首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim JH  Glick RE  Melis A 《Plant physiology》1993,102(1):181-190
Long-term imbalance in light absorption and electron transport by photosystem I (PSI) and photosystem II (PSII) in chloroplasts brings about changes in the composition, structure, and function of thylakoid membranes. The response entails adjustment in the photosystem ratio, which is optimized to help the plant retain a high quantum efficiency of photosynthesis (W.S. Chow, A. Melis, J.M. Anderson [1990] Proc Nat Acad Sci USA 87: 7502-7506). The dynamics of photosystem ratio adjustment were investigated upon the transfer of pea {Pisum sativum} plants from a predominantly PSI-light to a predominantly PSII-light environment and vice versa. The concentration of functional components (primary electron accepting plastoquinone of PSII [QA], P700) and that of constituent proteins were monitored during acclimation by A difference spectrophotometry and immunoblot analysis, respectively. Fully reversible changes in photosystem ratio occurred with a half-time of about 20 h. They involved closely coordinated changes in the concentration of the QA, reaction center protein D1, D2, and the 9-kD apoprotein of the cytochrome b559 for PSII. Similarly, closely coordinated changes in the relative concentration of P700 and reaction center proteins of PSI were observed. The level of chlorophyll b and that of the light-harvesting complex II changed in accordance with the concentration of PSII in the acclimating thylakoids. Overall, adjustments in the photosystem ratio in response to PSI- or PSII-light conditions appeared to be a well-coordinated reaction in the chloroplast. The response was absent in the chlorophyll b-less chlorina f2 mutant of barley (Hordeum vulgare) and in a phycobilisomeless mutant of Agmenellum quadruplicatum, suggesting that photosystem accessory pigments act as the light-quality perception molecules and that PSI and PSII themselves play a role in the signal transduction pathway.  相似文献   

2.
Blue Light Regulation of Cell Division in Chlamydomonas reinhardtii   总被引:1,自引:0,他引:1       下载免费PDF全文
Münzner P  Voigt J 《Plant physiology》1992,99(4):1370-1375
A delay in cell division was observed when synchronized cultures of the unicellular green alga Chlamydomonas reinhardtii growing under heterotrophic conditions were exposed to white light during the second half of the growth period. This effect was also observed when photosynthesis was blocked by addition of the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Light pulses of 10 minutes were sufficient to induce a delay in cell division in the presence or absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. A delay in cell division was induced by blue light but not by illumination with red or far-red light. The equal intensity action spectrum revealed two peaks at 400 and 500 nm.  相似文献   

3.
Photosystem II (PSII) is a multiprotein complex that splits water and initiates electron transfer in photosynthesis. The central part of PSII, the PSII core, is surrounded by light-harvesting complex II proteins (LHCIIs). In higher plants, two or three LHCII trimers are seen on each side of the PSII core whereas only one is seen in the corresponding positions in Chlamydomonas reinhardtii, probably due to the absence of CP24, a minor monomeric LHCII. Here, we re-examined the supramolecular organization of the C. reinhardtii PSII-LHCII supercomplex by determining the effect of different solubilizing detergents. When we solubilized the thylakoid membranes with n-dodecyl-β-d-maltoside (β-DM) or n-dodecyl-α-d-maltoside (α-DM) and subjected them to gel filtration, we observed a clear difference in molecular mass. The α-DM-solubilized PSII-LHCII supercomplex bound twice more LHCII than the β-DM-solubilized supercomplex and retained higher oxygen-evolving activity. Single-particle image analysis from electron micrographs of the α-DM-solubilized and negatively stained supercomplex revealed that the PSII-LHCII supercomplex had a novel supramolecular organization, with three LHCII trimers attached to each side of the core.  相似文献   

4.
Neale PJ  Melis A 《Plant physiology》1990,92(4):1196-1204
The effect of strong irradiance (2000 micromole photons per square meter per second) on PSII heterogeneity in intact cells of Chlamydomonas reinhardtii was investigated. Low light (LL, 15 micromole photons per square meter per second) grown C. reinhardtii are photoinhibited upon exposure to strong irradiance, and the loss of photosynthetic functioning is due to damage to PSII. Under physiological growth conditions, PSII is distributed into two pools. The large antenna size (PSIIα) centers account for about 70% of all PSII in the thylakoid membrane and are responsible for plastoquinone reduction (Qb-reducing centers). The smaller antenna (PSIIβ) account for the remainder of PSII and exist in a state not yet able to photoreduce plastoquinone (Qb-nonreducing centers). The exposure of C. reinhardtii cells to 60 minutes of strong irradiance disabled about half of the primary charge separation between P680 and pheophytin. The PSIIβ content remained the same or slightly increased during strong-irradiance treatment, whereas the photochemical activity of PSIIα decreased by 80%. Analysis of fluorescence induction transients displayed by intact cells indicated that strong irradiance led to a conversion of PSIIβ from a Qb-nonreducing to a Qb-reducing state. Parallel measurements of the rate of oxygen evolution revealed that photosynthetic electron transport was maintained at high rates, despite the loss of activity by a majority of PSIIα. The results suggest that PSIIβ in C. reinhardtii may serve as a reserve pool of PSII that augments photosynthetic electron-transport rates during exposure to strong irradiance and partially compensates for the adverse effect of photoinhibition on PSIIα.  相似文献   

5.
Heavy metals are highly toxic compounds for cells. In this report we demonstrate that the expression of Chlamydomonas reinhardtii thioredoxins (TRX) m and h is induced by heavy metals. Upon exposure of the cells to Cd and Hg, a strong accumulation of both messengers was observed. Western-blot experiments revealed that among these two TRXs, only TRX h polypeptides accumulated in response to the toxic cations. A biochemical analysis indicated that heavy metals inhibit TRX activity, presumably by binding at the level of their active site. Sequence analysis of the C. reinhardtii TRX h promoter revealed the presence of cis-acting elements related to cadmium induction. The origins and purposes of this regulation are discussed. Our data suggest, for the first time to our knowledge, a possible implication of TRXs in defense mechanisms against heavy metals.  相似文献   

6.
Beck CF  Acker A 《Plant physiology》1992,98(3):822-826
Gametic differentiation of the unicellular green alga Chlamydomonas reinhardtii proceeds in two steps controlled by the extrinsic signals nitrogen deficiency and light. Nitrogen deprivation induces the differentiation of vegetative cells to sexually immature pregametes. A light signal is required to convert the pregametes to gametes. Both signals are also required for the maintenance of mating competence. Two converging signal transduction chains are proposed to control gamete formation. For the differentiation of pregametes to gametes, a fluence rate-dependent reaction, requiring continuous irradiation, is suggested by photobiological experiments.  相似文献   

7.
Blue light was specifically required for the induction of carbonicanhydrase (CA) activity in Chlamydomonas reinhardtii. The enhancingeffect of blue light (460 nm) was saturated at energy fluencerate as low as 0.6-0.8 W/m2. The wavelength dependency curvehad a peak at 460 nm with no effect at wavelengths above 510nm, thus showing the strong similarities to other blue lightresponses in microalgae. CA induction was strongly inhibitedby UV irradiation at 280 nm. Experiments with the flavin quencher,potassium iodide, suggested that flavin is somehow involvedin CA induction. 1On leave from the Institute of Biological Sciences, Collegeof Arts and Sciences, University of the Philippines at Los Banos,4031 College, Laguna, Philippines. (Received August 29, 1988; Accepted November 26, 1988)  相似文献   

8.
Addition of ethylene glycol (EG) or NaCl to cells of Chlamydomonasreinhardtii induced transient non-photochemical quenching ofChl fluorescence correlated with the inhibition of photosyntheticoxygen evolution. The induction of the quenching and subsequentrecovery proceeded not only in the light but also in the dark.The quenching was almost unaffected by the protonophore nigericin,suggesting the involvement of a type of non-photochemical quenchingattributable to a state 2 transition. Higher concentrationsof EG or NaCl caused a delay of the recovery of the maximumfluorescence yield (Fm'). Dark reduction rate of P700+ afterthe application of a flash light in the presence of DCMU wasenhanced by the hyperosmotic shock, suggesting a stimulatedreduction of the intersystem electron carriers. It is proposedthat the osmotic stress stimulates electron donation from stromalcomponents via the NAD(P)H dehydrogenase, which results in thereduction of the intersystem chain and triggering of a state2 transition leading to stimulated cyclic PSI activity. (Received May 16, 1995; Accepted July 26, 1995)  相似文献   

9.
The analysis of FDMR spectra, recorded at multiple emission wavelengths, by a global decomposition technique, has allowed us to characterise the triplet populations associated with Photosystem I and Photosystem II of thylakoids in the green alga Chlamydomonas reinhardtii. Three triplet populations are observed at fluorescence emissions characteristic of Photosystem II, and their zero field splitting parameters have been determined. These are similar to the zero field parameters for the three Photosystem II triplets previously reported for spinach thylakoids, suggesting that they have a widespread occurrence in nature. None of these triplets have the zero field splitting parameters characteristic of the Photosystem II recombination triplet observed only under reducing conditions. Because these triplets are generated under non-reducing redox conditions, when the recombination triplet is undetectable, it is suggested that they may be involved in the photoinhibition of Photosystem II. At emission wavelengths characteristic of Photosystem I, three triplet populations are observed, two of which are attributed to the P(700) recombination triplet frozen in two different conformations, based on the microwave-induced fluorescence emission spectra and the triplet minus singlet difference spectra. The third triplet population detected at Photosystem I emission wavelengths, which was previously unresolved, is proposed to originate from the antenna chlorophyll of the core or the unusually blue-shifted outer antenna complexes of this organism.  相似文献   

10.
Polypeptides of 21, 36 and 37 kDa are induced in the unicellular green alga Chlamydomonas reinhardtii Dang. when cells are transferred from high (2%) to low (0.03%) CO2 concentrations. The synthesis of these polypeptides is correlated with the induction of the CO2-concentrating mechanism. In this work we studied the effect of the growth conditions on the synthesis of these polypeptides with the aim of clarifying whether the induction of all three of these low-CO2-inducible polypeptides requires the same environmental factor. Our results showed that induction of the 21- and 36-kDa polypeptides under low-CO2 conditions occurred only in the light, while the 37-kDa periplasmic carbonic anhydrase (EC 4.2.1.1) was induced in light, darkness, and in both synchronous and asynchronous cultures. In addition, induction of these polypeptides appeared to be determined more by the O2/CO2 ratio than by the CO2 concentrations. None of these polypeptides could be induced in either of two different mutants of C. reinhardtii, one lacking ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) and the other with inactive enzyme. Our results indicate that the 21- and 36-kDa polypeptides are regulated by a mechanism different from that controlling the 37-kDa polypeptide.Abbreviations pCA (periplasmic) carbonic anhydrase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - TAP Trisacetate phosphate medium The authors thank Prof. M. Spalding (Iowa State University, USA) for providing antisera to LIP-21 and LIP-36. We thank Prof. S. Bartlett and Dr. J. Moroney (Louisiana State University, USA) for providing antibodies to C. reinhardtii, Rubisco and 37-kDa pCA, respectively. This work was supported by the Instituto Tecnologico de Canarias.  相似文献   

11.
Pröschold T  Harris EH  Coleman AW 《Genetics》2005,170(4):1601-1610
Chlamydomonas reinhardtii, the first alga subject to a genome project, has been the object of numerous morphological, physiological, and genetic studies. The organism has two genetically determined mating types (plus and minus) and all stages of the simple life cycle can be evoked in culture. In the nearly 60 years since the first standard laboratory strains were isolated, numerous crosses and exchanges among laboratories have led to some confusion concerning strain genealogy. Here we use analyses of the nuclear internal transcribed spacer regions and other genetic traits to resolve these issues, correctly identify strains currently available, and analyze phylogenetic relationships with all other available similar chlamydomonad types. The presence of a 10-bp indel in ITS2 in some but not all copies of the nuclear ribosomal cistrons of an individual organism, and the changing ratios of these in crosses, provide a tool to investigate mechanisms of concerted evolution. The standard C. reinhardtii strains, plus C. smithii +, plus the new eastern North American C. reinhardtii isolates, comprise one morphological species, one biological species of high sexual intercompatibility, and essentially identical ITS sequences (except the tip of helix I of ITS2). However, variant RFLP patterns characterize strains from each geographic site.  相似文献   

12.
We measured picosecond time-resolved fluorescence of intact Photosystem I complexes from Chlamydomonas reinhardtii and Arabidopsis thaliana. The antenna system of C. reinhardtii contains about 30-60 chlorophylls more than that of A. thaliana, but lacks the so-called red chlorophylls, chlorophylls that absorb at longer wavelength than the primary electron donor. In C. reinhardtii, the main lifetimes of excitation trapping are about 27 and 68 ps. The overall lifetime of C. reinhardtii is considerably shorter than in A. thaliana. We conclude that the amount and energies of the red chlorophylls have a larger effect on excitation trapping time in Photosystem I than the antenna size.  相似文献   

13.
The unicellular green alga Chlamydomonas reinhardtii is able to take up methylammonium/ammonium from the medium at different stages of its sexual life cycle. Vegetative cells and pre‐gametes mostly used a low‐affinity system (LATS) component, but gametes obtained after light treatment of N‐deprived pre‐gametes expressed both LATS and high‐affinity system (HATS) components for the uptake of methylammonium/ammonium. The activity of the LATS component was stimulated by light in only 5 min in a process independent of protein synthesis. By using the lrg6 mutant that produces sexually competent gametes in the dark, light effects on ammonium transport and gamete differentiation have been separately analysed. We have found light regulation of four Amt1 genes: Amt1; 1, Amt1; 2, Amt1; 4 and Amt1; 5. Whereas light‐dependent expression of Amt1; 1, Amt1; 2 and Amt1; 4 was independent of gametogenesis, and that of Amt1; 5 was activated in the lrg6 mutant, suggesting a connection between this transporter and the subsequent events taking place during gametogenesis.  相似文献   

14.
The photosystem stoichiometry in Dunaliella salina thylakoidswas measured during cell growth in a fully contained culture.In dilute cultures, obtained after inoculation of cells intofresh growth medium, the PS II/PS I stoichiometry was about2.2/1.0. This ratio was gradually lowered to about 1.2/1.0 inmature cultures. The decrease of the PS II/PS I ratio is discussedin terms of increasing self-shading in the culture and increasingpH in the growth medium. Changes in the pH occurred from 7.7in young cultures to 8.9 in mature ones and caused a significantdepletion of soluble CO2 from the growth medium. A correlationof the CO2/HCO3 ratio in the growth medium with the PSII/PS I ratio in the thylakoid membrane is presented. 1 Permanent address: Department of Physics, Palacky University,tr. Svobody 26, 771 46 Olomouc, Czechoslovakia (Received September 12, 1990; Accepted April 4, 1991)  相似文献   

15.
Laboratory strains of Chlamydomonas reinhardtii, which are descendantsof a 1945 isolate by G.M. Smith (Harris 1989), were dividedinto two groups depending upon whether the vegetative cellsrequire light to differentiate into gametes under ammonium ion-starvedconditions. Light-dependent (LD) strains were unable to becomegametes in the dark, while light-independent (LI) strains coulddo so. All the wild-type strains isolated recently from thefield showed light-dependency, suggesting that the LD-phenotypeis the wild-type. The LD-cells failed to acquire flagellar agglutinability,to accumulate cell body agglutinins, or to form mating structuresin the dark, but did so rapidly after transfer to light. Moreover,the light-induced LD-gametes, but not the Li-gametes, lost theirmating ability, cell body agglutinins, and mating structuresafter transfer to darkness, indicating that the LD-cells requirelight not only for gametic differentiation but also for maintenanceof gametic activity. (Received July 4, 1997; Accepted October 17, 1997)  相似文献   

16.
The effects of light quality on the formation of the PSI complexwere examined in Synechocystis PCC6714 and in Plectonema boryanum.The rate of increase in levels of core polypeptides of PSI,PsaA/B, doubled upon shift from Chl a-absorbed light (PSI light)to phycobilisome-ab-sorbed light (PSII light). The elevatedrate was decreased upon the reverse shift. Half time of theacceleration was approximately 10 min, and that of the decreasewas approximately 4 min. The rate of degradation of the polypeptideswas far lower than the rate of the increase under either lightregime. Neither synthesis nor degradation of the PsbA and PsbCpolypeptides of PSII was significantly altered by the lightquality. We conclude that synthesis of the PSI complex is chromaticallyregulated to allow adjustments in photosystem stoichiometry.The level of mRNA for PsaA/B was not altered by the light regime.Anomalous inhibition by chloramphenicol suggested that the regulationoccurs at a step(s) other than the peptide elongation step,perhaps at the initiation of the ribosome cycle or at the insertionof Chl a for the stabilization of the polypeptides. The pho-toreductionof protochlorophyllide (Pchlide) was compared with the synthesisof the polypeptides in a mutant of Plectonema boryanum thatlacked Pchlide dark reductase (YFC1004). The results indicatedthat the synthesis of stable PsaA/B polypeptides was not limitedby the reduction of Pchlide, although the synthesis did dependon a supply of Chl a. 1Present address: Department of Plant Biology, University ofMaryland at College Park, MD 20742, U.S.A. 2Present address: Department of Marine Bioscience, Fukui Pre-fecturalUniversity, Obama, Fukui, 917 Japan  相似文献   

17.
A cDNA with sequence similarity to isocitrate lyase (ICL) genes was isolated from the unicellular eukaryotic green alga Chlamydomonas reinhardtii as a light-induced mRNA in the carotenoid biosynthetic mutant strain FN68. The 416 amino acid open reading frame shows significant sequence similarity to isocitrate lyases of bacteria (70%), molds (48%), yeasts (45%), and plants (47%).Expression of the Chlamydomonas ICL gene was tested in the mutant strain FN68, which when grown in the dark fails to accumulate carotenoids and is deficient in chlorophyll, and in CC400G, a strain that accumulates wild-type levels of carotenoids and chlorophyll. In vegetative CC400G cells, ICL mRNA accumulated to a high level in the dark and declined to a barely detectable level within 30 min of exposure to light. This response was more sensitive to white (tungsten filament) or red light than green or blue light, excluding cryptochrome and rhodopsin as the photoreceptor. These results are consistent with excitation by chlorophyll and/or a phytochrome-related photoreceptor. In vegetative FN68 cells, ICL mRNA abundance was very low in the dark, but increased dramatically in response to light. At intensities above threshold, excitation by far-red or red light-induced ICL mRNA accumulation to the highest levels. The threshold of the response was lowest for far-red and blue light. These results are consistent with excitation of a photochromic far-red-responsive pigment.  相似文献   

18.
The remarkable capability of photosystem II (PSII) to oxidize water comes along with its vulnerability to oxidative damage. Accordingly, organisms harboring PSII have developed strategies to protect PSII from oxidative damage and to repair damaged PSII. Here, we report on the characterization of the THYLAKOID ENRICHED FRACTION30 (TEF30) protein in Chlamydomonas reinhardtii, which is conserved in the green lineage and induced by high light. Fractionation studies revealed that TEF30 is associated with the stromal side of thylakoid membranes. By using blue native/Deriphat-polyacrylamide gel electrophoresis, sucrose density gradients, and isolated PSII particles, we found TEF30 to quantitatively interact with monomeric PSII complexes. Electron microscopy images revealed significantly reduced thylakoid membrane stacking in TEF30-underexpressing cells when compared with control cells. Biophysical and immunological data point to an impaired PSII repair cycle in TEF30-underexpressing cells and a reduced ability to form PSII supercomplexes after high-light exposure. Taken together, our data suggest potential roles for TEF30 in facilitating the incorporation of a new D1 protein and/or the reintegration of CP43 into repaired PSII monomers, protecting repaired PSII monomers from undergoing repeated repair cycles or facilitating the migration of repaired PSII monomers back to stacked regions for supercomplex reassembly.Oxygenic photosynthesis is essential for almost all life on Earth, as it provides the reduced carbon and the oxygen required for respiration. A key enzyme in oxygenic photosynthesis is PSII, which catalyzes the light-driven oxidation of water. The core of PSII in algae and land plants contains D1 (PsbA), D2 (PsbD), CP43 (PsbC), CP47 (PsbB), the α-subunit (PsbE) and β-subunit (PsbF) of cytochrome b559, as well as several intrinsic low-molecular-mass subunits. The core monomer is associated with the extrinsic oxygen-evolving complex (OEC) consisting of OEE1 (PSBO), OEE2 (PSBP), and OEE3 (PSBQ), which stabilize the inorganic Mn4O5Ca cluster required for water oxidation (for review, see Pagliano et al., 2013). PSII core monomers assemble into dimers to which, at both sides, light-harvesting proteins (LHCII) bind to form PSII supercomplexes. In land plants, each PSII dimer binds two each of the monomeric minor LHCII proteins CP24, CP26, and CP29 in addition to up to four major LHCII trimers (Caffarri et al., 2009; Kouřil et al., 2011). Biochemical evidence suggests that, in the thylakoid membrane, up to eight LHCII trimers can be present per PSII core dimer, presumably because of the existence of a pool of extra LHCII (Kouřil et al., 2013). In Chlamydomonas reinhardtii, lacking CP24, each PSII dimer binds two each of the CP26 and CP29 monomers as well as up to six major LHCII trimers (Tokutsu et al., 2012). The reaction center proteins D1 and D2 bind all the redox-active cofactors required for PSII electron transport (Umena et al., 2011). Light captured by the internal antenna proteins CP43 and CP47 and the outer antenna induces charge separation in PSII, which in turn enables the OEC to oxidize water and provide electrons to the electron transfer chain. In land plants and green algae, PSII supercomplexes are localized to stacked regions of the thylakoid membranes, while the synthesis of PSII cores is considered to take place in stroma lamellae.A particular feature of PSII is its vulnerability to light, with the D1 protein being a target of light-induced damage and the damage being proportional to the photon flux density (PFD) applied (Tyystjärvi and Aro, 1996). To cope with this damage, an elaborate, highly conserved repair mechanism has evolved termed the PSII repair cycle, during which damaged PSII complexes are partially disassembled and the defective D1 protein is replaced by a de novo synthesized copy (for review, see Nixon et al., 2010; Komenda et al., 2012; Mulo et al., 2012; Nath et al., 2013a; Nickelsen and Rengstl, 2013; Tyystjärvi, 2013; Järvi et al., 2015). Photodamage occurs at all light intensities, but when the rate of damage exceeds the capacity for repair, photoinhibition is manifested as a decrease in the proportion of active PSII reaction centers (Aro et al., 1993). While PSII photodamage occurs in the supercomplexes in the stacked membrane regions, the replacement of damaged D1 takes place in stroma lamellae (Aro et al., 2005). Thus, the PSII repair cycle requires the lateral migration of PSII complexes, which is impaired by the macromolecular crowding in stacked thylakoid membranes (Kirchhoff, 2014). Lateral migration of damaged PSII complexes is facilitated by thylakoid membrane unfolding and PSII supercomplex disassembly. Both processes are enhanced by the phosphorylation of the PSII core subunits D1, D2, CP43, and PsbH, which is mainly mediated by the protein kinase STATE TRANSITION8 (STN8; Tikkanen et al., 2008; Fristedt et al., 2009; Herbstová et al., 2012; Nath et al., 2013b; Wunder et al., 2013). Efficient PSII supercomplex disassembly also requires the THYLAKOID FORMATION1 (THF1)/NON-YELLOW COLORING4 (NYC4)/Psb29 protein (Huang et al., 2013; Yamatani et al., 2013). After the migration of PSII monomers to unstacked thylakoid regions, PSII core subunits are dephosphorylated by the PSII core phosphatase PBCP (Samol et al., 2012), which is required for the efficient degradation of D1 (Koivuniemi et al., 1995; Rintamäki et al., 1996; Kato and Sakamoto, 2014). Degradation of D1 is subsequently realized by the membrane-integral FtsH protease (Lindahl et al., 2000; Silva et al., 2003) and by lumenal and stromal Deg proteases (Haussühl et al., 2001; Kapri-Pardes et al., 2007; Sun et al., 2010). Degradation is assisted by the THYLAKOID LUMEN PROTEIN18.3 (TLP18.3), presumably by its phosphatase activity and ability to interact with lumenal Deg1 (Sirpiö et al., 2007; Wu et al., 2011; Zienkiewicz et al., 2012). D1 proteolysis follows the partial disassembly of the PSII complex, during which CP43 and low-molecular-mass subunits are released to generate a CP43-free PSII monomer (Aro et al., 2005). Thereafter, a newly synthesized D1 copy is cotranslationally inserted from a plastidial 70S ribosome into the thylakoid membrane and processed by the CARBOXYL TERMINAL PEPTIDASE A (CTPA; Zhang et al., 1999, 2000; Che et al., 2013). In Arabidopsis (Arabidopsis thaliana), the D1 synthesis rate appears to be negatively regulated by the PROTEIN DISULFIDE ISOMERASE6 (PDI6; Wittenberg et al., 2014). Moreover, yet unknown steps during PSII repair require the stromal cyclophilin ROTAMASE CYP4 and stromal HEAT SHOCK PROTEIN70 (Schroda et al., 1999; Yokthongwattana et al., 2001; Cai et al., 2008). The PSII repair cycle is completed by the reassembly of the CP43 protein, ligation of the OEC, back migration of PSII to stacked membrane regions, and supercomplex formation. Except for CtpA, all mentioned factors appear to be specific for PSII repair, while many more auxiliary factors play roles in PSII de novo synthesis and repair (for review, see Järvi et al., 2015).In this study, we report on the functional characterization of the THYLAKOID ENRICHED FRACTION30 (TEF30) protein in C. reinhardtii. In this organism, TEF30 was first identified in a proteomics study on isolated thylakoid membranes (Allmer et al., 2006). TEF30 attracted our attention because its abundance increased 1.7-fold in membrane-enriched fractions of C. reinhardtii cells that had been shifted from 41 to 145 µmol photons m−2 s−1 for 8 h (Mettler et al., 2014; Supplemental Fig. S1). The TEF30 ortholog in Arabidopsis M-ENRICHED THYLAKOID PROTEIN1 (MET1; where M stands for mesophyll cells) was functionally characterized only recently (Bhuiyan et al., 2015). Both MET1 and TEF30 interact quantitatively with monomeric PSII core particles at the stroma side of the thylakoid membranes and play a role in the assembly of PSII monomers and/or their migration to stacked membrane regions for supercomplex assembly. While MET1 appears to exert this function during PSII de novo biogenesis and during the PSII repair cycle in Arabidopsis, TEF30 appears to function exclusively during PSII repair in C. reinhardtii.  相似文献   

19.
The inhibitor of mRNA synthesis, 6-methylpurine, inhibited nitrate reductase derepression in either ammonium-grown or methylammonium-treated wild-type cells of Chlamydomonas reinhardtii, but not in nitrogen-starved cells. In contrast, 6-methylpurine did not inhibit nitrate reductase synthesis in the methylammonium-resistant mutant 2170 (ma-1) either grown on ammonium, treated with methylammonium or nitrogen starved, but did inhibit the continuous synthesis of nitrate reductase, which required the presence of nitrate in the media. In both wild-type and mutant 2170 grown on ammonium and transferred to nitrate media, cycloheximide immediately prevented nitrate reductase derepression when added either at the beginning or at different times of induction treatment. Unlike wild-type cells, mutant 2170 was able to take up either nitrate or nitrite simultaneously with ammonium in whose presence nitrate and nitrite reductases were synthesized. However, synthesis of nitrate reductase was progressively inhibited in the mutant cells when the intracellular ammonium levels were raised as a result of an increase in either the external pH or the extracellular ammonium concentrations. The results rule out the existence of maturase-like proteins in Chlamydomonas and indicate that ammonium has a double effect on the regulation of nitrate reductase synthesis: (a) it prevents nitrate reductase mRNA production; and (b) it controls negatively the expression of this mRNA.  相似文献   

20.
The mitochondrial respiratory chain in plants, some protists and many fungi consists of the ATP-coupling cyanide-sensitive cytochrome pathway and the cyanide-resistant alternative respiratory pathway. The alternative pathway is mediated by alternative oxidase (AOX). Although AOX has been proposed to play essential roles in nutrient stress tolerance of plants and protists, the effects of sulfur (S) deprivation, on AOX are largely unknown. The unicellular green alga Chlamydomonas reinhardtii reacts to S limitation conditions with the induced expression of many genes. In this work, we demonstrated that exposure of C. reinhardtii to S deprivation results in the up-regulation of AOX1 expression and an increased AOX1 protein. Furthermore, S-deprived C. reinhardtii cells display the enhanced AOX1 capacity. Moreover, nitrate assimilation regulatory protein (NIT2) is involved in the control of the AOX1 gene expression in the absence of S. Together, the results clearly indicate that AOX1 relates to S limitation stress responses and is regulated in a NIT2-dependent manner, probably together with yet-unknown regulatory factor(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号