首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
非酒精性脂肪肝是无酒精滥用的包括单纯性脂肪肝、脂肪性肝炎、脂肪性肝纤维化和肝硬化的肝病综合征,目前已成为广受关注的肝病医学难题。随着抗脂肪肝药物的深入研究,动物模型制作得到很好发展。近年来,在大鼠、沙鼠、小鼠、兔和小猪等动物种属成功地建立了食物、胃肠外营养与蛋氨酸胆碱缺乏等诱导的单纯性脂肪肝和脂肪性肝炎动物模型,这些模型为研究脂肪肝和脂肪性肝炎的发病机理与治疗提供了机会。每种动物模型各有优缺点,合理应用动物模型能更好地开展脂肪肝病的实验和临床研究。本文综述了非酒精性脂肪肝及脂肪性肝炎动物模型制作方法的若干研究进展。  相似文献   

2.
Mind the gap     
The unmet needs of biomedical and clinical research are highlighted by reference to drug -induced liver injury(DILI), non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH). Examples in these areas highlight the major limitations of animal models with respect to predicting, examining and managing these clinically significant forms of liver injury. The way in which these knowledge gaps are being bridged by studies involving the use of human tissues and primary cells are described.  相似文献   

3.
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing globally. NAFLD includes non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH). NASH is the pathological form of the disease characterized by liver steatosis, inflammation, cell injury, and fibrosis. A fundamental contributor to NASH is the imbalance between lipid accretion and disposal. The accumulation of liver lipids precipitates lipotoxicity and the inflammatory contributions to disease progression. This review defines the role of dysregulated of lipid disposal in NAFLD pathophysiology. The characteristic changes in mitochondrial oxidative metabolism pathways and the factors promoting these changes across the spectrum of NAFLD severity are detailed. This includes pathway-specific and integrative perturbations in mitochondrial β-oxidation, citric acid cycle flux, oxidative phosphorylation, and ketogenesis. Moreover, well-recognized and emerging mechanisms through which dysregulated mitochondrial oxidative metabolism mediates inflammation, fibrosis, and disease progression are highlighted.  相似文献   

4.
Fatty liver disease is a multifactorial world-wide health problem resulting from a complex interplay between liver, adipose tissue and intestine and initiated by alcohol abuse, overeating, various types of intoxication, adverse drug reactions and genetic or acquired metabolic defects. Depending on etiology fatty liver disease is commonly categorized as alcoholic or non-alcoholic. Both types may progress from simple steatosis to the necro-inflammatory lesion of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH), respectively, and finally to cirrhosis and hepatocellular carcinoma. Animal models are helpful to clarify aspects of pathogenesis and progression. Generally, they are classified as nutritional (dietary), toxin-induced and genetic, respectively, or represent a combination of these factors. Numerous reviews are dealing with NASH animal models designed to imitate as closely as possible the metabolic situation associated with human disease. This review focuses on currently used mouse models of NASH with particular emphasis on liver morphology. Despite metabolic similarities most models (except those with chemically or genetically induced porphyria or keratin 18-deficiency) fail to develop the morphologic key features of NASH, namely hepatocyte ballooning and formation of histologically and immunohistochemically well-defined Mallory-Denk-Bodies (MDBs). Although MDBs are not universally detectable in ballooned hepatocytes in NASH their experimental reproduction and analysis may, however, significantly contribute to our understanding of important pathogenic aspects of NASH despite the obvious differences in etiology.  相似文献   

5.
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disorder closely linked to obesity, hyperlipidemia and type 2 diabetes and is increasingly recognized as a major health problem in many parts of the world. While early stages of NAFLD are characterized by a bland accumulation of fat (steatosis) in hepatocytes, the disease can progress to non-alcoholic steatohepatitis (NASH) which involves chronic liver inflammation, tissue damage and fibrosis and can ultimately lead to end-stage liver disease including cirrhosis and cancer. As no approved pharmacological treatment for NAFLD exists today, there is an urgent need to identify promising pharmacological targets and develop future therapies. For this purpose, basic and translational research in NAFLD animal models is indispensable. While a large number of diverse animal models are currently used in the field, there is an ongoing challenge to identify those models that mirror human pathology the closest to allow good translation of obtained results into further clinical development. This review is meant to provide a concise overview of the most relevant NAFLD animal models currently available and will discuss the strengths and weaknesses of these models with regard to their comparability to human disease conditions.  相似文献   

6.
《Free radical research》2013,47(11):869-880
Abstract

Non-alcoholic fatty liver disease (NAFLD) is now the most common liver disease affecting high proportion of the population worldwide. NAFLD encompasses a large spectrum of conditions ranging from fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and cancer. NAFLD is considered as a multifactorial disease in relation to the pathogenic mechanisms. Oxidative stress has been implicated in the pathogenesis of NAFLD and NASH and the involvement of reactive oxygen species (ROS) has been suggested. Many studies show the association between the levels of lipid oxidation products and disease state. However, often neither oxidative stress nor ROS has been characterized, despite oxidative stress is mediated by multiple active species by different mechanisms and the same lipid oxidation products are produced by different active species. Further, the effects of various antioxidants have been assessed in human and animal studies, but the effects of drugs are determined by the type of active species, suggesting the importance of characterizing the active species involved. This review article is focused on the role of free radicals and free radical-mediated lipid peroxidation in the pathogenesis of NAFLD and NASH, taking characteristic features of free radical-mediated oxidation into consideration. The detailed analysis of lipid oxidation products shows the involvement of free radicals in the pathogenesis of NAFLD and NASH. Potential beneficial effects of antioxidants such as vitamin E are discussed.  相似文献   

7.
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease affecting up to 30% of the general adult population. NAFLD encompasses a histological spectrum ranging from pure steatosis to non-alcoholic steatohepatitis (NASH). NASH can progress to cirrhosis and is becoming the most common indication for liver transplantation, as a result of increasing disease prevalence and of the absence of approved treatments. Lipidomic readouts of liver blood and urine samples from experimental models and from NASH patients disclosed an abnormal lipid composition and metabolism. Collectively, these changes impair organelle function and promote cell damage, necro-inflammation and fibrosis, a condition termed lipotoxicity. We will discuss the lipid species and metabolic pathways leading to NASH development and progression to cirrhosis, as well as and those species that can contribute to inflammation resolution and fibrosis regression. We will also focus on emerging lipid-based therapeutic opportunities, including specialized proresolving lipid molecules and macrovesicles contributing to cell-to-cell communication and NASH pathophysiology.  相似文献   

8.
Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a key pathologic mediator in its progression. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory effects. Although promoting the effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH), our studies demonstrated that induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity, and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene encoding soluble epoxide hydrolase) exhibited restored hepatic and circulating EET levels and a significantly attenuated induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are warranted.  相似文献   

9.
Non-alcoholic steatohepatitis (NASH) develops in a subset of patients with non-alcoholic fatty liver disease (NAFLD), but the exact mechanisms involved in the progression of NAFLD to NASH remain poorly understood. We investigated the role of tumor necrosis factor-α (TNF-α) in the apoptosis of hepatocytes that is related to the severity of NASH. We separated primary hepatocytes from the NAFLD liver caused by a high-fat diet. The production of intracellular reactive oxygen species was increased in steatotic hepatocytes, which were also sensitive to TNF-α. This factor induced significant apoptosis through the signal-regulating kinase 1 (ASK1) and c-Jun N-terminal kinase (JNK) pathway. We describe here a novel culture model of steatotic hepatocytes separated from the NAFLD liver, and demonstrate that TNF-α induces their apoptosis in vitro.  相似文献   

10.
Although macrophages are thought to be crucial for the pathogenesis of chronic inflammatory diseases, how they are involved in disease progression from simple steatosis to non-alcoholic steatohepatitis (NASH) is poorly understood. Here we report the unique histological structure termed “hepatic crown-like structures (hCLS)” in the mouse model of human NASH; melanocortin-4 receptor deficient mice fed a Western diet. In hCLS, CD11c-positive macrophages aggregate to surround hepatocytes with large lipid droplets, which is similar to those described in obese adipose tissue. Histological analysis revealed that hCLS is closely associated with activated fibroblasts and collagen deposition. When treatment with clodronate liposomes effectively depletes macrophages scattered in the liver, with those in hCLS intact, hepatic expression of inflammatory and fibrogenic genes is unaffected, suggesting that hCLS is an important source of inflammation and fibrosis during the progression of NASH. Notably, the number of hCLS is positively correlated with the extent of liver fibrosis. We also observed increased number of hCLS in the liver of non-alcoholic fatty liver disease/NASH patients. Collectively, our data provide evidence that hCLS is involved in the development of hepatic inflammation and fibrosis, thereby suggesting its pathophysiologic role in disease progression from simple steatosis to NASH.  相似文献   

11.
Non-alcoholic fatty liver disease (NAFLD) is emerging as one of the most common liver disorders claiming the urgent attention of both medical professionals and the public sphere because of the imminent epidemic of advanced liver injury that appendages epidemic of obesity. Recent research reveals simple triglyceride accumulation in hepatocytes (i.e., liver steatosis) frequently becoming complicated by inflammation (i.e., non-alcoholic steatohepatitis, or NASH) that may progress into more advanced stages of the disease including cirrhosis or, eventually, hepatocellular carcinoma. The exact mechanisms of the progression of NAFLD into overt NASH and advanced disease stages are largely unknown. There is urgent need in terms of both intensive research pursuits and effective practical measures to deal with this common threat.  相似文献   

12.
13.
Nonalcoholic fatty liver disease (NAFLD) is currently the most common liver disease worldwide affecting over one-third of the population in the U.S. It has been associated with obesity, type 2 diabetes, hyperlipidemia, and insulin resistance and is initiated by the accumulation of triglycerides in hepatocytes. Isolated hepatic steatosis (IHS) remains a benign process, while a subset develops superimposed inflammatory activity and progression to nonalcoholic steatohepatitis (NASH) with or without fibrosis. However, the molecular mechanisms underlying NAFLD progression are not completely understood. Liver biopsy is still required to differentiate IHS from NASH as easily accessible noninvasive biomarkers are lacking. In terms of treatments for NASH, pioglitazone, vitamin E, and obeticholic acid have shown some benefit. All of these agents have potential complications associated with long-term use. Nowadays, a complex hypothesis suggests that multiple parallel hits are involved in NASH development. However, the ‘key switch’ between IHS and NASH remains to be discovered. We have recently shown that knocking out enzymes involved in S-adenosylmethionine (SAMe) metabolism, the main biological methyl donor in humans that is abundant in the liver, will lead to NASH development in mice. This could be due to the fact that a normal SAMe level is required to establish the proper ratio of phosphatidylethanolamine to phosphatidylcholine that has been found to be important in NAFLD progression. New data from humans have also suggested that these enzymes play a role in the pathogenesis of NAFLD and that some of SAMe cycle metabolites may serve as noninvasive biomarkers of NASH. In this review, we discuss the evidence of the role of SAMe in animal models and humans with NAFLD and how studying this area may lead to the discovery of new noninvasive biomarkers and possibly personalized treatment for NASH.  相似文献   

14.
The major risk factors for non-alcoholic fatty liver disease (NAFLD) are obesity, insulin resistance and dyslipidemia. The cause for progression from the steatosis stage to the inflammatory condition (non-alcoholic steatohepatitis (NASH)) remains elusive at present. Aim of this study was to test whether the different stages of NAFLD as well as the associated metabolic abnormalities can be recreated in time in an overfed mouse model and study the mechanisms underlying the transition from steatosis to NASH.Male C57Bl/6J mice were subjected to continuous intragastric overfeeding with a high-fat liquid diet (HFLD) for different time periods. Mice fed a solid high-fat diet (HFD) ad libitum served as controls. Liver histology and metabolic characteristics of liver, white adipose tisue (WAT) and plasma were studied.Both HFD-fed and HFLD-overfed mice initially developed liver steatosis, but only the latter progressed in time to NASH. NASH coincided with obesity, hyperinsulinemia, loss of liver glycogen and hepatic endoplasmatic reticulum stress. Peroxisome proliferator-activated receptor γ (Pparγ), fibroblast growth factor 21 (Fgf21), fatty acid binding protein (Fabp) and fatty acid translocase (CD36) were induced exclusively in the livers of the HFLD-overfed mice. Inflammation, reduced adiponectin expression and altered expression of genes that influence adipogenic capacity were only observed in WAT of HFLD-overfed mice.In conclusion: this dietary mouse model displays the different stages and the metabolic settings often found in human NAFLD. Lipotoxicity due to compromised adipose tissue function is likely associated with the progression to NASH, but whether this is cause or consequence remains to be established.  相似文献   

15.
《Free radical research》2013,47(12):1405-1418
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome. The underlying causes of the disease progression in NAFLD are unclear. Recent evidences suggest endoplasmic reticulum stress in the development of lipid droplets (steatosis) and subsequent generation of reactive oxygen species (ROS) in the progression to non-alcoholic steatohepatitis (NASH). The signalling pathway activated by disruption of endoplasmic reticulum (ER) homoeostasis, called as unfolded protein response, is linked with membrane biosynthesis, insulin action, inflammation and apoptosis. ROS are important mediators of inflammation. Protein folding in ER is linked to ROS. Therefore understanding the basic mechanisms that lead to ER stress and ROS in NAFLD have become the topics of immense interest. The present review focuses on the role of ER stress and ROS in the pathogenesis of NAFLD. We also highlight the cross talk between ER stress and oxidative stress which suggest and encourage the development of therapeutics for NAFLD. Further we have reviewed various strategies used for the management of NAFLD/NASH and limitations of such strategies. Our review therefore highlights the need for newer strategies with regards to ER stress and oxidative stress.  相似文献   

16.
近年来,非酒精性脂肪性肝病的发病率正呈逐年升高趋势,且可进一步发展为非酒精性肝炎、肝硬化甚至肝癌,但其具体的发病机制目前尚未完全阐明。迄今为止,关于非酒精性脂肪性肝病较为人们所接受的是"两次打击学说",即肝脏的脂肪变性及脂质的过氧化反应。自"肠-肝轴"被提出后,关于肠道粘膜屏障功能与非酒精性脂肪性肝病的发生和发展的关系备受研究人员的关注。近些年来,关于非酒精性脂肪性肝病与肠道粘膜的机械屏障、生物屏障、化学屏障、免疫屏障方面的研究越来越多,肠粘膜的四个屏障功能与非酒精性脂肪性肝病密切相关,相互影响共同促进疾病的发生发展。本文就非酒精性脂肪性肝病与肠粘膜屏障关系的研究进展进行了综述。  相似文献   

17.
目的:对高脂饮食诱发的大鼠NASH模型与蛋氨酸胆碱缺乏饮食诱发的小鼠NASH模型进行血清学及病理学比较,并初步探讨两种模型的发病过程及机制。方法:高脂饮食喂养SD大鼠8周,蛋氨酸胆碱缺乏饮食喂养C57BL/6小鼠2周,以制备NASH模型。取材后,血清用比色法对TG、CHO、FPG的含量进行检测,用放免法对FINS的含量进行检测,并对HOMA-IR指数进行计算;肝组织制成石蜡切片及冰冻切片进行HE及油红O染色,并根据"NAFLD活动度积分"对各组肝组织进行NASH分级评估。结果:高脂饮食大鼠血清中TG、CHO、FPG、FINS的含量显著升高,经计算HOMA-IR指数显著升高;MCD小鼠血清中TG、CHO的含量显著下降,FPG、FINS的含量未发生显著性改变,经计算HOMA-IR指数未发生显著性改变。HE染色、油红O染色及NAFLD活动度积分结果显示,高脂饮食大鼠及MCD小鼠的肝组织均已发展到NASH阶段。结论:两种造模方法均可稳定的模拟人类NASH疾病的血清学及病理学变化,其中高脂饮食诱发的大鼠NASH模型可模拟人类的发病过程及机制,能够复制胰岛素抵抗、氧化应激等人类全身代谢紊乱表现,在NASH研究领域更占优势。  相似文献   

18.
Insulin resistance (IR) and obesity are important risk factors for non-alcoholic fatty liver disease (NAFLD). G protein-coupled receptor kinase 2 (GRK2) is involved in the development of IR and obesity in vivo. However, its possible contribution to NAFLD and/or non-alcoholic steatohepatitis (NASH) independently of its role on IR or fat mass accretion has not been explored. Here, we used wild-type (WT) or GRK2 hemizygous (GRK2±) mice fed a high-fat diet (HFD) or a methionine and choline-deficient diet (MCD) as a model of NASH independent of adiposity and IR. GRK2± mice were protected from HFD-induced NAFLD. Moreover, MCD feeding caused an increased in triglyceride content and liver-to-body weight ratio in WT mice, features that were attenuated in GRK2± mice. According to their NAFLD activity score, MCD-fed GRK2± mice were diagnosed with simple steatosis and not overt NASH. They also showed reduced expression of lipogenic and lipid-uptake markers and less signs of inflammation in the liver. GRK2± mice preserved hepatic protective mechanisms as enhanced autophagy and mitochondrial fusion and biogenesis, together with reduced endoplasmic reticulum stress. GRK2 protein was increased in MCD-fed WT but not in GRK2± mice, and enhanced GRK2 expression potentiated palmitic acid-triggered lipid accumulation in human hepatocytes directly relating GRK2 levels to steatosis. GRK2 protein and mRNA levels were increased in human liver biopsies from simple steatosis or NASH patients in two different human cohorts. Our results describe a functional relationship between GRK2 levels and hepatic lipid accumulation and implicate GRK2 in the establishment and/or development of NASH.  相似文献   

19.
《Genomics》2022,114(6):110518
The Muscovy duck (Cairina moschata) is an economically important poultry species, which is susceptible to fatty liver. Thus, the Muscovy duck may serve as an excellent candidate animal model of non-alcoholic fatty liver disease. However, the mechanisms underlying fatty liver development in this species are poorly understood. In this study, we report a chromosome-level genome assembly of the Muscovy duck, with a contig N50 of 11.8 Mb and scaffold N50 of 83.16 Mb. The susceptibility of Muscovy duck to fatty liver was mainly attributed to weak lipid catabolism capabilities (fatty acid β-oxidation and lipolysis). Furthermore, conserved noncoding elements (CNEs) showing accelerated evolution contributed to fatty liver formation by down-regulating the expression of genes involved in hepatic lipid catabolism. We propose that the susceptibility of Muscovy duck to fatty liver is an evolutionary by-product. In conclusion, this study revealed the potential mechanisms underlying the susceptibility of Muscovy duck to fatty liver.  相似文献   

20.
Recent studies have correlated metabolic diseases, such as metabolic syndrome and non-alcoholic fatty liver disease, with the circadian clock. However, whether such metabolic changes per se affect the circadian clock remains controversial. To address this, we investigated the daily mRNA expression profiles of clock genes in the liver of a dietary mouse model of non-alcoholic steatohepatitis (NASH) using a custom-made, high-precision DNA chip. C57BL/6J mice fed an atherogenic diet for 5 weeks developed hypercholesterolemia, oxidative stress, and NASH. DNA chip analyses revealed that the atherogenic diet had a great influence on the mRNA expression of a wide range of genes linked to mitochondrial energy production, redox regulation, and carbohydrate and lipid metabolism. However, the rhythmic mRNA expression of the clock genes in the liver remained intact. Most of the circadianly expressed genes also showed 24-h rhythmicity. These findings suggest that the biological clock is protected against such a metabolic derangement as NASH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号