eukaryote. These dual mechanisms may account for the discrepancy encountered in the explanations of the induction of SCEs by various exogenous agents as well as spontaneous SCEs. The present study also showed that some, but clearly not all, of chromatid deletions are the outcome of the failure to complete SCEs arising through these mechanisms.  相似文献   

4.
Since the milestone work of Evans and Scott, demonstrating the replication dependence of alkylation-induced aberrations, and Obe and Natarajan, pointing to the critical role of DNA double-strand breaks (DSBs) as the ultimate trigger of aberrations, the field has grown extensively. A notable example is the identification of DNA methylation lesions provoking chromosome breakage (clastogenic) effects, which made it possible to model clastogenic pathways evoked by genotoxins. Experiments with repair-deficient mutants and transgenic cell lines revealed both O6-methylguanine (O6MeG) and N- methylpurines as critical lesions. For S(N)2 agents such as methyl- methanesulfonate (MMS), base N-methylation lesions are most critical, likely because of the formation of apurinic sites blocking replication. For S(N)1 agents, such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O6-methylguanine (O6MeG) plays the major role both in recombination and clastogenicity in the post-treatment cell cycle, provided the lesion is not pre-replicatively repaired by O6-methylguanine-DNA methyltransferase (MGMT). The conversion probability of O6MeG into SCEs and chromosomal aberrations is estimated to be about 30:1 and >10,000:1 respectively, indicating this mispairing pro-mutagenic lesion to be highly potent in inducing recombination giving rise to SCEs. O6MeG needs replication and mismatch repair to become converted into a critical secondary genotoxic lesion. Here it is proposed that this secondary lesion can be tolerated by a process termed recombination bypass. This process is supposed to be important in the tolerance of lesions that can not be processed by translesion synthesis accomplished by low-fidelity DNA polymerases. Recombination bypass results in SCEs and might represent an alternative pathway of tolerance of non-instructive lesions. In the case of O6MeG-derived secondary lesions, recombination bypass appears to protect against cell killing since SCEs are already induced with low, non-toxic doses of MNNG. Saturation of lesion tolerance by recombination bypass or translesion synthesis may cause block of DNA replication leading to DSBs at stalled replication forks, which result in chromatid-type aberrations. Along with this model, several putative consequences of methylation-induced aberrations will be discussed such as cell death by apoptosis as well its role in tumor promotion and progression.  相似文献   

5.
A fractal model of chromosomes and chromosomal DNA replication   总被引:2,自引:0,他引:2  
With the aim of clarifying topological problems involved in the process of chromosomal DNA replication, a fractal model of chromosomes was built based on the assumption that a part of a chromosome, e.g. a radial loop, is similar in shape to a whole chromosome and each radial loop represents structures in the lower-order organization (an assumption of self-similarity). Several other assumptions used include (i) one continuous DNA fiber makes a whole chromosome (a unineme hypothesis), (ii) in situ DNA exists in the form of a double duplex or a tetraplex which is made of two duplex DNAs, although a duplex DNA may appear transiently in S-phase (multi-strandedness hypothesis) and (iii) torsional stress on a DNA fiber causes the fiber to supercoil and thus stabilizes chromosome structure (torque-based stabilization). This model allowed to calculate of a fractal dimension of a representative metaphase chromosome (e.g. d = 2.34), to predict the mode of replication of double duplex and to furnish a topological basis for the decondensation unit hypothesis. It must also be admitted that all the arguments in this report except for the possible existence of split telomeres hold true without assuming a tetraplex organization of chromosomes. Implications of this model was discussed and the importance of the fractal dimension as a measure of chromatin condensation stressed.  相似文献   

6.
Abstract

Trypanosomiasis, a group of diseases including sleeping sickness in humans and Nagana in cattle in Africa, and Chagas’ disease in South America, remains a considerable problem in the 21st century. The therapies that are available, however, usually have their roots in the “dye therapy” of a century ago, knowledge gained at the microscope from parasite staining procedures and converted to chemotherapy based on compounds closely related to the laboratory reagents. Dyes such as trypan red and trypan blue led to the development of suramin, while cationic nitrogen heterocyclic dyes furnished examples of the phenanthridinium class, such as ethidium (homidium) and isometamidium. Both suramin and isometamidium remain in use. Owing to mutagenicity issues, the presence of ethidium among the phenanthridinium dyes has led to concerns over the clinical use of related derivatives. There are several mechanisms for dye-DNA interaction, however, including possible hydrogen bonding of dye to the polymer, and these are discussed together with structure-activity relations and cellular localization of the phenanthridine and isomeric acridines involved. Better understanding of nucleic acid binding properties has allowed the preparation of more effective phenanthridinium analogues intended for use as anticancer/antiviral therapy.  相似文献   

7.
RecA protein primarily associates with and dissociates from opposite ends of nucleoprotein filaments formed on linear duplex DNA. RecA nucleoprotein filaments that are hydrolyzing ATP therefore engage in a dynamic process under some conditions that has some of the properties of treadmilling. We have also investigated whether the net polymerization of recA protein at one end of the filament and/or a net depolymerization at the other end drives unidirectional strand exchange. There is no demonstrable correlation between recA protein association/dissociation and the strand exchange reaction. RecA protein-mediated DNA strand exchange is affected minimally by changes in reaction conditions (dilution, pH shift, or addition of small amounts of adenosine-5'-O-(3-thiotriphosphate) that have large and demonstrable effects on recA protein association, dissociation, or both. Rather than driving strand exchange, these assembly and disassembly processes may simply represent the mechanism by which recA nucleoprotein filaments are recycled in the cell.  相似文献   

8.
Short treatment (up to 1 h) of cytosine arabinoside (araC) increases the frequencies of aberrations induced by X-rays in human lymphocytes, evaluated at the first mitosis following stimulation, or as prematurely condensed chromosomes of G0 nuclei. Parallel biochemical experiments using nucleoid sedimentation technique, demonstrate that araC inhibits rejoining of DNA-strand breaks effectively. These results point out that X-ray-induced short-lived DNA strand breaks lead to chromosomal aberrations in human lymphocytes.  相似文献   

9.
Substantial increases in chromosome aberrations were induced in Chinese hamster ovary cells by medium made hyperosmotic with NaCl, KCl, sucrose, sorbitol or dimethyl methylphosphonate. The increases were associated with cytotoxicity but occurred in the range (e.g., 70% survival) commonly included in in vitro tests for 'genotoxicity'. The relation between increased osmotic pressure and chromosome aberrations is compound-dependent, e.g., some compounds may have a direct effect in addition to an effect mediated by osmotic pressure/ionic strength. Also, glycerol at high osmolality was not toxic and did not induce aberrations, probably because rapid equilibration across the cell membrane precluded severe osmotic stress to the cells. Weak increases in DNA single-strand breaks (NaCl and KCl) and double-strand breaks (NaCl) were also detectable, at higher concentrations and more toxic levels than those required to produce aberrations. Slight elevations in sister-chromatid exchange frequencies caused by hyperosmotic medium were found in the presence of toxicity and severe cell cycle delay. Our data on cell growth inhibition suggest that this is the result of increased incorporation of bromodeoxyuridine per cell due to decreased numbers of growing cells, although other mechanisms cannot be ruled out. The observations on chromosome aberrations demonstrate the need for keeping in vitro test conditions in the physiological range, and provide a means for investigation of indirect DNA damage.  相似文献   

10.
DNA double-strand breaks (DSB) are considered the critical primary lesion in the formation of chromosomal aberrations (CA). DSB occur spontaneously during the cell cycle and are induced by a variety of exogenous agents such as ionising radiation. To combat this potentially lethal damage, two related repair pathways, namely homologous recombination (HR) and non-homologous DNA end joining (NHEJ), have evolved, both of which are well conserved from bacteria to humans. Depending on the pathway used, the underlying mechanisms are capable of eliminating DSB without alterations to the original genomic sequence (error-free) but also may induce small scale mutations (base pair substitutions, deletions and/or insertions) and gross CA (error-prone). In this paper, we review the major pathways of DSB-repair, the proteins involved therein and their impact on the prevention of CA formation and carcinogenesis.  相似文献   

11.
DNA-PKcs and Ku are essential components of the complex that catalyzes non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). Ku, a heterodimeric protein, binds to DNA ends and facilitates recruitment of the catalytic subunit, DNA-PKcs. We have investigated the effect of DNA strand orientation and sequence bias on the activation of DNA-PK. In addition, we assessed the effect of the position and strand orientation of cisplatin adducts on kinase activation. A series of duplex DNA substrates with site-specific cisplatin–DNA adducts placed in three different orientations on the duplex DNA were prepared. Terminal biotin modification and streptavidin (SA) blocking was employed to direct DNA-PK binding to the unblocked termini with a specific DNA strand orientation and cisplatin–DNA adduct position. DNA-PK kinase activity was measured and the results reveal that DNA strand orientation and sequence bias dramatically influence kinase activation, only a portion of which could be attributed to Ku-DNA binding activity. In addition, cisplatin–DNA adduct position resulted in differing degrees of inhibition depending on distance from the terminus as well as strand orientation. These results highlight the importance of how local variations in DNA structure, chemistry and sequence influence DNA-PK activation and potentially NHEJ.  相似文献   

12.
Using a human lymphoblastoid cell line WTK-1, we applied multicolor fluorescence in situ hybridization (mFISH) technique to analyze mitomycin C (MMC)-induced chromatid exchanges, focusing especially on the triradial chromosomes. It was found that the triradial chromosomes were formed with a specific rearrangement, "recipient and donor" relationship. The exchange sites of the recipient chromosomes were on single chromatid breaks and distributed randomly throughout the interstitial, pericentromeric, and terminal regions. In counterpart, donor chromosomes exchanged on isochromatid breaks of their telomeric and/or subtelomeric regions with the single chromatid breaks of recipient chromosomes. More than 80% of the scored triradial chromosomes were formed with such rearrangements, and few acentric chromosome fragments derived from the donor chromosomes could be detected in the metaphases observed. We therefore suggest that biological mechanisms of breakages between the recipient and donor chromosomes are different: the former due to direct DNA-damage by MMC, but the latter due to indirect DNA-damage depending on telomeric specific structure/function.  相似文献   

13.
This report describes a study to verify an earlier report of excess chromosomal damage in the blood lymphocytes of uranium miners. Coded blood samples from 10 miners and 10 controls were analyzed conventionally for unstable aberrations and by FISH for translocations. Conventional analysis, scoring 1000 metaphases per subject, showed no significant difference between miners and controls in the frequencies of chromosome- and chromatid-type aberrations. Investigators at two laboratories undertook FISH analyses, each scoring 4000 metaphases per subject. When the data from each laboratory were examined separately, one found slightly more translocations in the miners while the other found fewer. In neither case was the difference significant at the 95% level of confidence. Combining the data likewise showed no significant excess of damage in the miners. This applied to simple one- and two-way translocations and to cells with complex exchanges. There was no correlation between levels of translocations and total lifetime doses from occupational and/or background irradiation. A borderline significant excess of rogue cells was found in the miners. This may be a chance observation, as these rare, highly abnormal cells are considered to be unrelated to radiation exposure and are probably due to a virus. The overall conclusion is that the frequency of chromosomal damage in the miners did not exceed that in the controls. Therefore, the result of the earlier study was not confirmed.  相似文献   

14.
15.
The immune system furnishes the organism with the utmost effective defence mechanisms against foreign and changes in self without doing self-harm. However, optimized efficacy in the defence against the immense variety of foreign antigens generates a higher risk for inadvertent self challenge. Such inherent short-comings are the inevitable burden traded for the benefits of an optimally organized defence system. The central molecules involved in specific immune reactions include antigen receptors of B and T lymphocytes, and antigen-presenting proteins encoded by the major histocompatibility complex (MHC; in man HLA). The genetics and evolution of these multigene families is discussed here with respect to their potential contributions to disturbances of self recognition. Simple molecular biological tools and procedures for efficiently screening the immunologically relevant genes are described.Dedicated to Professor Dr. U. Wolf on the occasion of his 60th birthday  相似文献   

16.
Monte Carlo computer software, called DNAbreak, has recently been developed to analyze observed non-random clustering of DNA double strand breaks in chromatin after exposure to densely ionizing radiation. The software models coarse-grained configurations of chromatin and radiation tracks, small-scale details being suppressed in order to obtain statistical results for larger scales, up to the size of a whole chromosome. We here give an analytic counterpart of the numerical model, useful for benchmarks, for elucidating the numerical results, for analyzing the assumptions of a more general but less mechanistic “randomly-located-clusters” formalism, and, potentially, for speeding up the calculations. The equations characterize multi-track DNA fragment-size distributions in terms of one-track action; an important step in extrapolating high-dose laboratory results to the much lower doses of main interest in environmental or occupational risk estimation. The approach can utilize the experimental information on DNA fragment-size distributions to draw inferences about large-scale chromatin geometry during cell-cycle interphase. Received: 2 March 2000 / Revised version: 2 February 2001 / Published online: 21 August 2001  相似文献   

17.
A minisatellite-binding protein, Msbp-4, with a molecular mass of 35 kDa has been purified from mouse tumor cells that binds to hypervariable Pc-1 and Pc-2 minisatellites. The binding is much more efficient than that to genetically stable minisatellite homologues. As assayed by Southwestern analysis, Msbp-4 favors multiple copies of the Pc-2 repeat sequence GGCAGGA and requires the cytosine-rich single strand for the binding. The activity is also present in extracts from mouse testis but not from liver. The phosphatase treatment revealed that Msbp-4 is phosphorylated and may have a regulatory function, because dephosphorylation affects the activity and specificity of the binding. Sequence preference is demonstrated by a competition experiment using single-base substitution mutants. Thus, the binding properties of Msbp-4 observed here lead to an implication that the protein-DNA complexes result in formation of a single-stranded DNA loop of the G-rich strand in the minisatellite which may enhance the ability of the minisatellite to undergo recombination.  相似文献   

18.
Recent studies of visual detection show a configuration dependent weak improvement of thresholds with the number of targets, which corresponds to a fourth-root power law. We find this result to be inconsistent with probability summation models, and account for it by a model of 'physiological' integration that is based on excitatory lateral interactions in the visual cortex. The model explains several phenomena which are confirmed by the experimental data, such as the absence of spatial and temporal uncertainty effects, temporal summation curves, and facilitation by a pedestal in 2AFC tasks. The summation exponents are dependent on the strength of the lateral interactions, and on the distance and orientation relationship between the elements.  相似文献   

19.
Ageing in mammals remains an unsolved mystery. Anti-ageing is a recurring topic in the history of scientific research. Lifespan extension evoked by Sir2 protein in lower organisms has attracted a large amount of interests in the last decade. This review summarizes recent evidence supporting the role of a Sir2 mammalian homologue, SIRT1 (Silent information regulator T1), in regulating ageing and cellular senescence. The various signaling networks responsible for the anti-ageing and anti-senescence activity of SIRT1 have been discussed. In particular, a counter-balancing model involving the cross-talks between SIRT1 and AMP-activated protein kinase (AMPK), another stress and energy sensor, is suggested for controlling the senescence program in mammalian cells.  相似文献   

20.
The orientation of repeating units in chromosomal ribosomal DNA of Xenopus was determined by denaturation mapping in order to test a model for gene rectification. The model postulates an alternating orientation that will allow the formation of pallindromic loops between adjacent repeats. Mutations would then be lost or driven to fixation by random correction of one sequence by another, following genetic homogeneity among the repeats. Head-to-tail orientation was found, ruling out the model for this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号