首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following a consideration of the prerequisites for reactor comparison and the fundamental differences between stirred tank and airlift tower loop reactors, their performances are compared for the production of secondary metabolites: penicillin V by Penicillium chrysogenum, cephalosporin C by Cephalosporium acremonium, and tetracycline by Streptomyces aureofaciens. In stirred tank reactors, cell mass concentrations, volumetric productivities, and specific power inputs are higher than in airlift tower loop reactors. In the latter, efficiencies of oxygen transfer are higher, and specific productivities with regard to power input, substrate and oxygen consumptions, and yield coefficients of product formation with regard to substrate and oxygen consumptions are considerably higher than in stirred tank reactors. The prerequisites for improved performance are discussed.  相似文献   

2.
Summary Digitalis lanata cells were grown at dif-ferent dissolved-oxygen (DO) levels in 20-1 airlift reactors. A DO level of 30% saturation (using air for aeration) was found to be optimal for growth and the biotransformation ofβ-methyldigitoxin toβ-methyldigoxin. Product yield was further in-creased by using stirred tank reactors instead of the airlift reactor.  相似文献   

3.
The estimation of volumetric mass transfer coefficient, k(L)a, in stirred tank reactors using artificial neural networks has been studied. Several operational conditions (N and V(s)), properties of fluid (μ(a)) and geometrical parameters (D and T) have been taken into account. Learning sets of input-output patterns were obtained by k(L)a experimental data in stirred tank reactors of different volumes. The inclusion of prior knowledge as an approach which improves the neural network prediction has been considered. The hybrid model combining a neural network together with an empirical equation provides a better representation of the estimated parameter values. The outputs predicted by the hybrid neural network are compared with experimental data and some correlations previously proposed in the literature for tanks of different sizes.  相似文献   

4.
The optimal agitation rate for production of swainsonine from Metarhizium anisopliae grown in batch stirred tank reactors (2 to 20 l) was 400 rpm with a mixed hyphal and pelleted morphology where the specific swainsonine production rate was 9×10–2 mg g–1 cell dry wt h from 87 to 142 h. Culture of the fungus in a 6-l airlift reactor produced loose pellets and the production of swainsonine started at least 24 h earlier than in the stirred tank reactor. The final yield (5.9 mg swainsonine g–1 cell dry wt) after 168 h in the airlift reactor was 18% less than those obtained in the stirred tank reactor with an agitation rate of 400 rpm.  相似文献   

5.
Nickel-NiO-BSA-chymotrypsin has been used to hydrolyze casein in both batch and continuous stirred tank reactors. The kinetics of hydrolysis in both types of reactor were considered. Some operational problems encountered using fine powder catalysts in batch stirred tank reactors are discussed. High gradient magnetic separation was found to be a powerful catalysts retention method for magnetic support particles, particularly when using a ferromagnetic collection matrix. Nickel particles of diameter 3–7 μm were easily separated from water at a processing velocity of 39 mm/sec. Nickel powder and precipitated Fe3O4 were also separated satisfactorily using a rotating drum magnetic separator.  相似文献   

6.
Calorimetry is a robust method for online monitoring and controlling bioprocesses in stirred tank reactors. Up to now, reactor calorimeters have not been optimally constructed for pilot scale applications. Thus, the objective of this paper is to compare two different ways for designing reactor calorimeters and validate them. The “heat capacity” method based on the mass flow of the cooling liquid in the jacket was compared with the “heat transfer” method based on the heat transfer coefficient continuously measured in the cultivation of Escherichia coli VH33 in a 50 L stirred tank reactor. It was found that the values of the “heat transfer” method agreed very well with the calculated values from the oxygen consumption. By contrast, the curve of the “heat capacity” method deviated from that of the oxygen consumption calculated with the oxycaloric equivalent. In conclusion, the “heat transfer” method has been proven to have a higher degree of validity than the “heat capacity” method. Thus, it is a better and more robust means to measure heat generation of fermentations in stirred tank bioreactors on a pilot scale. Biotechnol. Bioeng. 2013; 110: 180–190. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
Oxygen transfer in the liquid-impelled loop reactor is described for a setup in which the perfluorochemical FC40 is aerated externally. Two sizes of reactors are investigated. The mass-transfer coefficient k appears to be lower with a factor of about 0.6 compared to gas liquid systems. the specific exchange area in the present experimental setup is found to be favorable when compared with gas liquid bioreactors at the same superficial dispersed-phase velocities. However, slow coalescence of the dispersed-phase drops in the phase separation section limits the dispersed-phase flow rate seriously. In Case this become crucial from the point of view of oxygen supply, special measures need to be found or alternatives such as combined sparging of air and solvent. (c) 1992 John Wiley & Sons, Inc.  相似文献   

10.
《Process Biochemistry》2007,42(1):93-97
Successful scale-up of Azadirachta indica suspension culture for azadirachtin production was done in stirred tank bioreactor with two different impellers. The kinetics of biomass accumulation, nutrient consumption and azadirachtin production of A. indica cell suspension culture were studied in a stirred tank bioreactor equipped with centrifugal impeller and compared with similar bioreactor with a setric impeller to investigate the role of O2 transfer efficiency of centrifugal impeller bioreactor on overall culture metabolism. The maximum cell mass for centrifugal impeller bioreactor and stirred tank bioreactor (with setric impeller) were 18.7 and 15.5 g/L (by dry cell weight) and corresponding azadirachtin concentrations were 0.071 and 0.05 g/L, respectively. Glucose and phosphate were identified as the major growth-limiting nutrients during the bioreactor cultivation. The centrifugal impeller bioreactor demonstrated less shearing and improved O2 transfer than the stirred tank bioreactor equipped with setric impeller with respect to biomass and azadirachtin production.  相似文献   

11.
In biochemical processes involving filamentous microorganisms, the high shear rate may damage suspended cells leading to viability loss and cell disruption. In this work, the influence of the shear conditions in clavulanic acid (CA) production by Streptomyces clavuligerus was evaluated in a 4-dm(3) conventional stirred tank (STB) and in 6-dm(3) concentric-tube airlift (ALB) bioreactors. Batch cultivations were performed in a STB at 600 and 800 rpm and 0.5 vvm (cultivations B1 and B2) and in ALB at 3.0 and 4.1 vvm (cultivations A1 and A2) to define two initial oxygen transfer conditions in both bioreactors. The average shear rate ([Formula: see text]) of the cultivations was estimated using correlations of recent literature based on experimental data of rheological properties of the broth (consistency index, K, and flow index, n) and operating conditions, impeller speed (N) for STB and superficial gas velocity in the riser (UGR) for ALB. In the same oxygen transfer condition, the [Formula: see text] values for ALB were higher than those obtained in STB. The maximum [Formula: see text] presented a strong correlation with a maximum consistency index (K (max)) of the broth. Close values of maximum CA production were obtained in cultivations A1 and A2 (454 and 442 mg L(-1)) with similar maximum [Formula: see text] values of 4,247 and 4,225 s(-1). In cultivations B1 and B2, the maximum CA production of 269 and 402 mg L(-1) were reached with a maximum [Formula: see text] of 904 and 1,786 s(-1). The results show that high values of average shear rate increase the CA production regardless of the oxygen transfer condition and bioreactor model.  相似文献   

12.
Gas holdup, mixing, liquid circulation and gas–liquid oxygen transfer were characterized in a large (∼1.5 m3) draft-tube airlift bioreactor agitated with Prochem® hydrofoil impellers placed in the draft-tube. Measurements were made in water and in cellulose fiber slurries that resembled broths of mycelial microfungi. Use of mechanical agitation generally enhanced mixing performance and the oxygen transfer capability relative to when mechanical agitation was not used; however, the oxygen transfer efficiency was reduced by mechanical agitation. The overall volumetric gas–liquid mass transfer coefficient declined with the increasing concentration of the cellulose fiber solids; however, the mixing time in these strongly shear thinning slurries was independent of the solids contents (0–4% w/v). Surface aeration never contributed more than 12% to the total mass transfer in air–water.  相似文献   

13.
A process to obtain optically pure l-alanine has been developed using batch and continuous stirred tank reactors with a new l-aminoacylase-producing bacterium Pseudomonas sp. BA2 immobilized in calcium alginate beads coated with glutaraldehyde. The maximum production of l-alanine in a continuous stirred tank reactor was 11.26 g after 2 days of operation which is higher than that previously reported.  相似文献   

14.
Continuous production of diatom Entomonies sp. was performed in mechanically stirred tank and flat-panel airlift photobioreactors (FPAP). The maximum specific growth rate of diatom from the batch experiment was 0.98 d?1. A series of dilution rate and macronutrient concentration adjustments were performed in a stirred tank photobioreactor and found that the dilution rate ranged from 0.7 to 0.8 d?1 and modified F/2 growth media containing nitrate at 3.09?mg N/L, phosphate at 2.24?mg P/L, and silicate at 11.91?mg Si/L yielded the maximum cell number density. Finally, the continuous cultivation of Entomonies sp. was conducted in FPAP using the optimal conditions determined earlier, resulting in the maximum cell number density of 19.69?×?104 cells/mL, which was approximately 47 and 73% increase from the result using the stirred tank photobioreactor fed with modified and standard F/2 growth media, respectively.  相似文献   

15.
Co-immobilized Aspergillus awamori and Zymomonas mobilis cultures were investigated in a stirred tank reactor on synthetic medium with starch as substrate at various dissolved oxygen concentrations. In a gaslift loop reactor, freely suspended and immobilized A. awamori were cultivated on synthetic medium and soluble potato starch. In the same reactor, the growth and ethanol production of freely suspended and immobilized Z. mobilis cultures were studied on synthetic medium and glucose. Co-immobilized A. awamori and Z. mobilis were cultivated in batch and continuous operations in the gaslift loop reactor on synthetic medium with starch substrate at different dissolved oxygen concentrations. The interrelations between the different process variables are discussed.  相似文献   

16.
The behaviour of dispersed gas in large aerated stirred tank reactors is modelled by means of a Markov-process, which distinguishes between small recirculation bubbles with stagnant gas content, large rising bubbles with active gas content and exchange of stagnant and active gas contents, the gas exchange region at the impeller. The measurements of the gas residence time distributions (RTDs) in an 1.5 m3 aerated stirred tank reactor with water and Penicillium chrysogenum cultivation medium are interpreted by this model.List of Symbols CPR CO2 production rate - OTR oxygen transfer rate - PRS pseudo random signal - RTD residence time distribution - V gas volume - recirculation coefficient - mean gas residence time Indices act active gas - ex gas exchange - stagn stagnant gas - tot total gas Dedicated to the 65th birthday of Professor Fritz Wagner.The authors thank Hoechst AG for the strain and the medium components, the GBF for the support of the experiments and H.M. Rüffer thanks the Verband der Chemischen Industrie for a Fond-der-Chemie scholarship.  相似文献   

17.
Production of lignin peroxidases by Phanerochaete chrysosposorium in a submerged stirred tank reactor is affected by certain critical parameters, some of which have been investigated in the present paper. These factors are: inoculum, pellet size, certain organic compounds such as polypropylene glycol or polyethylene glycol, culture conditions and composition.A rich inoculum results in formation of small pellets, fast depletion of glucose, and no production of lignin peroxidase. Reduced inoculum size prolongs the development of the culture followed by an active so-called secondary phase. The activity of the culture, however, is just enough to decolorize the blue color of Remazol dye but not strong enough to show extracellular lignin peroxidase. The presence of polypropylene glycol (PPG), polyethylene glycol (PEG) or hexadecane in the culture activates the culture towards lignin peroxidase production. The favorable effect of PPG exists only in cultures made up with tap water and reduced inoculum size at pH 4.5. Trace elements but not vitamins may be left out of the medium without impairing lignin peroxidase-producing ability. The use of desalinated water leads not only to the absence of lignin peroxidase production but also to retardation in growth of the fungi, emphasizing the need for a systematic investigation of the culture medium. The experiments were conducted in a 42 l stirred tank reactor and scaled up to 300 l reactor. Constant impeller tip speed and constant gas flow rate are not sufficient criteria for upscaling of this system.  相似文献   

18.
The production of endo and exo-polygalacturonase (PG) by Aspergillus oryzae IPT 301 was studied in a stirred tank bioreactor (STR) and an internal circulation airlift bioreactor. Using a factorial experimental design, a soluble culture medium was defined which allowed the production of exo- and endo-PG comparable to that obtained in a medium containing suspended wheat bran. The soluble medium was used in tests to compare the production of these enzymes in the STR and airlift bioreactor. In these tests, after 96 h, maximum enzymatic activity values achieved for exo- and endo-PG were 65.2 units (U) per mL and 91.3 U mL−1, in the STR, with similar activity values of 60.6 U mL−1 and 86.2 U mL−1, respectively, being achieved in the airlift bioreactor. The airlift bioreactor also showed satisfactory results regarding the oxygen transfer rate in this process, indicating its potential to be used in an eventual larger scale production of exo- and endo-PG, with lower costs for both installation and operation.  相似文献   

19.
Oxygen transfer to mycelial fermentation broths in an airlift fermentor   总被引:2,自引:0,他引:2  
Oxygen transfer rates and gas holdups were measured in mycelial fermentation broths of Chaetomium cellulolyticum and Neurospora sitophila, each cultured in a 1300-L pilot-plant-scale airlift fermentor. These cultures exhibited highly non-Newtonian flow behavior coupled with a substantial decrease in oxygen transfer rates. The volumetric mass transfer coefficients in these cultures were found to be 65-70% lower than those in water. The data were compared with the available correlations obtained for simulated fermentation broths. In general, the data for C. cellulolyticum are in satisfactory agreement with the correlations for the model media but the data for N. sitophila are higher than that predicted by the correlations. Model media based correlations are found to be applicable to the fermentation processes if the culture medium does not possess a high yield stress.  相似文献   

20.
In a 2-l stirred tank reactor (STR), maximum production rate ofitaconic acid was 0.48g/l.h , for an agitation rate of 400 rpm andan aeration rate of 0.5 vvm. In an air-lift reactor (ALR) themaximum production rate was 0.64 g/l.h at an O supply rate of0.41 l O /l. min. Power input per unit volume which gave themaximum production rates for STR and ALR were 1180 and 542 W/m 3,respectively. If O -enriched air was used in place of air for ALR,the corre-sponding power input per unit volume was decreased to 34W/m 3 . ALR requires less power input per unit volume in comparisonwith that of STR whether therefore air or O -enriched air is used.ALR would be a suitable bioreactor for a large production of itaconicacid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号