首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The condition of chymotrypsin (ChTRP)–Eudragit® (Eu) insoluble complex formation was studied with the aim of applying this information to the separation of chymotrypsin from a crude filtrate of bovine pancreas homogenate. The optimal pH of the complex precipitation was 4.60 for ChTRP–Eudragit® L100 and 5.40 for ChTRP–Eudragit® S100. The polyelectrolyte concentration necessary for the commercial enzyme precipitation was lower than 0.1% (w/v). The complex formation was inhibited by NaCl for both polyelectrolytes. The method was applied to recover the enzyme from bovine homogenate; ChTRP was precipitated by Eudragit® addition. The non-soluble complexes were separated by simple centrifugation and re-dissolved by a pH change to 8.20. The best conditions to recover ChTRP brought about a purification factor of around 4 and 90% yield.  相似文献   

2.
The main objective of this work was to investigate for the first time the molecular mechanism of complex formation between bromelain (a positively charged enzyme) and carrageenan (a natural strong polyelectrolyte, negatively charged) using spectroscopy techniques and thermodynamic approaches. The Bromelain-Carrageenan complex showed a maximal non-solubility at pH around 5.1. The solubility was dependent on pH and ionic strength of the medium. To re-dissolve the formed complex, the pH was changed and 500 mM of NaCl was added to the initial solution, proving the columbic mechanism for the formation of non-soluble complex. The formation of the carrageenan-bromelain complex increased in 8 °C the enzyme thermal stability, while its biological activity was not modified. The amount of total enzyme recovered in solution after precipitation with around 0.08% w/v of carrageenan was 85–90%.  相似文献   

3.
《Process Biochemistry》2010,45(10):1753-1756
The insoluble complex formation between alpha-amylase and the strong anionic polyelectrolyte polyacrylic acid was studied by using turbidimetric and enzymatic activity. The highest molecular weight polyacrylic acid (100,000 Da and 240,000 Da) proved to be suitable precipitating agents. They were insoluble at pH lower than 4–5, with a stoichiometric ratio polymer mol per protein mol of 1:52 and 1:154, respectively. Electrostatic interactions are not the only factor in the formation of insoluble complexes. High percentage of alpha-amylase enzymatic activity maintains throughout time, even in the presence of polyelectrolyte.The application of precipitation conditions found when applying a bovine homogenate showed that it is not suitable for purification even if it proved to be useful methodology for the concentration of the enzyme and can be used as a first step of purification.  相似文献   

4.
In the present paper the formation of complexes between positively charge polyelectrolyte (polyethyleneimine and chitosan) and Candida rugosa lipase from a crude extract and porcine lipase from pancreas commercial homogenate preparations were analyzed. The solubility of lipases-cationic polyelectrolytes formation was dependent on: polyelectrolyte densities electrical charge, polyelectrolyte and enzyme concentrations and salts present in the solution. The lipase was recovered from the non-soluble complex by adding of NaCl at a given pH. Although the polyelectrolytes did not affect lipase biological activity, both of them produced good enzyme recovery (>90%); however, purification factors were low. This methodology appears to be a good previous prepurification and concentration method, using, low-cost polymers, allows the design of a purification method where the protein of interest is present in a large volume with respect to the small amount of polyelectrolyte added.  相似文献   

5.
《Process Biochemistry》2014,49(2):244-249
The novel enzyme carrier, polyamidoamine (PAMAM) dendrimers modified macroporous polystyrene, has been synthesized by Michael addition and firstly used in the immobilization of porcine pancreas lipase (PPL) effectively by covalent attachment. The resulting carrier was characterized with the Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM), elemental analysis and thermogravimetric (TG) analysis. Meanwhile, the amount of immobilized lipase was up to 100 mg g−1 support and the factors related with the enzyme activity were investigated. The immobilization of the PPL improved their performance in wider ranges of pH and temperature. Thermal stability of the immobilized lipase also increased dramatically in comparison with the free ones and the immobilized lipase exhibited a favorable denaturant tolerance. As a biocatalyst, the immobilized lipase for batch hydrolysis of olive oil emulsion retained 85% activity after 10 times of recycling. This well-reusability of immobilized lipase was very valuable and meaningful in enzyme technology.  相似文献   

6.
An alkaline calcium dependent trypsin from the viscera of Goby (Zosterisessor ophiocephalus) was purified to homogeneity with a 16-fold increase in specific activity and 20% recovery. The purified trypsin appeared as a single band on sodium dodecyl sulphate-polyacrylamide gel (SDS-PAGE) and native-PAGE. The enzyme had an estimated molecular weight of 23.2 kDa.The optimum pH was 9.0, and the enzyme was extremely stable in various pH buffers between pH 7.0 and 11.0. The optimum temperature for enzyme activity was 60 °C, and the activity and stability of trypsin was highly dependent on the presence of calcium ion. At 60 °C, Ca2+ (5 mM) stimulated the protease activity by 220%. The trypsin kinetic constants, Km and kcat, were 0.312 mM and 2.03 s?1.The enzyme showed high stability towards non-ionic surfactants and oxidizing agent. In addition, the enzyme showed excellent stability and compatibility with some commercial solid and liquid detergents.  相似文献   

7.
The hydrolysis of phenolic compounds using an immobilized and highly active and stable derivative of laccase from Trametes versicolor is presented. The enzyme was immobilized on aldehyde supports. For this, the enzyme was enriched in amino groups by chemical modification of its carboxyl groups. The aminated enzyme was immobilized with a high recovered activity (over 60%). Aldehyde derivatives were more stable than soluble or aminated-soluble enzyme and the reference derivatives after incubation in different inactivating conditions (high temperatures, different pH values or presence of organic cosolvents). The most stable derivative was obtained immobilizing the chemically aminated enzyme at pH 10 on aldehyde supports with a stabilization factor approximately 280 fold after incubation at pH 7 and 55 °C. In addition, it was possible to prepare immobilized derivatives with a maximal enzyme loading of 60 mg g?1 of support. This derivative could be reused for 10 reaction cycles with negligible lost of activity.  相似文献   

8.
9.
Enzyme stabilization via immobilization is one of the preferred processes as it provides the advantages of recovery and reusability. In this study, Thermomyces lanuginosus lipase has been immobilized through crosslinking using 2% glutaraldehyde and hen egg white, as an approach towards CLEA preparation. The immobilization efficiency and the properties of the immobilized enzyme in terms of stability to pH, temperature, and denaturants was studied and compared with the free enzyme. Immobilization efficiency of 56% was achieved with hen egg white. The immobilized enzyme displayed a shift in optimum pH towards the acidic side with an optimum at pH 4.0 whereas the pH optimum for free enzyme was at pH 6.0. The immobilized enzyme was stable at higher temperature retaining about 83% of its maximum activity as compared to the free enzyme retaining only 41% activity at 70 °C. The denaturation of lipase in free form was rapid with a half-life of 2 h at 60 °C and 58 min at 70 °C as compared to 12 h at 60 °C and 2 h at 70 °C for the immobilized enzyme. The effect of denaturants, urea and guanidine hydrochloride on the free and immobilized enzyme was studied and the immobilized enzyme was found to be more stable towards denaturants retaining 74% activity in 8 M urea and 98% in 6 M GndHCl as compared to 42% and 33% respectively in the case of free enzyme. The apparent Km (2.08 mM) and apparent Vmax (0.95 μmol/min) of immobilized enzyme was lower as compared to free enzyme; Km (8.0 mM) and Vmax (2.857 μmol/min). The immobilized enzyme was reused several times for the hydrolysis of olive oil.  相似文献   

10.
A protein extract containing ficin was immobilized on glyoxyl agarose at pH 10 and 25 °C. The free enzyme remained fully active after 24 h at pH 10. However the enzyme immobilized on the support retained only 30% of the activity after this time using a small substrate. After checking the stability of ficin preparations obtained after different enzyme-support multi-interaction times, it was found that it reached a maximum at 3 h (40-folds more stable than the free enzyme at pH 5). The immobilized enzyme was active in a wide range of pH (e.g., retained double activity at pH 10 than the free enzyme) and temperatures (e.g., at 80 °C retained three-folds more activity than the free enzyme). The activity versus casein almost matched the results using the small substrate (60%) at 55 °C. However, in the presence of 2 M of urea, it became three times more active than the free enzyme. The immobilized enzyme could be reused five cycles at 55 °C without losing activity.  相似文献   

11.
In this research work, proline ester prodrug of acetaminophen (Pro-APAP) was synthesized and evaluated for its stability in PBS buffer at various pH and Caco-2 cell homogenate. The Pro-APAP is more stable at lower pH than higher pH, with half-life of 120 min in PBS buffer at pH 2.0, half-life of 65 min at pH 5.0, and half life of 3.5 min at pH 7.4, respectively. The half-life of Pro-APAP in Caco-2 cell homogenate is about 1 min, much shorter than the half-life in PBS buffer at pH 7.4, indicating enzymes in the cell homogenate contribute to the hydrolysis of the ester bond. Carboxypeptidase A was incubated with Pro-APAP at pH 7.4 with half-life of 3.8 min which is very close to the half life in buffer itself. This clearly indicates carboxypeptidase A is not one of the enzymes contributing to the hydrolysis of the prodrug. Physicochemical characteristics such as melting point and stability of newly synthesized prodrug were determined by MDSC technique.  相似文献   

12.
Enzyme immobilization on magnetic nanoparticles (MNPs) has been a field of intense studies in biotechnology during the past decade. The present study suggests MNPs negatively charged by docusate sodium salt (AOT) as a support for pectinase immobilization. AOT is a biocompatible anionic surfactant which can stabilize MNPs. Electrostatic adsorption can occur between enzyme with positive charge and oppositely charged surface of MNPs (ca. 100 nm). The effect of three factors, i.e. initial enzyme concentration, aqueous pH and AOT concentration in different levels was investigated on pectinase immobilization. Maximum specific activity (1.98 U/mg enzyme) of immobilized pectinase and maximum enzyme loading of 610.5 mg enzyme/g support was attained through the experiments. Initial enzyme concentration is significantly important on both loading and activity of immobilized enzyme, while pH and AOT concentration only affect the amount of immobilized enzyme. Immobilized enzyme on MNPs was recovered easily through magnetic separation. At near pH of immobilization, protein leakage in reusability of immobilized enzyme was low and activity loss was only 10–20% after six cycles. Since pH is associated with immobilization by electrostatic adsorption, the medium pH was changed to improve the release of protein from the support, as well. MNPs properties were investigated using Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FT-IR) spectroscopy, and Dynamic Light Scattering (DLS) analysis.  相似文献   

13.
An extracellular bleach stable protease producing strain was isolated from marine water sample and identified as Bacillus mojavensis A21 on the basis of the 16S rRNA gene sequencing and biochemical properties. The A21 alkaline protease was purified from the culture supernatant to homogeneity using acetone precipitation, Sephadex G-75 gel filtration and CM-Sepharose ion exchange chromatography, with a 6.43-fold increase in specific activity and 16.56% recovery. The molecular weight of the purified enzyme was estimated to be 20 kDa by SDS-PAGE and gel filtration. The enzyme was highly active over a wide range of pH from 7.0 to 13.0, with an optimum at pH 8.5. The relative activities at pH 11.0 and 12.0 were about 80 and 71.7% of that obtained at pH 8.5. The enzyme was extremely stable in the pH range of 7.0–12.0. It exhibited maximal activity at 60 °C. The thermostability of the enzyme was significantly increased by the addition of CaCl2. The activity of the enzyme was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease.The N-terminal amino acid sequence of the first 20 amino acids of the purified protease was DINGGGATLPQKLYQTSGVL. B. mojavensis A21 protease showed low homology with bacterial peptidases, suggesting that the enzyme is a new protease.The alkaline protease showed high stability towards anionic (0.1% SDS) and non-ionic (1 and 5% Tween 80 and 1% Triton X-100) surfactants. In addition, the enzyme was relatively stable towards oxidizing agents, retaining more than 79 and 70% of its initial activity after 1 h incubation in the presence of 1% H2O2 and 0.1% sodium perborate, respectively. The enzyme showed excellent stability with a wide range of commercial solid and liquid detergents at 30 and 40 °C. Considering its promising properties, B. mojavensis A21 may find potential application in laundry detergents.  相似文献   

14.
This study evaluated a series of recombinant, single activity experimental enzyme products including 13 endoglucanases (END) and 10 xylanases (XY), for their potential to improve in vitro ruminal degradation of alfalfa hay in two experiments. Based on the endoglucanase or xylanase enzymatic activities measured using complex substrates at the optimal conditions (pH 5.4, 37 °C) for the enzymes, a dose level (1 unit/g dry matter [DM]) was chosen for addition of enzymes to substrate. Enzyme products, re-suspended with water, were added to alfalfa hay (0.5 or 1.0 g DM) in culture vials in six replications. Anaerobic buffer medium (20 or 40 ml) adjusted to pH 6.0 and strained ruminal fluid (5 or 10 ml) were sequentially added to the vials and incubated for 18 h. Headspace gas production (GP) was measured throughout the incubation, and degradability of organic matter (OMD) and fibre and volatile fatty acid (VFA) concentrations were determined after 18 h of incubation. The enzyme products had a wide range of added endoglucanase or xylanase activities when determined using pure substrates and physiological conditions typical of the rumen (pH 6.0, 39 °C). In experiment 1, many END, and some XY, products increased GP and OMD. The correlation between added endoglucanase activity determined at ruminal conditions and OMD improvement was high (r = 0.71; P<0.01), whereas added activity of xylanase was not associated with OMD improvement. Two END and two XY products selected from experiment 1 were further assessed because they substantially improved GP and OMD. In experiment 2, all enzyme treatments, alone or in combination, increased total GP and DM and fibre degradabilities (P<0.05). However, the combinations of END and XY did not increase degradation of alfalfa beyond that of the component enzymes. Total VFA production was not affected by enzyme treatments although some products changed the acetate to propionate ratio. Experimental exogenous enzyme products with either endoglucanase or xylanase activity substantially improved in vitro ruminal degradation of alfalfa hay, but further improvement by combining these activities did not occur.  相似文献   

15.
A psychrothermotolerant alkaline protease isolated from Bacillus pumilus MP27 with a molecular mass ∼53 kDa was isolated from Southern ocean water samples. It was partially purified by single step TPP with purity fold of 16.65. The enzyme was found to be widely stable within a range of temperature and pH, maintaining 52.25% of its activity at 50 °C and 92% at pH 12. The enzyme exhibited an exceptional activity along with tested detergents, showing 98% stability with SDS (10 mg/ml) and ̴ 99% stability with Tide detergent (7 mg/ml). Further, the alkaline protease gene of 1152 bp was successfully cloned in pGEM-T Easy vector in E. coli DH5α. The gene sequence was further translated, modeled and molecular dynamic simulation was performed. The modeled protein was highly unstable during the first 5 ns and therefore could not able to form bonds with the ligand after 1 ns of simulation.  相似文献   

16.
Polygalacturonases are the pectinolytic enzymes that catalyze the hydrolytic cleavage of the polygalacturonic acid chain. In the present study, polygalacturonase from Aspergillus niger (MTCC 3323) was purified. The enzyme precipitated with 60% ethanol resulted in 1.68-fold purification. The enzyme was purified to 6.52-fold by Sephacryl S-200 gel-filtration chromatography. On SDS–PAGE analysis, enzyme was found to be a heterodimer of 34 and 69 kDa subunit. Homogeneity of the enzyme was checked by NATIVE-PAGE and its molecular weight was found to be 106 kDa. The purified enzyme showed maximum activity in the presence of polygalacturonic acid at temperature of 45 °C, pH of 4.8, reaction time of 15 min. The enzyme was stable within the pH range of 4.0–5.5 for 1 h. At 4 °C it retained 50% activity after 108 h but at room temperature it lost its 50% activity after 3 h. The addition of Mn2+, K+, Zn2+, Ca2+ and Al3+ inhibited the enzyme activity; it increased in the presence of Mg2+ and Cu2+ ions. Enzyme activity was increased on increasing the substrate concentration from 0.1% to 0.5%. The Km and Vmax values of the enzyme were found to be 0.083 mg/ml and 18.21 μmol/ml/min. The enzyme was used for guava juice extraction and clarification. The recovery of juice of enzymatically treated pulp increased from 6% to 23%. Addition of purified enzyme increased the %T650 from 2.5 to 20.4 and °Brix from 1.9 to 4.8. The pH of the enzyme treated juice decreased from 4.5 to 3.02.  相似文献   

17.
The objective of this work was to compare the properties of free and immobilized β-galactosidase (Aspergillus oryzae), entrapped in alginate–gelatin beads and cross-linked with glutaraldehyde. The free and immobilized forms of the enzyme showed no decrease in enzyme activity when incubated in buffer solutions in pH ranges of 4.5–7.0. The kinetics of lactose hydrolysis by the free and immobilized enzymes were studied at maximum substrate concentrations of 90 g/L and 140 g/L, respectively, a temperature of 35 °C and a pH of 4.5. The Michaelis–Menten model with competitive inhibition by galactose fit the experimental results for both forms. The Km and Vm values of the free enzyme were 52.13 ± 2.8 mM and 2.56 ± 0.3 gglucose/L min mgenzyme, respectively, and were 60.30 ± 3.3 mM and 1032.07 ± 51.6 glactose/min m3catalyst, respectively, for the immobilized form. The maximum enzymatic activity of the soluble form of β-galactosidase was obtained at pH 4.5 and 55 °C. Alternatively, the immobilized form was most active at pH 5.0 at 60 °C. The free and immobilized enzymes presented activation energies of 6.90 ± 0.5 kcal/mol and 7.7 ± 0.7 kcal/mol, respectively, which suggested that the immobilized enzyme possessed a lower resistance to substrate transfer.  相似文献   

18.
The objective of the present study was to isolate halotolerant bacteria from the sediment sample collected from Marakanam Solar Salterns, Tamil Nadu, India using NaCl supplemented media and screened for amylase production. Among the 22 isolates recovered, two strains that had immense potential were selected for amylase production and designated as P1 and P2. The phylogenetic analysis revealed that P1 and P2 have highest homology with Pontibacillus chungwhensis (99%) and Bacillus barbaricus (100%). Their amylase activity was optimized to obtain high yield under various temperature, pH and NaCl concentration. P1 and P2 strain showed respective, amylase activity maximum at 35 °C and 40 °C; pH 7.0 and 8.0; 1.5 M and 1.0 M NaCl concentration. Further under optimized conditions, the amylase activity of P1 strain (49.6 U mL?1) was higher than P2 strain. Therefore, the amylase enzyme isolated from P. chungwhensis P1 was immobilized in sodium alginate beads. Compared to the free enzyme form (49.6 U mL?1), the immobilized enzyme showed higher amylase activity as 90.3 U mL?1. The enzyme was further purified partially and the molecular mass was determined as 40 kDa by SDS–PAGE. Thus, high activity of amylase even under increased NaCl concentration would render immense benefits in food processing industries.  相似文献   

19.
Industrial application of α-galactosidase requires efficient methods to immobilize the enzyme, yielding a biocatalyst with high activity and stability compared to free enzyme. An α-galactosidase from tomato fruit was immobilized on galactose-containing polymeric beads. The immobilized enzyme exhibited an activity of 0.62 U/g of support and activity yield of 46%. The optimum pH and temperature for the activity of both free and immobilized enzymes were found as pH 4.0 and 37 °C, respectively. Immobilized α-galactosidase was more stable than free enzyme in the range of pH 4.0–6.0 and more than 85% of the initial activity was recovered. The decrease in reaction rate of the immobilized enzyme at temperatures above 37 °C was much slower than that of the free counterpart. The immobilized enzyme shows 53% activity at 60 °C while free enzyme decreases 33% at the same temperature. The immobilized enzyme retained 50% of its initial activity after 17 cycles of reuse at 37 °C. Under same storage conditions, the free enzyme lost about 71% of its initial activity over a period of 7 months, whereas the immobilized enzyme lost about only 47% of its initial activity over the same period. Operational stability of the immobilized enzyme was also studied and the operational half-life (t1/2 was determined as 6.72 h for p-nitrophenyl α-d-galactopyranoside (PNPG) as substrate. The kinetic parameters were determined by using PNPG as substrate. The Km and Vmax values were measured as 1.07 mM and 0.01 U/mg for free enzyme and 0.89 mM and 0.1 U/mg for immobilized enzyme, respectively. The synthesis of the galactose-containing polymeric beads and the enzyme immobilization procedure are very simple and also easy to carry out.  相似文献   

20.
The activity of Prunus dulcis (sweet almond) β-glucosidase at the expense of p-nitrophenyl-β-d-glucopyranoside at pH 6 was determined, both under steady-state and pre-steady-state conditions. Using crude enzyme preparations, competitive inhibition by 1–5 mM imidazole was observed under both kinetic conditions tested. However, when imidazole was added to reaction mixtures at 0.125–0.250 mM, we detected a significant enzyme activation. To further inspect this effect exerted by imidazole, β-glucosidase was purified to homogeneity. Two enzyme isoforms were isolated, i.e. a full-length monomer, and a dimer containing a full-length and a truncated subunit. Dimeric β-glucosidase was found to perform much better than the monomeric enzyme, independently of the kinetic conditions used to assay enzyme activity. In addition, the sensitivity towards imidazole was found to differ between the two isoforms. While monomeric enzyme was indeed found to be relatively insensitive to imidazole, dimeric β-glucosidase was observed to be significantly activated by 0.125–0.250 mM imidazole under pre-steady-state conditions. Further, steady-state assays revealed that the addition of 0.125 mM imidazole to reaction mixtures increases the Km of dimeric enzyme from 2.3 to 6.7 mM. The activation of β-glucosidase dimer by imidazole is proposed to be exerted via a conformational transition poising the enzyme towards proficient catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号