首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bilayer to hexagonal phase transition of dioleoylphosphatidylethanolamine has been detected for the first time by differential scanning calorimetry. The observed transition is dependent on scan rate. This dependence can be explained by assuming that at rapid scan rates, the rate of conversion of bilayer to hexagonal phase is too slow at low temperatures for equilibration to take place. At higher temperatures the rate of interconversion becomes more rapid. The transition is observed to occur at 14°C using a scan rate of 0.74 K/min while it is centered at 8°C using a scan rate of 0.19 K/min. The enthalpy of the transition is 290 ± 40 cal/mol lipid and the transition is characterized by a ΔCp of −9 ± 1 mcal K−1 (g lipid)−1. The bilayer to hexagonal phase transition of dielaidoylphosphatidylethanolamine and of 1-palmitoy1-2-oleoylphosphatidylethanolamine occurs at 65.6°C and 71.4°C, respecitvely, with a corresponding transition enthalpy of 450 ± 20 and 400 ± 30 cal/mol lipid. The transitions of these phosphatidylethanolamines, occuring at higher temperatures, are independent of scan rate and show a higher degree of cooperativity than that of dioleoylphosphatidylethanolamine. Compared with the gel to liquid-crystalline transition of bilayer phospholipids the transition to hexagonal phase has a much lower enthalpy.  相似文献   

2.
Ross PD  Howard FB 《Biopolymers》2003,68(2):210-222
To assess the thermodynamic contribution of the 5-methyl group of thymine, we have studied the two-stranded helical complexes poly(dA).poly(dU) and poly(dA).poly(dT) and the three-stranded complexes--poly(dA).2poly(dU), poly(dA).poly(dT).poly(dU) and poly(dA).2poly(dT)--by differential scanning calorimetry, and uv optical melting experiments. The thermodynamic quantities associated with the 3 --> 2, 2 --> 1, and 3 --> 1 melting transitions are found to vary with salt concentration and temperature in a more complex manner than commonly believed. The transition temperatures, T(m), are generally not linear in the logarithm of concentration or activity of NaCl. The change in enthalpy and in entropy upon melting varies with salt concentration and temperature, and a change in heat capacity accompanies each transition. The poly(dA).2poly(dU) triple helix is markedly different from poly(dA).2poly(dT) in both its CD spectrum and thermodynamic behavior, while the poly(dA).poly(dT).poly(dU) triple helix resembles poly(dA).2poly(dT) in these properties. In comparing poly(dA).2poly(dT) with either the poly(dA).poly(dT).poly(dU) or the poly(dA).2poly(dU) triplexes, the substitution of thymine for uracil in the third strand results in an enhancement of stability against the 3 --> 2 dissociation of deltadeltaG degrees = -135 +/- 85 cal (mol A)(-1) at 37 degrees C. This represents a doubling of the absolute stability toward dissociation compared to the triplexes with poly(dU) as the third strand. The poly (dA).poly (dT) duplex is more stable than poly(dA).poly(dU) by deltadeltaG degrees = -350 +/- 60 cal (mol base pair)(-1) at 37 degrees C. Poly(dA).poly(dT) has 50% greater stability than poly(dA).poly(dU) as a result of the dT for dU substitution in the duplex.  相似文献   

3.
Hydrated bovin brain gangliosides have been studied by differential scanning calorimetry, X-ray diffraction, and polarized light microscopy. Over the hydration range 18–50 wt.% H2O, mixed brain gangliosides exhibit a hexagonal mesophase structure, in which the ganglioside molecules form hexagonally packed rod-like structures. The apolar lipid chains radiate from the center of the rods, with the sugar groups on the cylinder surface in contact with water. At higher water contents, an isotropic micellar solution is formed.Over the hydration range 20–30 wt.% H2O, two small thermal transitions with peak maxima at 30°C and 46°C are observed by differential scanning calorimetry. These transitions broaden and move apart in temperature as the hydration is increased to 50 wt.% H2O. X-ray diffraction data indicate that this double transition is associated with a hydrocarbon chain rearrangement from a disordered state to another, possibly more disordered, state. Thus, the gangliosides, although membrane lipid components, have physical characteristics which are very different from those of the membrane phospholipids.  相似文献   

4.
J Shah  R I Duclos  Jr    G G Shipley 《Biophysical journal》1994,66(5):1469-1478
The structural and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine (C(18):C(2)-PC) were studied as a function of hydration. A combination of differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the phase behavior of C(18):C(2)-PC. At low hydration (e.g., 20% H2O), the differential scanning calorimetry heating curve shows a single reversible endothermic transition at 44.6 degrees C with transition enthalpy delta H = 6.4 kcal/mol. The x-ray diffraction pattern at -8 degrees C shows a lamellar structure with a small bilayer periodicity d = 46.3 A and two wide angle reflections at 4.3 and 3.95 A, characteristic of a tilted chain, L beta' bilayer gel structure. Above the main transition temperature, a liquid crystalline L alpha phase is observed with d = 53.3 A. Electron density profiles at 20% hydration suggest that C(18):C(2)-PC forms a fully interdigitated bilayer at -8 degrees C and a noninterdigitated, liquid crystalline phase above its transition temperature (T > Tm). Between 30 and 50% hydration, on heating C(18):C(2)-PC converts from a highly ordered, fully interdigitated gel phase (L beta') to a less ordered, interdigitated gel phase (L beta), which on further heating converts to a noninterdigitated liquid crystalline L alpha phase. However, the fully hydrated (> 60% H2O) C(18):C(2)-PC, after incubation at 0 degrees C, displays three endothermic transitions at 8.9 degrees C (transition I, delta H = 1.6 kcal/mol), 18.0 degrees C (transition II), and 20.1 degrees C (transition III, delta HII+III = 4.8 kcal/mol). X-ray diffraction at -8 degrees C again showed a lamellar gel phase (L beta') with a small periodicity d = 52.3 A. At 14 degrees C a less ordered, lamellar gel phase (L beta) is observed with d = 60.5 A. However, above the transition III, a broad, diffuse reflection is observed at approximately 39 A, consistent with the presence of a micellar phase. The following scheme is proposed for structural changes of fully hydrated C(18):C(2)-PC, occurring with temperature: L beta' (interdigitated)-->L beta (interdigitated)-->L alpha(noninterdigitated)-->Micelles. Thus, at low temperature C(18):C(2)-PC forms a bilayer gel phase (L beta') at all hydrations, whereas above the main transition temperature it forms a bilayer liquid crystalline phase L alpha at low hydrations and a micellar phase at high hydrations (> 60 wt% water).  相似文献   

5.
Thermal and stability properties of B17, the 17 % N-terminal domain of apo B, were carried out using differential scanning calorimetry spectroscopy, where the thermal characteristics of the polypeptide were studied and analyzed. The heat capacity data of B17 showed that the protein undergoes two transitions between 50 and 90 °C, with T m’s at 65.9 and 74.8 °C. While the first transition showed immediate reversibility, the second one—with the higher T m—necessitated a longer cooling (several days) period for its reversibility to be observed and both transitions could be seen in the heat capacity profile of B17. Moreover, the van’t Hoff enthalpies determined via calorimetric measurements agreed with the values calculated from the CD analysis reported previously.  相似文献   

6.
Thermal transitions were measured by differential scanning calorimetry for rabbit cardiac sarcolemma in 3-(N-morpholino)propanesulfonic acid buffer at pH 7.5, in glycerol-buffer and dimethyl sulfoxide - buffer mixtures, after heat denaturation, and after enzymatic degradation of the proteins. Specific solvent effects on the protein transitions were observed. Glycerol stabilized some of the four protein transitions, while dimethyl sulfoxide destabilized all protein transitions. The thermal transitions in the lower temperature range were studied for both the membranes and the lipid extracted from the membranes. A very small endotherm was observed for both the lipid extracted from the sarcolemma and the intact membrane (0.1-0.2 cal/g; 1 cal = 4.1868 J). A larger endotherm was observed in both the glycerol-buffer and dimethyl sulfoxide - buffer mixtures. Major perturbation of the protein by enzymatic degradation (papain or trypsin digestion), by heat denaturation, or by reaction with excess N-ethylmaleimide all produced larger endotherms near 20 degrees C. The very small magnitude of the endotherm near 20 degrees C suggests that it is not a typical gel - liquid crystalline transition of the bilayer. However, the occurrence of an endotherm in the extracted lipid suggests that some reorientation of lipid is involved.  相似文献   

7.
The interaction of the galactocerebroside, N-palmitoylgalactosylsphingosine (NPGS), with cholesterol has been studied by differential scanning calorimetry (DSC) and x-ray diffraction. Thermal and structural studies demonstrate complex behavior characterized by two endothermic transitions: transition I (TI approximately equal to 50-60 degrees C) corresponding to an NPGS-cholesterol bilayer gel----bilayer liquid crystal transition II (TII where TI less than TII less than TNPGS) corresponding to an NPGS bilayer crystal (stable E form)----bilayer liquid crystal transition. For mixtures containing from 6 to 80 mol % cholesterol, x-ray diffraction studies at 22 degrees C (T less than TI) indicate two separate lamellar phases; an NPGS crystal bilayer phase and a cholesterol monohydrate phase. For cholesterol concentrations less than 50 mol % at TI less than T less than TII, NPGS-cholesterol liquid crystal bilayer and excess NPGS crystal bilayer phases are observed. For greater than 50 mol % cholesterol concentrations at these temperatures, an excess cholesterol monohydrate phase coexists with the NPGS-cholesterol liquid crystal bilayers. At T greater than TII, complete NPGS-cholesterol miscibility is only observed for less than 50 mol % cholesterol concentrations, whereas at greater than 50 mol % cholesterol an excess cholesterol phase is present. The solid phase immiscibility of cerebroside and cholesterol at low temperatures is suggested to result from preferential NPGS-NPGS associations via hydrogen bonding. The unique thermal and structural behavior of NPGS-cholesterol dispersions is contrasted with the behavior of cholesterol-phosphatidycholine and cholesterol-sphingomyelin bilayers. Thermal and structural studies of NPGS in dipalmitoylphosphatidylcholine (DPPC)/cholesterol (1:1, molar ratio) bilayers have been performed. For dispersions containing less than 20 mol % NPGS at 22 degrees C there are no observable calorimetric transitions and x-ray diffraction studies indicate complete lipid miscibility. At greater than 20 mol % NPGS, a high temperature transition is observed that is shown by x-ray diffraction studies to be due to an excess NPGS crystal bilayer----liquid crystal bilayer transition. Complete miscibility of NPGS in DPPC/cholesterol bilayers is observed at T greater than TNPGS. The properties of NPGS/DPPC/cholesterol bilayers are discussed in terms of the lipid composition of the myelin sheath.  相似文献   

8.
The relationship between lipid composition and phase transition was investigated by differential scanning calorimetry for intact and membrane phospholipid extracts of wild-type (w/t) and the cel-(Tw 40) mutant of Neurospora crassa. The cel-(Tw 40) mutant (grown on minimal, sucrose medium supplemented with Tween 40 at approximately 34 degrees C) had approximately twice the saturated fatty acid content of w/t organisms grown at approximately 22 degrees C. The gel-liquid crystal phase transitions of ergosterol-free extracts derived from w/t and cel-(Tw 40) occur at -31 and -11 degrees C, respectively. The heats of transition (delta H) of these extracts were 1 and 13 cal/g, respectively. The addition of ergosterol (the predominant sterol in Neurospora) to the phospholipid extracts decreased the observed heats of transition, but did not alter the transition temperature. Intact Neurospora, whether w/t or cal-(Tw 40) did not manifest similar gel-liquid crystal phase transitions in the differential scanning calorimeter. However, an endothermic peak at approximately 30 degrees C was observed in intact cells and extracted phospholipids of both w/t and cel-(Tw 40) organisms. This peak was insensitive to the addition of ergosterol, had a low heat content (delta H congruent to 1 cal/g), and was reversible.  相似文献   

9.
The thermal unfolding of myosin rod, light meromyosin (LMM), and myosin subfragment 2 (S-2) was studied by differential scanning calorimetry (DSC) over the pH range of 6.5–9.0 in 0.5M KCl and either 0.20M sodium phosphate or 0.15M sodium pyrophosphate. Two rod samples were examined: one was purified by Sephadex G-200 without prior denaturation (native rod), and the other was purified by a cycle of denaturation-renaturation followed by Sephacryl S-200 chromatography (renatured rod). There were clearly distinguishable differences in the calorimetric behavior of these two samples. At pH 7.0 in phosphate the DSC curves of native rod were deconvoluted into six endothermic two-state transitions with melting temperatures in the range of 46–67°C and a total enthalpy of 4346 kJ/mol. Under identical conditions the melting profile of LMM was resolved into five endothermic peaks with transition temperatures in the range of 45–66°C, and the thermal profile of long S-2 was resolved into two endotherms, 46 and 57°C. Transition 4 observed with native rod was present in the deconvoluted DSC curve for long S-2, but absent in the DSC curve for LMM. This transition was identified with the high-temperature transition detected with long S-2 and attributed to the melting of the coiled-coil α-helical segment of subfragment 2 (short S-2). The low-temperature transition of long S-2 was attributed to the unfolding of the hinge region. The smallest transition temperatures observed for all three fragments were 45–46°C. It is suggested that the most unstable domain in rod (domain 1) responsible for the 46°C transition includes both the hinge region, which is the C-terminal segment of long S-2, and a short N-terminal segment of LMM. This domain, accounting for 21% of the rod structure, contains the S-2/LMM junction, and upon proteolytic cleavage yields the C-terminal and N-terminal ends of long S-2 and LMM, respectively. Over the pH range of 6.5–7.5, the observed specific heat of denaturation of rod was approximately equal to the sum of the specific heats of LMM and S-2. This finding provides an additional argument for the existence of independent domains in myosin rod.  相似文献   

10.
The heat denaturation of pepsinized bovine nonfibrillar and fibrillar collagen was studied by differential scanning calorimetry. For fibrillar preparations that had been rapidly precipitated with stirring at low ionic strength, then resuspended at physiological ionic strength, multiple denaturational transitions were observed. At heating rates of 10°C/min, melting endotherms occurred at about 44, 50, 53, and 57°C. Fibrillar collagen that was slowly gelled without stirring at physiological ionic strength exhibited a similar series of endotherms, but the lower melting transitions were less conspicuous. In contrast, nonfibrillar bovine collagen in acidic solution showed only a single denaturational transition at 40°C. Nonfibrillar solutions at pH 7, to which inhibitors of fibrillogenesis were added, showed a major endotherm as high as 46°C. These results suggest that reconstituted fibrillar collagen contains a heterogeneous fibril population, possibly including molecules in a nonfibrillar state. It was proposed that the multiple melting endotherms of such preparations were due to sequential melting of molecular and fibril classes, each with a distinct melting temperature. The fibrillar classes may represent three or more types of banded and nonbanded species that differ from each other in packing order, collagen concentration, and possibly also in fibril width and level of cross-linking.  相似文献   

11.
D P Siegel  J L Banschbach 《Biochemistry》1990,29(25):5975-5981
Inverted cubic (QII) phases form in hydrated N-methylated dioleoylphosphatidylethanolamine (DOPE-Me). Previous work indicated that QII phases in this and other systems might be metastable structures. Whether or not QII phases are stable has important implications for models of the factors determining the relative stability of bilayer and nonbilayer phases and of the mechanisms of transitions between those phases. Here, using X-ray diffraction and very slow scan rate differential scanning calorimetry (DSC), we show that thermodynamically stable QII phases form slowly during incubation of multilamellar samples of DOPE-Me at constant temperature. The equilibrium L alpha/QII phase transition temperature is 62.2 +/- 1 degree C. The transition enthalpy is 174 +/- 34 cal/mol, about two-thirds of the L alpha/HII transition enthalpy observed at faster scan rates. This implies that the curvature free energy of lipids in QII phases is substantially lower than in L alpha phases and that this reduction is substantial compared to the reduction achieved in the HII phase. The L alpha/QII transition is slow and is not reliably detected with DSC until the temperature scan rate is reduced to ca. 1 degrees C/h. At faster scan rates, the HII phase forms at a reproducible temperature of 66 degrees C. This HII phase is metastable until ca. 72-79 degrees C, where the equilibrium QII/HII transition seems to occur. These results, as well as the induction of QII phases in similar systems by temperature cycling (observed by others), are consistent with a theory of L alpha/QII/HII transition mechanisms proposed earlier (Siegel, 1986c).  相似文献   

12.
The change in surface tension of solutions of poly-L -lysine in water has been studied as a function of temperature at various pH values. The changes at various temperatures have been correlated with changes in the circular dichroic spectra reflecting conformational change. In addition to the major transition at 50°C attributed to the conversion of the α-helical → β conformation, two other transitions have been observed at 30°C and 80°C. A minimum in the surface tension value was observed at pH 10, near the pK value for poly-L -lysine. It was concluded that at this pH the concentration of hydrophobic groups at the surface was a maximum.  相似文献   

13.
The phase transition of the purple membrane observed by differential scanning calorimetry (Jackson, M.B. and Sturtevant, J.M. (1978) Biochemistry 17, 911–915) has been investigated by X-ray diffraction, circular dichroism and absorption spectrum, in comparison with the phase transition in the brown holo-membrane. The two-dimensional crystal of bacteriorhodopsin transformed into two-dimensional liquid around 74–78°C in the purple membrane and around 50–60°C in the brown holo-membrane. The X-ray diffraction patterns obtained at 78°C for the purple membrane and at 60°C for the brown holo-membrane exhibit several broad peaks. Analysis of the pattern suggests that bacteriorhodopsin molecules aggregate in trimers even above the phase transition temperature. The negative circular dichroism band in the visible region is still present at 80°C in the purple membrane and at 60°C in the brown holo-membrane, but becomes negligibly small at 70°C in the brown holo-membrane. The 560 nm absorption peak due to bacteriorhodopsin changes its position and height drastically around 80°C in the brown holo-membrane as in the purple membrane. X-ray diffraction studies have been made on membranes of total lipids extracted from the purple membrane. No indication of the phase transition has been found between ?81°C and 77°C.  相似文献   

14.
The unfolding and further denaturation of IgG and its F(ab) and F(c) fragments were studied both on a macroscopic and molecular level, using differential scanning calorimetry and circular dichroism spectroscopy, respectively. It was shown that the structural integrity of the F(ab) and F(c) units was retained after fragmentation of the IgG. The F(ab) fragment denatured at approximately 61 degrees C and the F(c) fragment at 71 degrees C. The structural transitions observed in the whole IgG is the sum effect of those determined for the isolated F(ab) and F(c) fragments.  相似文献   

15.
The storage stability of alcohol dehydrogenase from yeast has been considerably improved by the use of additives. Glycerol is an effective cryoprotectant at ?196 and ?20°C. At 4°C, glycerol and dl-α-glycerophosphate are stabilizers, while at 30°C dl-α-glycerophosphate, 3-phosphoglyceric acid, phosphocreatine, 6-phosphogluconic acid, phosphoarginine, phosphoserine and sucrose are examples of stabilizers. While no single mechanism can be adduced, stabilization by NAD+ and 5′-AMP may be attributed to binding at the active centre. Cryoprotection by glycerol is attributed to maintenance of the pH within the range at which the enzyme is stable. dl-α-Glycerophosphate caused a shift of 16°C in the transition temperature of the enzyme, as measured by differential scanning calorimetry.  相似文献   

16.
Synthesis and physical properties of a new anthracene fatty acid, 9-(2-anthryl)nonanoic acid, and the corresponding anthracene-phosphatidylcholines which were obtained by condensing the acid with sn-1-palmitoyl-lysophosphatidylcholine (PAPC) and with egg lysophosphatidylcholine (EAPC) are described. Differential scanning calorimetry experiments show that these lipids can undergo a liquid-crystal to gel phase transition at temperatures of 15°C and 18°C for EAPC and PAPC, respectively. In monolayers, PAPC exhibits a compression curve nearly superimposable to that of dipalmitoylphosphatidylcholine (DPPC), with a molecular area of 0.48 nm2 at π = 30 mN m?1. The data indicate that in these lipids, the anthracene group is only slightly more bulky than a normal acyl chain and that it does not significantly affect the regular phospholipid molecular packing. In ethanol solutions or when incorporated into egg phosphatidylcholine liposomes in a molar ratio of 1%, these lipids display UV absorption spectra and fluorescence emission spectra similar to those of 2-methyl anthracene. For EAPC liposomes, a broad and structureless fluorescence emission spectrum centered at around 450 nm, was recorded, suggesting the occurrence of anthracene excimers. As ascertained by UV spectrophotometry, differential scanning calorimetry, fluorescence polarization and anthracene photodimerization experiments, EAPC displays good miscibility properties with lipids in the liquid state (egg phosphatidylcholine) or in the gel state (distearoylphosphatidylcholine (DSPC)). The potential of these anthracene derivatives for studying the dynamics and the topological distribution of lipids in biomembranes is discussed.  相似文献   

17.
Cholesteryl sodium sulphate (CS) crystallizes as the dihydrate, the crystal structure of which is known. On heating the dihydrate, solid state phase transitions are observed at 65°C and 95°C and melting occurs at 165°C. The structure of the high temperature phases has not been determined. Cholesteryl dihydrogen phosphate (CP) is not isostructural with any phases of CS. It undergoes a phase transition at 50°C and melts at 190°C. In systems with water CS is unstable whereas it was possible to determine the phase diagram of CP. In most of the composition range a crystalline hydrate is in equilibrium with a gel-phase. The latter has remarkable properties in that lamellar order exists with the 46 Å lipid bilayer interleaved with water layers up to 1000 Å. The monofilm behaviour of CS and CP at different pH levels is also reported.  相似文献   

18.
As measured by two assays of biological activity, fibronectin was readily denatured by heat. Both by the rat liver slice assay and by gelatin-latex agglutination, 90% of the activity disappeared in about 10 min at 60 °C. In contrast, immunological activity, as measured by microcomplement fixation, showed little change at 10 min and was at least 60% as great as unheated fibronectin after 20–50 min at 60 °C. Binding of heparin was unaffected by heating up to 52 min, but at very long times (48 hr at 60 °C), it also was lost. Differential scanning calorimetry of native fibronectin showed three endothermal denaturing transitions, at 68, 82, and 119 °C. Enthalpies of denaturation for the three transitions are approximately 2.6, 0.4, and 0.7 cal/g of flbronectin. These results are consistent with a three-domain structure for fibronectin. The domain which unfolds at 68 °C is associated with gelatin binding and cell. binding. The 82 °C domain appears to be associated with much of the immunological activity, and the 119 °C domain with heparin binding, as well as with some immunological activity. Residual immunological activity after loss of heparin binding may reside in nonordered portions of the molecule.  相似文献   

19.
The application of 136 atm of helium pressure to an aqueous dispersion of dipalmitoylphosphatidylcholine increased the temperature of the primary phase transition at 40.4 ± 0.2 °C by 3.0 °C. The lower temperature pretransition at 30.5 ± 0.5 °C, thought to be due to phosphate headgroup reorganization, was increased by 1.7 °C. Addition of 4% dipalmitoylphosphatidic acid to the dipalmitoylphosphatidylcholine affected the phase transition in the head group region more than in the hydrocarbon chain region. The pressure and temperature data obtained, taken together with the literature value for the bilayer volume expansion during solid-fluid phase transition, and inserted into the Clausius-Clapeyron equation yield a ΔH value of 8.8 kcal/mole for this phase transition. This value is within experimental error of the ΔH value obtained from differential scanning calorimetry and serves to support the validity of the data and the experimental technique. Phase transition was observed by electron spin resonance measurement of the exclusion of the small spin label Tempo (2,2,6,6-tetramethylpiperidine-N-oxyl) from the solid domains of the bilayer. This result offers a possible explanation for the direct antagonism by high pressure of the effects of the inhalation anesthetics.  相似文献   

20.
The effects of carnauba wax addition on the physical state of palm kernel oil-in-water emulsions were investigated. The oil-in-water emulsion (40 wt% oil + 60 wt% aqueous phase) kept the liquid state at 25°C irrespective of the presence or absence of carnauba wax in the oil phase. The emulsion containing the wax transformed from the liquid state to the solid state by shearing after storage for 20 h at 4°C, although the liquid-solid transition was not observed for the emulsion not containing the wax upon the same treatment. The viscoelasticity of the solid emulsions was demonstrated by small-deformation mechanical testing. Analysis of flow behavior of the emulsions showed that the change in physical properties of the emulsion containing the wax at 4°C was caused by the shearing at a low shear rate, around 50 s?1–100 s?1. According to the transition from the liquid state to the solid state of the emulsion containing the wax, the aggregation of oil droplets was found to occur to a large extent. The results of differential scanning calorimetry and surface pressure–surface area isotherms suggested that triglyceride molecules of palm kernel oil were more oriented at the oil–water interfaces in the emulsions after the wax addition. Based on these results, it is thought that carnauba wax is important in destabilization of palm kernel oil-in-water emulsions by modifying the physical state of the oil triglyceride molecules at the interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号