首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural carbohydrates comprise an extraordinary source of energy that remains poorly utilized by the biofuel sector as enzymes have restricted access to their substrates within the intricacy of plant cell walls. Carbohydrate active enzymes (CAZYmes) that target recalcitrant polysaccharides are modular enzymes containing noncatalytic carbohydrate-binding modules (CBMs) that direct enzymes to their cognate substrate, thus potentiating catalysis. In general, CBMs are functionally and structurally autonomous from their associated catalytic domains from which they are separated through flexible linker sequences. Here, we show that a C-terminal CBM46 derived from BhCel5B, a Bacillus halodurans endoglucanase, does not interact with β-glucans independently but, uniquely, acts cooperatively with the catalytic domain of the enzyme in substrate recognition. The structure of BhCBM46 revealed a β-sandwich fold that abuts onto the region of the substrate binding cleft upstream of the active site. BhCBM46 as a discrete entity is unable to bind to β-glucans. Removal of BhCBM46 from BhCel5B, however, abrogates binding to β-1,3–1,4-glucans while substantially decreasing the affinity for decorated β-1,4-glucan homopolymers such as xyloglucan. The CBM46 was shown to contribute to xyloglucan hydrolysis only in the context of intact plant cell walls, but it potentiates enzymatic activity against purified β-1,3–1,4-glucans in solution or within the cell wall. This report reveals the mechanism by which a CBM can promote enzyme activity through direct interaction with the substrate or by targeting regions of the plant cell wall where the target glucan is abundant.  相似文献   

2.
Basal aryl hydrocarbon hydroxylase (AHH) activity and its kinetic properties were studied as a function of proliferation in C3H mouse embryo 10T12 CL8 cells. Activity was low in freshly plated cells, increased during exponential growth, peaked at confluency, and then declined. The apparent Km-values for benzo[a]pyrene (BP) and NADPH were less in proliferating (approx. 0.37 μM BP, 3.3 nM NADPH) than in confluent cells (0.74–1.39 μM BP, 33.4–53.4 nM NADPH). Cells at different growth states responded differently to benz[a]anthracene (BA) and aminophylline, an inhibitor of cyclic nucleotide phosphodiesterases. When cells were harvested at the mid log phase of growth, 12 h of exposure to aminophylline caused maximum induction, while 24 h of BA treatment were required. In contrast, at early confluence, 12 h of BA treatment gave the greatest levels of activity, while exposure to aminophylline did not induce AHH. In fact, decreases in activity were observed. These differences are indicative of different regulatory mechanisms for BA and aminophylline induction. They also suggest the regulation of basal AHH by cyclic nucleotides changes during growth. The exposure times giving maximum activity were used to determine the kinetic properties of BA-induced activity. As with basal AHH, the Km-value for BP was less in log phase (0.2–0.4 μM BP) than in confluent cells (0.64–1.05 μM BP). Moreover, the Km-values for BP and NADPH in control cultures at confluency (0.10–0.14 μM BP, 15.4–23.2 nM NADPH) were less than those for BA-treated cells (0.64 μM BP, 37.9–54.8 nM NADPH) under the same nutritional conditions. The finding that the Km-value for BP is lower in rapidly dividing cells than in confluent cells may help to explain why proliferating cells are more susceptible to transforming agents.  相似文献   

3.
In recent years, the human gut microbiome has been recognised to play a pivotal role in the health of the host. Intestinal homeostasis relies on this intricate and complex relationship between the gut microbiota and the human host. While much effort and attention has been placed on the characterization of the organisms that inhabit the gut microbiome, the complex molecular cross-talk between the microbiota could also exert an effect on gastrointestinal conditions. Blastocystis is a single-cell eukaryotic parasite of emerging interest, as its beneficial or pathogenic role in the microbiota has been a subject of contention even to-date. In this study, we assessed the function of the Blastocystis tryptophanase gene (BhTnaA), which was acquired by horizontal gene transfer and likely to be of bacterial origin within Blastocystis. Bioinformatic analysis and phylogenetic reconstruction revealed distinct divergence of BhTnaA versus known bacterial homologs. Despite sharing high homology with the E. coli tryptophanase gene, we show that Blastocystis does not readily convert tryptophan into indole. Instead, BhTnaA preferentially catalyzes the conversion of indole to tryptophan. We also show a direct link between E. coli and Blastocystis tryptophan metabolism: In the presence of E. coli, Blastocystis ST7 is less able to metabolise indole to tryptophan. This study examines the potential for functional variation in horizontally-acquired genes relative to their canonical counterparts, and identifies Blastocystis as a possible producer of tryptophan within the gut.  相似文献   

4.
Bartonella henselae causes the vasculoproliferative disorders bacillary angiomatosis (BA) and bacillary peliosis (BP). The pathomechanisms of these tumorous proliferations are unknown. Our results suggest a novel bacterial two-step pathogenicity strategy, in which the pathogen triggers growth factor production for subsequent proliferation of its own host cells. In fact, B. henselae induces host cell production of the angiogenic factor vascular endothelial growth factor (VEGF), leading to proliferation of endothelial cells. The presence of B. henselae pili was associated with host cell VEGF production, as a Pil- mutant of B. henselae was unable to induce VEGF production. In turn, VEGF-stimulated endothelial cells promoted the growth of B. henselae. Immunohistochemistry for VEGF in specimens from patients with BA or BP revealed increased VEGF expression in vivo. These findings suggest a novel bacteria-dependent mechanism of tumour growth.  相似文献   

5.
Elucidation of the molecular basis of the stability of enzymes from extremophilic organisms is of fundamental importance for various industrial applications. Due to the wealth of structural data from various species, dihydrofolate reductase (DHFR, EC 1.5.1.3) provides an excellent model for systematic investigations. In this report, DHFR from alkaliphilic Bacillus halodurans C-125 was cloned and expressed in E. coli. Functional analyses revealed that BhDHFR exhibits the most alkali-stable phenotype of DHFRs characterized so far. Optimal enzyme activity was observed in a slightly basic pH region ranging from 7.25 to 8.75. Alkali-stability is associated with a remarkable resistance to elevated temperatures (half-life of 60 min at 52.5°C) and to high concentrations of urea (up to 3 M). Although the secondary structure shows distinct similarities to those of mesophilic DHFR molecules, BhDHFR exhibits molecular features contributing to its alkaliphilic properties. Interestingly, the unique phenotype is diminished by C-terminal addition of a His-tag sequence. Therefore, His-tag-derivatized BhDHFR offers the opportunity to obtain deeper insights into the specific mechanisms of alkaliphilic adaption by comparison of the three dimensional structure of both BhDHFR molecules.  相似文献   

6.
Brain endothelial cells (ECs) are an important component of the blood-brain barrier (BBB) and play key roles in restricting entrance of possible toxic components and pathogens into the brain. However, identifying endothelial genes that regulate BBB homeostasis remains a time-consuming process. Although somatic genome editing has emerged as a powerful tool for discovery of essential genes regulating tissue homeostasis, its application in brain ECs is yet to be demonstrated in vivo. Here, we used an adeno-associated virus targeting brain endothelium (AAV-BR1) combined with the CRISPR/Cas9 system (AAV-BR1-CRISPR) to specifically knock out genes of interest in brain ECs of adult mice. We first generated a mouse model expressing Cas9 in ECs (Tie2Cas9). We selected endothelial β-catenin (Ctnnb1) gene, which is essential for maintaining adult BBB integrity, as the target gene. After intravenous injection of AAV-BR1-sgCtnnb1-tdTomato in 4-week-old Tie2Cas9 transgenic mice resulted in mutation of 36.1% of the Ctnnb1 alleles, thereby leading to a dramatic decrease in the level of CTNNB1 in brain ECs. Consequently, Ctnnb1 gene editing in brain ECs resulted in BBB breakdown. Taken together, these results demonstrate that the AAV-BR1-CRISPR system is a useful tool for rapid identification of endothelial genes that regulate BBB integrity in vivo.  相似文献   

7.
Human cytomegalovirus (HCMV) infects a variety of cell types in humans, resulting in a varied pathogenesis in the immunocompromised host. Endothelial cells (ECs) are considered an important target of HCMV infection that may contribute to viral pathogenesis. Although the viral determinants important for entry into ECs are well defined, the molecular determinants regulating postentry tropism in ECs are not known. We previously identified the UL133-UL138 locus encoded within the clinical strain-specific ULb′ region of the HCMV genome as important for the latent infection in CD34+ hematopoietic progenitor cells (HPCs). Interestingly, this locus, while dispensable for replication in fibroblasts, was required for efficient replication in ECs infected with the TB40E or fusion-inducing factor X (FIX) HCMV strains. ECs infected with a virus lacking the entire locus (UL133-UL138NULL virus) complete the immediate-early and early phases of infection but are defective for infectious progeny virus production. ECs infected with UL133-UL138NULL virus exhibited striking differences in the organization of intracellular membranes and in the assembly of mature virions relative to ECs infected with wild-type (WT) virus. In UL133-UL138NULL virus-infected ECs, Golgi stacks were disrupted, and the viral assembly compartment characteristic of HCMV infection failed to form. Further, progeny virions in UL133-UL138NULL virus-infected ECs inefficiently acquired the virion tegument and secondary envelope. These defects were specific to infection in ECs and not observed in fibroblasts infected with UL133-UL138NULL virus, suggesting an EC-specific requirement for the UL133-UL138 locus for late stages of replication. To our knowledge, the UL133-UL138 locus represents the first cell-type-dependent, postentry tropism determinant required for viral maturation.  相似文献   

8.
Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of any available feline endothelial cell lines.To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development sites such as skin, versus macro-vascular ECs, such as umbilical vein.Our model revealed intrinsic differences between human (Human Skin Microvascular ECs -HSkMEC and Human Umbilical Vein ECs - iHUVEC) and feline ECs susceptibility to Bartonella henselae infection.While no effect was observed on the feline ECs upon Bartonella henselae infection, the human ones displayed accelerated angiogenesis and wound healing.Noticeable differences were demonstrated between human micro- and macro-vasculature derived ECs both in terms of pseudo-tube formation and healing. Interestingly, Bartonella henselae effects on human ECs were also elicited by soluble factors.Neither Bartonella henselae-infected Human Skin Microvascular ECs clinically involved in bacillary angiomatosis, nor feline ECs increased cAMP production, as opposed to HUVEC.Bartonella henselae could stimulate the activation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) in homologous cellular systems and trigger VEGF production by HSkMECs only, but not iHUVEC or any feline ECs tested.These results may explain the decreased pathogenic potential of Bartonella henselae infection for cats as compared to humans and strongly suggest that an autocrine secretion of VEGF by human skin endothelial cells might induce their growth and ultimately lead to bacillary angiomatosis formation.  相似文献   

9.
The antiproliferative activity of two chito- specific agglutinins purified from Benincasa hispida (BhL) and Datura innoxia (DiL9) of different plant family origin was investigated on various cancer cell lines. Both lectins showed chitotriose specificity, by inhibiting lectin hemagglutinating activity. On further studies, it was revealed that these agglutinins caused remarkable concentration-dependent antiproliferative effect on human pancreatic cancerous cells but not on the normal human umbilical vein endothelial cells even at higher doses determined using MTT assay. The GI50 values were approximately 8.4 μg ml-1 (0.247 μM) and 142 μg ml-1(14.8 μM) for BhL and DiL9, respectively, against PANC-1 cells. The growth inhibitory effect of these lectins on pancreatic cancer cells were shown to be a consequence of lectin cell surface binding and triggering G0/G1 arrest, mitochondrial membrane depolarization, sustained increase of the intracellular calcium release and the apoptotic signal is amplified by activation of caspases executing cell death. Interestingly, these lectins also showed anti-angiogenic activity by disrupting the endothelial tubulogenesis. Therefore, we report for the first time two chito-specific lectins specifically binding to tumor glycans; they can be considered to be a class of molecules with antitumor activity against pancreatic cancer cells mediated through caspase dependent mitochondrial apoptotic pathway.  相似文献   

10.
Ribeiro Lde F  Fernandez MA 《Genetica》2004,122(3):253-260
The rRNA genes are amongst the most extensively studied eukaryotic genes. They contain both highly conserved and rapidly evolving regions. The aim of this work was to clone and to sequence the Bradysia hygida 5S rDNA gene. A positive clone was sequenced and its 346 bp sequence was analyzed against the GenBank database. Sequence analysis revealed that the B. hygida 5S (Bh5S) rDNA gene is 120 bp long and is 87% identical to the aphid Acyrthosiphon magnoliae 5S rDNA gene. The Bh5S rDNA gene presents two unusual features: a GG pair at the 5' end of the gene sequence and the localization of the polyT signal immediately after the 3' end of the gene. In situ5S hybridization experiments revealed that the Bh5S rDNA gene is localized in the autosomal A chromosome  相似文献   

11.
Glucose uptake and accumulation by Clostridium beijerinckii BA101, a butanol hyperproducing mutant, were examined during various stages of growth. Glucose uptake in C. beijerinckii BA101 was repressed 20% by 2-deoxyglucose and 25% by mannose, while glucose uptake in C. beijerinckii 8052 was repressed 52 and 28% by these sugars, respectively. We confirmed the presence of a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) associated with cell extracts of C. beijerinckii BA101 by glucose phosphorylation by PEP. The PTS activity associated with C. beijerinckii BA101 was 50% of that observed for C. beijerinckii 8052. C. beijerinckii BA101 also demonstrated lower PTS activity for fructose and glucitol. Glucose phosphorylation by cell extracts derived from both C. beijerinckii BA101 and 8052 was also dependent on the presence of ATP, a finding consistent with the presence of glucokinase activity in C. beijerinckii extracts. ATP-dependent glucose phosphorylation was predominant during the solventogenic stage, when PEP-dependent glucose phosphorylation was dramatically repressed. A nearly twofold-greater ATP-dependent phosphorylation rate was observed for solventogenic stage C. beijerinckii BA101 than for solventogenic stage C. beijerinckii 8052. These results suggest that C. beijerinckii BA101 is defective in PTS activity and that C. beijerinckii BA101 compensates for this defect with enhanced glucokinase activity, resulting in an ability to transport and utilize glucose during the solventogenic stage.  相似文献   

12.
An efficient method of Coelogyne cristata mass propagation was developed using segment of protocorm-like bodies (PLBs) (3 mm2 in size). It was observed that ½ MS medium showed to be more effective to induce shoots through PLBs segment. The explants when cultured on ½ MS media containing TDZ and CP showed relatively superior effect on shoot regeneration as compared to the media containing TDZ alone or in combination with BP. Addition of BP and CP to the medium containing NAA and BA combinations proved distinctly better for shoot multiplication than that of the medium with NAA and BA combinations alone. The highest percentage of explants producing shoots, with a maximum average of 8.1 per explant, was induced on the medium supplemented with 1.0 mg l?1 NAA and 0.5 mg l?1 BA with CP. Shoots produced an average of 15 roots per explant on ½ MS medium supplemented with 2.0 mg l?1 IBA and BP. The 4 cm height plantlets with well-developed roots were successfully acclimatized. The results suggest that CP and BP can be used effectively to initiate shooting and rooting of Coelogyne cristata. Ploidy analysis of regenerated plants using flow cytometry revealed the same ploidy level (diploid). This efficient and reliable protocol could be useful for mass multiplication and germplasm conservation of the wild medicinal orchid.  相似文献   

13.
The extravasation of lymphocytes across central nervous system (CNS) vascular endothelium is a key step in inflammatory demyelinating diseases including multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The glycosaminoglycan hyaluronan (HA) and its receptor, CD44, have been implicated in this process but their precise roles are unclear. We find that CD44−/− mice have a delayed onset of EAE compared with wild type animals. Using an in vitro lymphocyte rolling assay, we find that fewer slow rolling (<1 μm/s) wild type (WT) activated lymphocytes interact with CD44−/− brain vascular endothelial cells (ECs) than with WT ECs. We also find that CD44−/− ECs fail to anchor HA to their surfaces, and that slow rolling lymphocyte interactions with WT ECs are inhibited when the ECs are treated with a pegylated form of the PH20 hyaluronidase (PEG-PH20). Subcutaneous injection of PEG-PH20 delays the onset of EAE symptoms by ∼1 day and transiently ameliorates symptoms for 2 days following disease onset. These improved symptoms correspond histologically to degradation of HA in the lumen of CNS blood vessels, decreased demyelination, and impaired CD4+ T-cell extravasation. Collectively these data suggest that HA tethered to CD44 on CNS ECs is critical for the extravasation of activated T cells into the CNS providing new insight into the mechanisms promoting inflammatory demyelinating disease.  相似文献   

14.
The zoonotic pathogen Bartonella henselae ( Bh ) can lead to vasoproliferative tumour lesions in the skin and inner organs known as bacillary angiomatosis and bacillary peliosis. The knowledge on the molecular and cellular mechanisms involved in this pathogen-triggered angiogenic process is confined by the lack of a suitable animal model and a physiologically relevant cell culture model of angiogenesis. Here we employed a three-dimensional in vitro angiogenesis assay of collagen gel-embedded endothelial cell (EC) spheroids to study the angiogenic properties of Bh . Spheroids generated from Bh -infected ECs displayed a high capacity to form sprouts, which represent capillary-like projections into the collagen gel. The VirB/VirD4 type IV secretion system and a subset of its translocated Bartonella effector proteins (Beps) were found to profoundly modulate this Bh -induced sprouting activity. BepA, known to protect ECs from apoptosis, strongly promoted sprout formation. In contrast, BepG, triggering cytoskeletal rearrangements, potently inhibited sprouting. Hence, the here established in vitro model of Bartonella - induced angiogenesis revealed distinct and opposing activities of type IV secretion system effector proteins, which together with a VirB/VirD4-independent effect may control the angiogenic activity of Bh during chronic infection of the vasculature.  相似文献   

15.
Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs), orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin) structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs), enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation.  相似文献   

16.
Liver sinusoidal endothelial cell–derived bone morphogenetic protein 6 (BMP6) and the BMP6–small mothers against decapentaplegic homolog (SMAD) signaling pathway are essential for the expression of hepcidin, the secretion of which is considered the systemic master switch of iron homeostasis. However, there are continued controversies related to the strong and direct suppressive effect of iron on hepatocellular hepcidin in vitro in contrast to in vivo conditions. Here, we directly studied the crosstalk between endothelial cells (ECs) and hepatocytes using in vitro coculture models that mimic hepcidin signaling in vivo. Huh7 cells were directly cocultured with ECs, and EC conditioned media (CM) were also used to culture Huh7 cells and primary mouse hepatocytes. To explore the reactions of ECs to surrounding iron, they were grown in the presence of ferric ammonium citrate and heme, two iron-containing molecules. We found that both direct coculture with ECs and EC-CM significantly increased hepcidin expression in Huh7 cells. The upstream SMAD pathway, including phosphorylated SMAD1/5/8, SMAD1, and inhibitor of DNA binding 1, was induced by EC-CM, promoting hepcidin expression. Efficient blockage of this EC-mediated hepcidin upregulation by an inhibitor of the BMP6 receptor ALK receptor tyrosine kinase 2/3 or BMP6 siRNA identified BMP6 as a major hepcidin regulator in this coculture system, which highly fits the model of hepcidin regulation by iron in vivo. In addition, EC-derived BMP6 and hepcidin were highly sensitive to levels of not only ferric iron but also heme as low as 500 nM. We here establish a hepatocyte–endothelial coculture system to fully recapitulate iron regulation by hepcidin using EC-derived BMP6.  相似文献   

17.
The origin of the coronary vessels remains a mystery. Here we discuss recent studies that address this puzzle, including new work by Tian et al. recently published in Cell Research.We face a growing epidemic of coronary vascular disease. Better understanding of the development of this unique vascular system will allow development of new treatment strategies. The origin of the coronary vessels has been a longstanding mystery. Classical anatomists proposed several potential sources for coronary vessels: the proepicardium (PE), the liver, the sinus venosus (SV) and the endocardium (Figure 1). Several recent reports have used sophisticated molecular and cell biological approaches to address this mystery, but have come to apparently contradictory conclusions. Tian et al.1 use new lineage-tracing approaches to solve this puzzle, leading to new insights and new questions.Open in a separate windowFigure 1Diagram of E9.5 mouse embryo illustrating the proposed sources of coronary ECs. sv, sinus venosus; pe, proepicardium; li, liver primordium; v, ventricle; a, atrium.Initial studies in avian embryos, based on clonal retroviral labeling, dye labeling and quail-chick interspecies chimeras, indicated that coronary vascular smooth muscle and endothelial cells (vSMCs and ECs) derive from extracardiac sources. Most studies pinpointed the PE, a transient embryonic outgrowth of the septum transversum, as the cell source2. PE cells transit to the heart, where they undergo an epithelial to mesenchymal transition (EMT). Based on these data, the predominant view from the early 1990s through the mid-2000s was that coronary vessels formed through a vasculogenic process from PE-derived mesenchymal cells. However, not all studies were in agreement. For example, Poelmann et al.3 reached a different conclusion and identified the nearby liver primoridium as the cell source. This study concluded that ECs and precursors formed small vessels that initially connected to the SV and then to subepicardial cells overlying the myocardium, which subsequently penetrated the myocardium to form the coronary vessels.The mainstream view of coronary artery formation from PE-derived ECs has been re-evaluated over the past decade through the use of Cre-LoxP genetic lineage-tracing approaches in mice4,5,6,7. Several different mouse Cre lines that label populations within the PE were developed. Although these lines generally robustly label coronary vSMCs, they label a low fraction of coronary ECs (generally < 10%). Superficially, this suggests a divergence between avian and mammalian systems, but detailed comparison suggests that the results may be entirely consistent: the avian data indicate that some coronary ECs arise from the PE but the fraction of ECs that originate from PE was not determined. Both avian and murine studies could therefore be interpreted to suggest that a small fraction of coronary ECs arise from PE. A recent study further pointed out that PE contains heterogeneous cell populations, and some of these subpopulations (e.g., Sema3d+) contribute more robustly to coronary ECs than others (e.g., Tbx18+)7. Some lineages traced from the PE also contributed to ECs in the SV and endocardium, providing alternative routes whereby PE may give rise to coronary ECs. This study did not define the fraction of coronary ECs labeled by any of these subpopulations, therefore an estimate of the extent that these additional PE subpopulations contribute to coronary ECs is currently unavailable.Red-Horse et al.8 recently re-examined the endothelial lining of the SV as the origin of coronary ECs. Consistent with the study by Poelmann et al.3 in avian embryos, Red-Horse et al. observed that the first vessels of the heart tube connect to the SV. Elegant clonal labeling experiments using an EC-specific, tamoxifen-induced Cre (Cdh5-CreERT2) showed that labeling of single cells around E7.5 yielded descendant “clones” of ECs. At this point in development, PE cells do not express CDH5 and therefore these clones do not originate from this source. Most clones (74%) included SV ECs. However, its relationships with extracardiac structures, such as the liver primordium, were not investigated. Interestingly, SV ECs express venous markers, but descendant ECs belong to arterial and venous lineages. Based on these data, Red-Horse et al. concluded that most coronary ECs arise by angiogenic sprouting of SV ECs onto the developing heart, where they dedifferentiate, proliferate, form the coronary plexus, and subsequently redifferentiate into coronary arteries, capillaries and veins. While these data are compelling, to what extent this mechanism contributes to the coronary vasculature cannot be determined from this study.Wu et al.9 used a different lineage-tracing strategy to study coronary vessel origins and reached a different conclusion. This study was based on both constitutive and inducible Cre alleles driven by endocardium-specific Nfatc1 regulatory elements, which do not label PE, epicardium or SV prior to E10.5. By clonal analysis, Nfatc1-lineage cells differentiated to both artery and veins. Quantitative analysis showed that Nfatc1-labeled ECs form most intramyocardial coronary ECs (predominantly arteries) and a minority of supepicardial coronary ECs (predominantly veins). The clonal analysis of Red-Horse et al.8 also identified endocardial budding as a source of coronary vessels. Their data showed that fewer clones (24%) contained endocardial cells compared to SV cells, leading to the conclusion that endocardium makes a lesser contribution compared to the SV. However, this assumes equivalent labeling by Cdh5-CreERT2 under conditions where tamoxifen levels were limited. The frequency of endocardial cell labeling under these conditions may have been lower, for example if endocardial cells express lower levels of CreERT2.Tian et al.1 studied coronary vessel development using AplnCreERT2, a new lineage-tracing tool that selectively labels newly forming vessels but not established vessels or endocardium. Well-executed morphological and lineage-tracing experiments provide strong evidence that AplnCreERT2 pulse activation at E11.5 labels nearly all subepicardial and intramyocardial coronary vessels of the ventricular free walls. Pulse labeling at this time labeled only rare ECs in the ventricular septum, suggesting that these vessels arise from ECs that express AplnCreERT2 only after E11.5 and not from labeled ECs already present in the ventricular free walls. The endocardium appears to be an excellent candidate source for ECs in the ventricular septum. Clonal labeling experiments further demonstrated that at the single cell level, Apln+ ECs, named subepicardial ECs, retain the potential to differentiate into both arteries and veins.What is the relationship between subepicardial ECs and the proposed sites of origin for coronary ECs (PE, SV, endocardium, and liver primordium)? Using in vitro organ culture, Tian et al.1 show that these cells are generated from the SV and subsequently extend onto the ventricles. Ventricles (containing ventricular endocardium) did not generate these cells in this system, leading the authors to conclude that they arise from the SV. However, the in vitro system does not yield robust coronary vessel formation, and it is entirely possible that certain developmental processes, such as endocardial budding or epicardial differentiation, are inactive under these conditions. Thus, we can conclude that some Apln+ ECs arise from SV, but the possibility of their origin also from other sources such as endocardium, PE, or liver primordium cannot be excluded.In summary, coronary ECs arise from multiple sources, and the balance between sources likely differs by anatomic region. While many studies on coronary vessel origins appear to reach conflicting conclusions, careful considerations of the experimental approaches and their limitations suggest models consistent with most published data. For instance, perhaps endocardial budding generates most intramyocardial coronaries, while angiogenic sprouting from the SV generates most subepicardial coronaries and a subset of intramyocardial coronaries. PE cells may contribute to a fraction of both EC populations, and give rise to most of the supporting smooth muscle cells. The Apln+ subepicardial ECs may represent a key common intermediate formed from all of these sources. Evaluating the contribution of each proposed cell source to this population will be important to understand the origins and growth patterns of coronary vessels. Further progress will depend on carefully quantitating the contribution of various EC sources to coronary vessel subtypes stratified by anatomic location.Understanding the origins of coronary vessels has implications for therapeutic strategies for coronary artery diseases, as each cell source suggests distinct mechanisms. For instance, SV angiogenic sprouting would direct us to investigate the signals that induce SV EC dedifferentiation and then redifferentiation into artery and vein ECs. PE-derived ECs might be induced by enhancing adult epicardial EMT and EC differentiation, while an endocardial EC source would prompt us to understand the signals that regulate the endocardial budding and differentiation process. The work of Tian et al. and the many other studies summarized herein are yielding insights into the mystery of coronary vessel origins. Solving this puzzle will yield rich rewards.  相似文献   

18.
19.
The development of an independent blood supply by a tumor is essential for maintaining growth beyond a certain limited size and for providing a portal for metastatic dissemination. Host-derived endothelial cells (ECs) residing in and compromising the tumor vasculature originate via distinct processes known as sprouting angiogenesis and vasculogenesis. More recently ECs originating directly from the tumor cells themselves have been described although the basis for this phenomenon remains poorly understood. Here we describe in vitro conditions that allow lung and ovarian cancer cells to undergo a rapid and efficient transition into ECs that are indistinguishable from those obtained in vivo. A variety of methods were used to establish that the acquired phenotypes and behaviors of these tumor-derived ECs (TDECs) closely resemble those of authentic ECs. Xenografts arising from co-inoculated in vitro-derived TDECs and tumor cells were also more highly vascularized than control tumors; moreover, their blood vessels were on average larger and frequently contained admixtures of host-derived ECs and TDECs derived from the initial inoculum. These results demonstrate that cancer cells can be manipulated under well-defined in vitro conditions to initiate a tumor cell-to-EC transition that is largely cell-autonomous, highly efficient and closely mimics the in vivo process. These studies provide a suitable means by which to identify and perhaps modify the earliest steps in TDEC generation.  相似文献   

20.
Angiogenesis is an essential neovascularisation process, which if recapitulated in 3D in vitro, will provide better understanding of endothelial cell (EC) behaviour. Various cell types and growth factors are involved, with vascular endothelial growth factor (VEGF) and its receptors VEGFR1 and VEGFR2 key components. We were able to control the aggregation pattern of ECs in 3D collagen hydrogels, by varying the matrix composition and/or having a source of cells signalling angiogenic proteins. These aggregation patterns reflect the different developmental pathways that ECs take to form different sized tubular structures. Cultures with added laminin and thus increased expression of α6 integrin showed a significant increase (p<0.05) in VEGFR2 positive ECs and increased VEGF uptake. This resulted in the end-to-end network aggregation of ECs. In cultures without laminin and therefore low α6 integrin expression, VEGFR2 levels and VEGF uptake were significantly lower (p<0.05). These ECs formed contiguous sheets, analogous to the ‘wrapping’ pathway in development. We have identified a key linkage between integrin expression on ECs and their uptake of VEGF, regulated by VEGFR2, resulting in different aggregation patterns in 3D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号