首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Measurement of local mass transfer coefficient in biofilms   总被引:2,自引:0,他引:2  
Local mass transfer rates for an electrochemically formed microsink in an aerobic biofilm was measured by a mobile microelectrode using limiting current technique. Mass transfer coefficients varied both horizontally and vertically in the biofilm. The results implied the existence of an irregular biofilm structure consisting of microbial cell clusters surrounded by tortuous water channels. An unexpected increase of the local mass transfer coefficient just above the biofilm surface suggested the existence, of local flow instability in this region. As expected, the influence of bulk flow velocity on the local mass transfer rate decreased with increasing depth into the biofilm. Mass transfer coefficients fluctuated significantly inside microbial cell clusters, suggesting the existence of internal channels through which liquid could flow. A new conceptual model of biofilm microbial cluster structure is proposed to account for such biofilm microstructure irregularities. (c) 1995 John Wiley & Sons, Inc.  相似文献   

2.
The influence of dissolved oxygen concentration on the nitrification kinetics was studied in the circulating bed reactor (CBR). The study was partly performed at laboratory scale with synthetic water, and partly at pilot scale with secondary effluent as feed water. The nitrification kinetics of the laboratory CBR as a function of the oxygen concentration can be described according to the half order and zero order rate equations of the diffusion-reaction model applied to porous catalysts. When oxygen was the rate limiting substrate, the nitrification rate was close to a half order function of the oxygen concentration. The average oxygen diffusion coefficient estimated by fitting the diffusion-reaction model to the experimental results was around 66% of the respective value in water. The experimental results showed that either the ammonia or the oxygen concentration could be limiting for the nitrification kinetics. The latter occurred for an oxygen to ammonia concentration ratio below 1.5–2 gO2/gN-NH4 + for both laboratory and pilot scale reactors. The volumetric oxygen mass transfer coefficient (k L a) determined in the laboratory scale reactor was 0.017?s?1 for a superficial air velocity of 0.02?m s?1, and the one determined in the pilot scale reactor was 0.040?s?1 for a superficial air velocity of 0.031?m?s?1. The k L a for the pilot scale reactor did not change significantly after biofilm development, compared to the value measured without biofilm.  相似文献   

3.
Effects of water flow velocityon nitrification, denitrification, andthe metabolism of dissolved oxygen andinorganic carbon in macrophyte-epiphytoncomplexes were investigated in the presentstudy. The metabolic rates were measured inmicrocosms containing shoots of Potamogeton pectinatus L. with epiphyticbiofilms in the light and dark with no flow orwith the flow velocities of 0.03 and 9 cms–1. Photosynthesis and respirationincreased with increasing water flow velocity.Rates of oxygen respiration were positivelycorrelated to the oxygen concentration of thewater. Nitrification was not significantlyaffected by flow velocity, but nitrificationwas higher in light than in dark at 0.03 cms–1, but not at 9 cm s–1.Denitrification was higher in stagnant waterand at 9 cm s–1 than at 0.03 cm s–1 inthe absence of oxygen, possibly due to complexeffects of water flow velocity on the supply oforganic matter to the denitrifying bacteria.Denitrification was always inhibited in light,and negatively correlated to the oxygenconcentration in dark. Epiphyticdenitrification occurred only at low oxygenconcentrations in flowing water, whereas instagnant water, denitrification was present inalmost oxygen saturated water. Therefore,because there are little of water movements andhigh oxygen consumption in dense stands ofsubmersed macrophytes, significant rates ofepiphytic denitrification can probably be foundwithin submersed vegetation despite high oxygenconcentrations in the surrounding water. Inconclusion, this study shows that the waterflow and oxygen metabolism within submersedvegetation have minor effects on nitrification,but significantly affect denitrification inbiofilms on submersed macrophytes.  相似文献   

4.
To maximize nitrogen utilization rates during nitrification and denitrification in a simultaneous reaction for direct nitrogen removal from ammonia–nitrogen in a single reactor, two different carriers were applied that immobilized nitrifiers and denitrifiers separately. With the optimized DO concentration and mixing ratio of immobilization carriers, ammonium–nitrogen was successfully removed as designed until the middle phase of treatment where nitrogen removal rate was higher than 83% of the theoretical value, although an imbalance between nitrification and denitrification occurred at a later phase of treatment where residual nitrate–nitrogen concentration was less than 2 mg/l. The new approach using two different carriers to immobilize nitrifiers and denitrifiers separately was proved useful for controlling both nitrification and denitrification rates, enabling the utilization of maximum treatment ability of both nitrifiers and denitrifiers in a single reactor for direct nitrogen removal from ammonium–nitrogen.  相似文献   

5.
6.
A method for calculating the mass transfer coefficient in a biological film system, under turbulent flow conditions, is presented. It is experimentally found that fluid velocity has a positive effect on the rate of substrate utilization when the system is operated in other than the kinetic regime. A correlation is developed which indicates a dependence of the mass transfer coefficient on the fluid velocity raised to the 0.7 power.  相似文献   

7.
The functional robustness of biofilms in a wastewater nitrification reactor, and the gene pools therein, were investigated. Nitrosomonas and Nitrosospira spp. were present in similar amounts (cloning-sequencing of ammonia-oxidizing bacteria 16S rRNA gene), and their estimated abundance (1.1 x 10(9) cells g(-1) carrier material, based on amoA gene real-time PCR) was sufficient to explain the observed nitrification rates. The biofilm also had a diverse community of heterotrophic denitrifying bacteria (cloning-sequencing of nirK). Anammox 16S rRNA genes were detected, but not archaeal amoA. Dispersed biofilms (DB) and intact biofilms (IB) were incubated in gas-tight reactors at different pH levels (4.5 and 5.5 vs. 6.5) while monitoring O(2) depletion and concentrations of NO, N(2)O and N(2) in the headspace. Nitrification was severely reduced by suboptimal O(2) concentrations (10-100 microM) and low pH (IB was more acid tolerant than DB), but the N(2)O/NO(3)(-) product ratio of nitrification remained low (<10(-3)). The NO(2)(-) concentrations during nitrification were generally 10 times higher in DB than in IB. Transient NO and N(2)O accumulation at the onset of denitrification was 10-10(3) times higher in DB than in IB (depending on the pH). The contrasting performance of DB and IB suggests that the biofilm structure, with anoxic/micro-oxic zones, helps to stabilize functions during anoxic spells and low pH.  相似文献   

8.
Gas hold-up and the oxygen transfer in the zones of the internal loop airlift reactor with rectangular cross-section was studied. It was found, that the downcomer to the riser gas hold-up ratio depends on the gas flow rate, the physicochemical properties of the system and on the reactor height. The ratio of the downcomer mass transfer coefficient to the global mass transfer coefficient was less than 6%. The ratio of the downcomer to the global mass transfer coefficient slightly increased with increase of the gas flow rate and decreased with increase of the liquid viscosity. The proposed correlation for the global overall mass transfer coefficient predicts the experimental data well within 16.6% deviation. It was confirmed that the reactor height is the important parameter for a design and a scale-up of the airlift reactors.  相似文献   

9.
10.
There are many scaling formulas that predict the oxygen mass transfer coefficient as k(L).a = constant.(Hp/V)(alpha)Vs(beta) Exponents alpha and beta frequently are scale dependent themselves. A general formula has been derived from the work of Calderbank,(1) Miller,(2) and Tilton,(3) resulting in k(L).a = C(1) phi + C(2) log (Pm/V) phi where phi equals the gas-holdup fraction and Pm/V equals the effective mechanical power input per unit of volume. This formula is consistent with the formula of Westerterp(4) modified by Miller.(2) Gas holdup can be predicted in several ways. Gas-sparged isothermal expansion power input, used for predicting phi, demonstrates that scaling can be done by using either superficial air velocity or volume per volume per minute for aeration.The importance of mixing in replenishing oxygen at the boundary layers of microorganisms will be assessed and compared with the k(L).a as the oxygen transfer ratelimiting step.  相似文献   

11.
12.
Oxygen mass transfer characteristics in a membrane-aerated biofilm reactor   总被引:8,自引:0,他引:8  
Immobilization of pollutant-degrading microorganisms on oxygen-permeable membranes provides a novel method of increasing the oxidation capacity of wastewater treatment bioreactors. Oxygen mass transfer characteristics during continuous-flow steady-state experiments were investigated for biofilms supported on tubular silicone membranes. An analysis of oxygen mass transport and reaction using an established mathematical model for dual-substrate limitation supported the experimental results reported. In thick biofilms, an active layer of biomass where both carbon substrate and oxygen are available was found to exist. The location of this active layer varies depending on the ratio of the carbon substrate loading rate to the intramembrane oxygen pressure. The thickness of a carbon-substrate-starved layer was found to greatly influence the mass transport of oxygen into the active biomass layer, which was located close to, but not in contact with, the biofilm-liquid interface. The experimental results demonstrated that oxygen uptake rates as high as 20 g m-2 d-1 bar-1 can be achieved, and the model predicts that, for an optimized biofilm thickness, oxygen uptake rates of more than 30 g m-2 d-1 bar-1 should be possible. This would allow membrane-aerated biofilm reactors to operate with much greater thicknesses of active biomass than can conventional biofilm reactors as well as offering the further advantage of close to 100% oxygen conversion efficiencies for the treatment of high-strength wastewaters. In the case of dual- substrate-limited biofilms, the potential to increase the oxygen flux does not necessarily increase the substrate (acetate) removal rate.  相似文献   

13.
Pluronic F68 is one of the most used shear protecting additives in cell culture cultivations. It is well known from literature that such surface‐active surfactants lower the surface tension at the gas‐liquid interface, which influences the mass transfer. In this study, the effect of Pluronic F68 on oxygen mass transfer in aqueous solutions was examined. Therefore, the gassing in/gassing out method and bubble size measurements were used. At low concentrations of 0.02 g/L, a 50% reduction on mass transfer was observed for all tested spargers and working conditions. An explanation of the observed effects by means of Higbie's penetration or Dankwerts surface renewal theory was applied. It could be demonstrated that the suppressed movement of the bubble surface layer is the main cause for the significant drop down of the kLa‐values. For Pluronic F68 concentrations above 0.1 g/L, it was observed that it comes to changes in bubble appearance and bubble size strongly dependent on the sparger type. By using the bubble size measurement data, it could be shown that only small changes in mass transfer coefficient (kL) take place above the critical micelle concentration. Further changes on overall mass transfer at higher Pluronic F68 concentrations are mainly based on increasing of gas holdup and, more importantly, by increasing of the surface area available for mass transfer. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1278–1288, 2013  相似文献   

14.
It appears that biofilms arrange their internal structure according to the flow velocity at which they are grown, which affects the internal mass transfer rate and microbial activity. In biofilms grown at various flow velocities we determined the vertical profiles of the local relative effective diffusivity (termed D(l)) at several locations within each biofilm. From these profiles we calculated the surface-averaged relative effective diffusivity (termed D(sa)) at various distances from the bottom and plotted it against these distances. The D(sa) decreased linearly toward the bottom, forming well-defined profiles that were different for each biofilm. The gradients of these profiles were multiplied by the diffusivity of oxygen, zeta = D(w) dD(sa)/dz, and plotted versus the flow velocity at which each biofilm was grown. The gradients were low at flow velocities below 10 cm/s, reached a maximum at a flow velocity of 10 cm/s, and decreased again at flow velocities exceeding 10 cm/s. The existence of a maximum indicates a possibility that two opposing forces were affecting the slope of the profiles. To explain these observations we hypothesized that biofilms, depending on the flow velocity at which they are grown, arrange their internal architecture to control (1) the nutrient transport rate and (2) the mechanical pliability needed to resist the shear stress of the water flowing past them. It appears that biofilms attempt to satisfy the second goal first, to increase their mechanical strength, and that they do so at the expense of the nutrient transfer rate to deeper layers. This strength increase is associated with an increase in biofilm density, which slows down the internal mass transport rate. Biofilms grown at low flow velocities exhibit low density and high effective diffusivity but cannot resist higher shear stress, whereas biofilms grown at higher flow velocities are denser and can resist higher shear stress but have a lower effective diffusivity.  相似文献   

15.
Efficient anaerobic degradation may be completed only under low levels of dissolved hydrogen in the liquid surrounding the microorganisms. This restraint can be intensified by the limitations of liquid-to-gas H2 mass transfer, which results in H2 accumulation in the bulk liquid of the reactor. Dissolved hydrogen proved to be an interesting parameter for reactor monitoring by showing a good correlation with short-chain volatile fatty acid concentration, namely propionate, which was not the case for the H2 partial pressure. Biogas recycle was performed in a upflow anaerobic sludge bed and filter reactor. The effects of varying the ratio of recycled-to-produced gas from 2:1 (9 l/l reactor per day) to 8:1 (85 l/l reactor per day) were studied. By increasing the liquid—gas interface with biogas recycling, the dissolved hydrogen concentration could be lowered from 1.1 to 0.4 μ . Accordingly, the H2 sursaturation factor was also reduced, leading to an important improvement of the H2 mass transfer rate, which reached 20.86 h−1 (±9.79) at a 8:1 gas recycling ratio, compared to 0.72 h−1 (±0.24) for the control experiment. Gas recycling also lowered the propionate concentration from 655 to 288 mg l−1 and improved the soluble chemical oxygen demand removal by 10–15%. The main problem encountered was the shorter solid retention time, which could lead to undesirable biomass washout at high gas recycling ratio. This could be circumvented by improving the reactor design to reduce the turbulence within the biomass bed.  相似文献   

16.
For a stable and reliable operation of a BAS-reactor a high, active biomass concentration is required with mainly biofilm-covered carriers. The effect of reactor conditions on the formation of nitrifying biofilms in BAS-reactors was investigated in this article. A start-up strategy to obtain predominantly biofilm-covered carriers, based on the balancing of detachment and a biomass production per carrier surface area, proved tp be very successful. The amount of biomass and the fraction of covered carrier were high and development of nitrification activity was fast, leading to a volumetric conversion of 5 kg(N) . m(-3) . d(-1) at a hydraulic retention time of 1h. A 1-week, continuous inoculation with suspended purely nitrifying microorganisms resulted in a swift start-up compared with batch addition of a small number of biofilms with some nitrification activity. The development of nitrifying biofilms was very similar to the formation of heterotrophic biofilms. In contrast to heterotrophic bio-films, the diameter of nitrifying biofilms increased during start-up. The detachment rate from nitrifying biofilms decreased with lower concentrations of bare carrier, in a fashion comparable with heterotrophic biofilms, but the nitrifying biofilms were much more robust and resistant. Standard diffusion theory combined with reaction kinetics are capable of predicting the activity and conversion of biofilms on small suspended particles. (c) 1995 John Wiley & Sons Inc.  相似文献   

17.
The main objective of this work is to develop an overall mass transfer model applicable to a particular case of membrane supported biofilm, the ion-exchange membrane bioreactor (IEMB). A multivariate projection to latent structures (PLS) model of the anionic membrane transport in an IEMB was developed and analyzed to establish the mass transfer limiting variables for the removal of anionic pollutants (nitrate and perchlorate) from drinking water. The proposed PLS model accounts for the biological contribution to the mass transfer and predicts the anionic fluxes across the ion-exchange membrane with a prediction improvement of at least 50% when compared with a simplified mechanistic Donnan dialysis-based transport model. The PLS model allowed for predicting the transport of target anions using only operational physicochemical data, therefore, the use of several assumptions as in mechanistic model building was avoided as well as the need for biofilm characterization. To decrease the model complexity, several techniques which select the most informative predictors were also successfully used. The analyses of important predictors to each anionic transport model show that transport driving force related variables were the most important. Moreover, at least 30% of the model information is related with biocompartment bulk variables.  相似文献   

18.
19.
Scale-up effects on mass transfer and bioremediation of suspended naphthalene particles have been studied in 20 and 58L bead mill bioreactors and compared to data generated earlier with a laboratory scaled bioreactor. The bead mill bioreactor performance with respect to naphthalene mass transfer rate was dependent on the size and loading of the inert particles, as well as the rotational speed of the roller apparatus. The optimum operating conditions were found to be 15mm glass beads at a loading of 50% (total volume of particles/working volume of bioreactor: v/v%) and a bioreactor rotational speed of 50rpm. The highest naphthalene mass transfer coefficients obtained in the large scale system under these optimum conditions (19.6 and 22.4h(-1) for 20 and 58L vessels, respectively) were higher than those determined previously in a 2.5L bead mill bioreactor (0.7h(-1)). The acute toxicity tests indicated that the bioreactor effluent was less toxic than the untreated naphthalene suspension. Biodegradation rates obtained in these large scale bead mill bioreactors under optimum conditions (36-37.4mgL(-1)h(-1)) were higher than those achieved in the control bioreactors of similar sizes (11.4 and 11.6mgL(-1)h(-1)) but were slower than those previously determined in a 2.5L bead mill bioreactor (59-61.5mgL(-1)h(-1)). The limitation of oxygen in the large scale systems and damage of the bacterial cells due to the crushing effects of the large beads are likely contributing factors in the lower observed biodegradation rates. The optimum conditions with respect to naphthalene mass transfer might not necessarily translate to optimum performance with regard to bioremediation.  相似文献   

20.
Summary In order to increase the oxygen transfer in a bioreactor for Hybridoma cell culture, a perfluorocarbon, Flutec R ppll was used in a modified Celligen TM system. There was no harmful effect of ppll on the cell growth and on the production of monoclonal antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号