首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection with the wild-type baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) results in complete death of Spodoptera frugiperda (Sf) cells. However, infection of Sf cells with AcMNPV carrying a mutation or deletion of the apoptotic suppressor gene p35 allowed the cloning of surviving Sf cells that harbored persistent viral genomes. Persistent infection established with the virus with p35 mutated or deleted was blocked by stable transfection of p35 in the host genome or by insertion of the inhibitor of apoptosis (iap) gene into the viral genome. These artificially established persistently virus-infected cells became resistant to subsequent viral challenge, and some of the cell lines carried large quantities of viral DNA capable of early gene expression. Continuous release of viral progenies was evident in some of the persistently virus-infected cells, and transfection of p35 further stimulated viral activation of the persistent cells, including the reactivation of viruses in those cell lines without original continuous virus release. These results have demonstrated the successful establishment of persistent baculovirus infections under laboratory conditions and that their establishment may provide a novel continuous, nonlytic baculovirus expression system in the future.  相似文献   

2.
We use data from the serial passage of co-occluded recombinant Autographa californica nuclear polyhedrosis virus (AcMNPV) to estimate the viral multiplicity of infection of cells within infected insects. Co-occlusion, the incorporation of wild-type and mutant virus genomes in the same occlusion body, has been proposed as a strategy to deliver genetically modified viruses as insecticides in a way that contains their spread in the environment. It may also serve as a means whereby naturally occurring mutant forms of NPVs can be maintained in a stable polymorphism. Here, a recombinant strain of AcMNPV was constructed with a deletion of its polyhedrin gene, rendering it incapable of producing occlusion bodies (i.e., occlusion negative). This was co-occluded with wild-type AcMNPV and used to infect fifth-instar Trichoplusia ni larvae. The fate of both genotypes was monitored over several rounds of insect infection. Levels of the occlusion-negative virus genome declined slowly over successive rounds of infection. We applied these data to a model of NPV population genetics to derive an estimate of 4.3 ± 0.3 viral genomes per occlusion body-producing cell.  相似文献   

3.
A small RNA virus infectious to Trichoplusia ni larvae (TRV) was observed as a contaminant of several Autographa californica nuclear polyhedrosis virus preparations (AcMNPV). The extent of contamination in various AcMNPV preparations was studied by means of serial enrichment passages through T. ni larvae and enzyme-linked immunosorbent assay (ELISA). TRV could not be detected by ELISA in the original preparation of AcMNPV polyhedra prepared in 1968 even after five enrichment passages. Antibody inactivation offers a possible prophylactic method against TRV but temperature inactivation (55°C) does not. Although TRV reduced larval weight, it had little or no effect on bioassays of AcMNPV to T. ni and Heliothis virescens.  相似文献   

4.
The restriction sites of Autographa californica nuclear polyhedrosis virus (AcMNPV) E2 DNA were mapped for the endonucleases SmaI, KpnI, BamHI, SacI, XhoI, and EcoRI. The restriction maps of four other AcMNPV variants, Trichoplusia ni (TnMNPV), and Galleria mellonella (GmMNPV) genomes were determined and compared to the endonuclease cleavage maps of AcMNPV E2 DNA. The viral structural polypeptides of AcMNPV variants S3, E2, S1, M3, and R9 were the same when analyzed by polyacrylamide gel electrophoresis. The major structural polypeptides of GmMNPV and TnMNPV had the same pattern in polyacrylamide gels as did AcMNPV structural polypeptides. GmMNPV and TnMNPV had several minor structural protein differences as compared with AcMNPV. AcMNPV variants, TnMNPV, and GmMNPV were distinct but with very similar genomes and protein structures.  相似文献   

5.
Baculovirus p33 Binds Human p53 and Enhances p53-Mediated Apoptosis   总被引:3,自引:2,他引:1       下载免费PDF全文
In vertebrates, p53 participates in numerous biological processes including cell cycle regulation, apoptosis, differentiation, and oncogenic transformation. When insect SF-21 cells were infected with a recombinant of the baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV) overexpressing human p53, p53 formed a stable complex with the product of the AcMNPV orf92, a novel protein p33. The interaction between p53 and p33 was further confirmed by immunoprecipitation studies. When individually expressed in SF-21 cells, human p53 localized mainly in the nucleus whereas baculovirus p33 displayed diffuse cytoplasmic staining and punctuate nuclear staining. However, coexpression of p33 with p53 resulted in exclusive nuclear localization of p33. In both SF-21 and TN-368 cells, p53 expression induced typical features of apoptosis including nuclear condensation and fragmentation, oligonucleosomal ladder formation, cell surface blebbing, and apoptotic body formation. Coexpression of p53 with a baculovirus inhibitor of apoptosis, p35, OpIAP, or CpIAP, blocked apoptosis, whereas coexpression with p33 enhanced p53-mediated apoptosis approximately twofold. Expression of p53 in SF-21 cells stably expressing OpIAP inhibited cell growth in the presence or absence of p33. Thus, human p53 can influence both insect cell growth and death and baculovirus p33 can modulate the death-inducing effects of p53.  相似文献   

6.
The restriction sites of Rachiplusia ou nuclear polyhedrosis virus (RoMNPV) DNA were mapped for the endonucleases SmaI, KpnI, BamHI, SacI, XhoI, and EcoRI. Of the 60 DNA restriction sites of RoMNPV, 35 mapped in similar positions as compared to the restriction sites of Autographa californica nuclear polyhedrosis virus (AcMNPV) DNA. Two plaque-purified viruses, obtained from randomly picked plaques of a wild-type isolate of RoMNPV, were recombinants of RoMNPV and AcMNPV. The recombinants were shown to have RoMNPV and AcMNPV restriction fragments as well as structural polypeptides from each parental virus. Both recombinant viruses had a major RoMNPV capsid protein but were occluded in the AcMNPV polyhedrin protein.  相似文献   

7.
8.
Substitution of granulin from the Trichoplusia ni granulosis virus (TnGV) for polyhedrin of the Autographa californica multinucleocapsid nuclear polyhedrosis virus (AcMNPV) yielded a few very large (2 to 5 μm) cuboidal inclusions in the cytoplasm and nucleus of infected cells. These polyhedra lacked the beveled edges characteristic of wild-type AcMNPV polyhedra, contained fractures, and occluded few virions. Placing a nuclear localization signal (KRKK) in granulin directed more granulin to the nucleus and resulted in more structurally uniform cuboidal inclusions in which no virions were observed. A granulin-polyhedrin chimera produced tetrahedral occlusions with more virions than granulin inclusions but many fewer than wild-type polyhedra. Despite the unusual structure of the granulin and granulin-polyhedrin inclusions, they interacted with AcMNPV p10 fibrillar structures and electron-dense spacers that are precursors of the polyhedral calyx. The change in inclusion shape obtained with the granulin-polyhedrin chimera demonstrates that the primary amino acid sequence affects occlusion body shape, but the large cuboidal inclusions formed by granulin indicate that the amino acid sequence is not the only determinant. The failure of granulin or the granulin-polyhedrin chimera to properly occlude AcMNPV virions suggests that specific interactions occur between polyhedrin and other viral proteins which facilitate normal virion occlusion and occlusion body assembly and shape in baculoviruses.  相似文献   

9.
A recombinant Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) expressing the green fluorescence protein (GFP) under the control of the AcMNPV polyhedrin promoter was constructed to study the spatial and temporal regulation of baculovirus infection in a permissive host. Larvae that ingested AcMNPV-GFP showed localized expression of GFP in the midgut epithelial cells, as well as hemocytes, at 24 h postinfection. The presence of fluorescence in these tissues indicated not only that the virus was replicating but also that the very late viral proteins were being synthesized. Secondary infection occurred within the tracheal cells throughout the body cavity, confirming earlier reports, and these foci of infection allowed entry of the virus into other tissues, such as the epidermis and the fat body.  相似文献   

10.
TN-368 cells were infected simultaneously with the closely related Autographa california (AcMNPV) and Rachiplusia ou (RoMNPV) nuclear polyhedrosis viruses. Progeny viral isolates were plaque purified, and their DNAs were analyzed with restriction endonucleases. Of 100 randomly cloned plaques, 7 were AcMNPV and RoMNPV recombinants, 5 were RoMNPV, and 88 were AcMNPV. The recombinants contained DNA sequences derived from both parental genomes. By comparing the restriction cleavage patterns of parental and recombinant DNAs, the crossover sites were mapped. A single double crossover was detected in each of the seven recombinant genomes. In addition, six of the seven recombinants revealed a crossover site mapping between 78 and 89% of the genome. The structural polypeptides of the seven recombinants and two parental viruses were analyzed by polyacrylamide gel electrophoresis, and their polyhedrins were identified by tryptic peptide mapping. An analysis of the segregation of three enveloped nucleocapsid proteins and of the polyhedrins among the recombinants located the DNA sequences coding for AcMNPV structural polypeptides with molecular weights of 37,000 (a capsid polypeptide), 56,000, and 90,000 and the RoMNPV structural polypeptides with molecular weights of 36,000 (a capsid polypeptide), 56,000, and 91,000. The AcMNPV and RoMNPV polypeptides of molecular weights 37,000 and 36,000, respectively, mapped within 78 to 89% or 1 to 29%, the polypeptides of molecular weights 55,000 and 56,000 mapped within 78 to 29%, and the polypeptides of molecular weights 90,000 and 91,000 mapped within 19 to 56% of the genome. The region of the parental DNAs that codes for polyhedrin was located within 70 to 89% of the genome.  相似文献   

11.
与宿主昆虫液化相关的杆状病毒基因及其蛋白   总被引:4,自引:0,他引:4  
昆虫被杆状病毒感染后会发生液化现象,这有利于病毒向周围环境扩散。目前在杆状病毒苜蓿银纹夜蛾核型多角体病毒NPV和GV中,发现与昆虫宿主液化相关的基因有组织蛋白酶基因V-cath基因和几丁质酶基因。V-cath基因表达产物在苜蓿银纹夜蛾多角体病毒(AcMNPV)中能特异性降解昆虫细胞内的肌动蛋白。几丁质酶不仅参与了虫体体表面几丁质的降解,同时还参与V-CATH蛋白前体的加工过程,起分子伴侣的作用。对家蚕核型多角体病毒(BmNPV)的研究表明其FP25K基因表达产物通过影响组织蛋白酶的释放与分泌而参与虫体液化。简要综述了此3种基因及其表达产物的结构、功能与特性,并讨论了它们在生产上的应用前景。  相似文献   

12.
《Journal of Asia》2014,17(4):695-700
Bee venom contains a variety of peptides and enzymes, including acid phosphatases. An acid phosphatase has been identified from European honeybee (Apis mellifera) venom. However, although the amino acid sequence is known, no functional information is currently available for bee venom acid phosphatase Acph-1-like proteins. In this study, an Asiatic honeybee (Apis cerana) venom acid phosphatase Acph-1-like protein (AcAcph-1) was identified. The analysis of the predicted AcAcph-1 amino acid sequence revealed high levels of identity with other bee venom acid phosphatase Acph-1-like proteins. Recombinant AcAcph-1 was expressed as a 64-kDa protein in baculovirus-infected insect cells. The enzymatic properties of recombinant AcAcph-1, determined using p-nitrophenyl phosphate (p-NPP) as a substrate, showed the highest activity at 45 °C and pH 4.8. Northern and western blot analyses showed that AcAcph-1 was expressed in the venom gland and was present as a 64-kDa protein in bee venom. In addition, N-glycosylation of AcAcph-1 was revealed by tunicamycin treatment of recombinant virus-infected insect Sf9 cells and by glycoprotein staining of purified recombinant AcAcph-1. Our findings show that AcAcph-1 functions as a venom acid phosphatase. This paper provides the first evidence of the role of a bee venom acid phosphatase Acph-1-like protein.  相似文献   

13.
The silkworm Bombyx mori represents an established in vivo system for the production of recombinant proteins. Baculoviruses have been extensively investigated and optimised for the expression of high protein levels inside the haemolymph of larvae and pupae of this lepidopteran insect. Current technology includes deletion of genes responsible for the activity of virus-borne proteases, which in wild-type viruses, cause liquefaction of the host insect and enhance horizontal transmission of newly synthesised virus particles. Besides the haemolymph, the silk gland of B. mori provides an additional expression system for recombinant proteins. In this paper, we investigated how silk gland can be efficiently infected by a Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV). We demonstrated that the viral chitinase and the cysteine protease cathepsin are necessary to permit viral entry into the silk gland cells of intrahaemocoelically infected B. mori larvae. Moreover, for the first time, we showed AcMNPV crossing the basal lamina of silk glands in B. mori larvae, and we assessed a new path of infection of silk gland cells that can be exploited for protein production.  相似文献   

14.
gp64 is the major envelope glycoprotein in the budded form of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). gp64 is essential for AcMNPV infection, as it mediates penetration of budded virus into host cells via the endocytic pathway. In this study, we used site-directed mutagenesis to map the positions of the N-linked glycans on AcMNPV gp64, characterize their structures, and evaluate their influence on gp64 function. We found that four of the five consensus N-glycosylation sites in gp64 are used, and we mapped the positions of those sites to amino acids 198, 355, 385, and 426 in the polypeptide chain. Endoglycosidase H sensitivity assays showed that N-linked glycans located at different positions are processed to various degrees. Lectin blotting analyses showed that each N-linked glycan on gp64 contains α-linked mannose, all but one contains α-linked fucose, and none contains detectable β-linked galactose or α2,6-linked sialic acid. The amounts of infectious progeny produced by AcMNPV mutants lacking one, two, or three N-linked glycans on gp64 were about 10- to 100-fold lower than wild-type levels. This reduction did not correlate with reductions in the expression, transport, or inherent fusogenic activity of the mutant gp64s or in the gp64 content of mutant budded virus particles. However, all of the mutant viruses bound more slowly than the wild type. Therefore, elimination of one or more N-glycosylation sites in AcMNPV gp64 impairs binding of budded virus to the cell, which explains why viruses containing these mutant forms of gp64 produce less infectious progeny.  相似文献   

15.
The physiological effects of nucleopolyhedrovirus (NPV) infection and parasitism by Microplitis pallidipes (Hymenoptera: Braconidae) on the hemocytes of Spodoptera exigua (Lepidoptera: Noctuidae) larvae were examined. We found that compared to healthy (control) larvae, the total hemocyte count (THC) and granulocyte count in parasitized larvae increased 1 day after parasitization and then decreased, while the plasmatocyte count was not significantly affected for the first 5 days but was significantly enhanced on day 6 after parasitization. In parasitized + infected larvae, both the THC and granulocyte counts began be lower from day 1 compared to parasitized larvae, while the plasmatocyte count was generally lower than in parasitized larvae. Compared to the control, THC, and granulocyte counts of virus-infected larvae were higher 1 day after infection. Compared to that in virus-infected larvae, THC and granulocyte counts in parasitized + infected larvae began to decrease from day 1 while the plasmatocyte count generally decreased. We concluded that the host immune response of cell communities to parasitization by M. pallidipes was elicited during the development of the parasitoid egg, but that immune response was inhibited during larval development of parasitoids in the host body. Meanwhile, we found that NPV infection impeded the regulatory effect of M. pallidipes on host cellular immune responses, and parasitization by M. pallidipes similarly inhibited the host cellular immune response caused by NPV infection.  相似文献   

16.
Antiapoptotic genes of baculoviruses have been shown to prevent virus induced apoptosis in insect cells. Dot blot and Southern hybridizations of EcoRI genomic library and genomic digests of Spodoptera litura nucleopolyhedrosis virus (SlNPV) respectively give strong hybridization signals with antiapoptotic DNA (p35 gene) probe of the prototype Autographa californica nucleopolyhedrosis virus (AcNPV). Both the hybridizations indicate the presence of a homologous gene in the 1.8 kb EcoRI-Y fragment of SlNPV. The sequence of 1.244 kb region of this fragment encompasses an open reading frame coding for a polypeptide of 296 amino acids under sequential early (TATA) and late (TAAG) promoter motifs like that in other baculovirus p35 genes. The putative SlNPV p35 ORF expresses abundantly as a 35 kDa protein in Spodoptera frugiperda (Sf9) cells when allowed to express under the polyhedrin promoter of AcNPV.  相似文献   

17.
A DNA-binding protein (designated DBP) with an apparent molecular mass of 38 kDa was purified to homogeneity from BmN cells (derived from Bombyx mori) infected with the B. mori nucleopolyhedrovirus (BmNPV). Six peptides obtained after digestion of the isolated protein with Achromobacter protease I were partially or completely sequenced. The determined amino acid sequences indicated that DBP was encoded by an open reading frame (ORF16) located at nucleotides (nt) 16189 to 17139 in the BmNPV genome (GenBank accession no. L33180). This ORF (designated dbp) is a homolog of Autographa californica multicapsid NPV ORF25, whose product has not been identified. BmNPV DBP is predicted to contain 317 amino acids (calculated molecular mass of 36.7 kDa) and to have an isoelectric point of 7.8. DBP showed a tendency to multimerization in the course of purification and was found to bind preferentially to single-stranded DNA. When bound to oligonucleotides, DBP protected them from hydrolysis by phage T4 DNA polymerase-associated 3′→5′ exonuclease. The sizes of the protected fragments indicated that a binding site size for DBP is about 30 nt per protein monomer. DBP, but not BmNPV LEF-3, was capable of unwinding partial DNA duplexes in an in vitro system. This helix-destabilizing ability is consistent with the prediction that DBP functions as a single-stranded DNA binding protein in virus replication.

Nucleopolyhedroviruses (NPVs) have large (80- to 180-kb) circular double-stranded DNA (dsDNA) genomes, which replicate in nuclei of infected cells. Despite the widespread use of NPVs for the expression of foreign genes and their potential for pest control, little is known about the mechanism of their replication and the properties of their replication factors. The most widely studied baculovirus, Autographa californica multicapsid NPV (AcMNPV), has the potential to encode about 150 proteins (3), including factors required for virus DNA replication. The products of nine viral genes (ie-1, ie-2, lef-1, lef-2, lef-3, dnahel, dnapol, p35, and lef-7 or pe-38) are necessary and sufficient for efficient replication of transfected plasmid DNAs containing a putative baculovirus replication origin (16, 22). It is likely that DNA polymerase and DNA helicase, which are encoded by the viral genes dnapol and dnahel, respectively (20, 35), form a core of the virus DNA replication machinery. The roles of other factors are less obvious. Single-stranded DNA binding (SSB) protein function was proposed for the protein LEF-3, which binds specifically single-stranded DNA (ssDNA) (10, 14). However, direct proof for the SSB function of LEF-3 in viral DNA replication is lacking. In addition, SSB function was also suggested for LEF-7 on the basis of its predicted amino acid sequence (22). It was recently demonstrated that LEF-1 forms a complex with LEF-2 and may serve as a DNA primase (9). The function of IE-1, IE-2, and PE-38 may result from their ability to activate in trans expression of other genes required for virus replication. The transactivator IE-1 may also participate in the initiation of DNA replication, due to its ability to bind putative replication origins (7, 13, 17, 33). P35 is an inhibitor of apoptosis and may not be involved directly in DNA replication. Its stimulatory effect in the transient-replication assay may result from inhibition of virus-induced apoptosis in cells transfected with the replication genes. Several genes required for DNA replication (six essential and three stimulatory) were also identified in the genome of Orgyia pseudotsugata NPV (1). Homology of these genes to those required for replication of AcMNPV suggests similar replication mechanisms for the two viruses. The genome organization of the Bombyx mori NPV (BmNPV) closely resembles that of AcMNPV. Nineteen homologs of the AcMNPV late expression factor genes (lef genes) were identified in BmNPV (12). At least three of these, ie-2, lef7, and p35, are not essential for virus DNA replication as demonstrated by deletion analysis (12). Because the daughter DNA molecules synthesized under control of the nine essential viral genes appear to be synthesized as concatemers (16, 22, 31, 32), factors required for maturation of nascent DNA and its further processing are still unknown. Although the nine AcMNPV factors were sufficient for efficient DNA replication in Sf cells, an additional viral gene, designated hcf-1, was essential for replication in TN-368 cells (21), indicating dependence of the transient assay on host cell-specific factors. Few proteins involved in NPV DNA replication have been purified from infected cells and characterized in cell-free systems. Among them are AcMNPV DNA polymerase (28, 37), BmNPV DNA polymerase (27), AcMNPV DNA helicase (19), and AcMNPV LEF-3 (10, 14). Isolation of other replication proteins of NPVs is still anticipated.In this report we describe the purification of a viral DNA-binding protein (designated DBP) from BmNPV-infected cells. DBP binds preferentially to ssDNA and is capable of unwinding duplex DNA. The BmNPV open reading frame (ORF) encoding DBP (dbp gene) is a homolog of AcMNPV ORF25, whose product has not been identified so far.  相似文献   

18.
In Vivo and In Vitro Analysis of Baculovirus ie-2 Mutants   总被引:1,自引:0,他引:1       下载免费PDF全文
Upon transient expression in cell culture, the ie-2 gene of Autographa californica nuclear polyhedrosis virus (AcMNPV) displays three functions: trans activation of viral promoters, direct or indirect stimulation of virus origin-specific DNA replication, and arrest of the cell cycle. The ability of IE2 to trans stimulate DNA replication and coupled late gene expression is observed in a cell line derived from Spodoptera frugiperda but not in a cell line derived from Trichoplusia ni. This finding suggested that IE-2 may exert cell line-specific or host-specific effects. To examine the role of ie-2 in the context of infection and its possible influence on the host range, we constructed recombinants of AcMNPV containing deletions of different functional regions within ie-2 and characterized them in cell lines and larvae of S. frugiperda and T. ni. The ie-2 mutant viruses exhibited delays in viral DNA synthesis, late gene expression, budded virus production, and occlusion body formation in SF-21 cells but not in TN-5B1-4 cells. In TN-5B1-4 cells, the ie-2 mutants produced more budded virus and fewer occlusion bodies but the infection proceeded without delay. Examination of the effects of ie-2 and the respective mutants on immediate-early viral promoters in transient expression assays revealed striking differences in the relative levels of expression and differences in responses to ie-2 and its mutant forms in different cell lines. In T. ni and S. frugiperda larvae, the infectivities of the occluded form of ie-2 mutant viruses by the normal oral route of infection was 100- and 1,000-fold lower, respectively, than that of wild-type AcMNPV. The reduction in oral infectivity was traced to the absence of virions within the occlusion bodies. The infectivity of the budded form of ie-2 mutants by hemocoelic injection was similar to that of wild-type virus in both species. Thus, ie-2 mutants are viable but exhibit cell line-specific effects on temporal regulation of the infection process. Due to its effect on virion occlusion, mutants of IE-2 were essentially noninfectious by the normal route of infection in both species tested. However, since budded viruses exhibited normal infectivity upon hemocoelic injection, we conclude that ie-2 does not affect host range per se. The possibility that IE-2 exerts tissue-specific effects has not been ruled out.  相似文献   

19.
Among the nucleopolyhedroviruses (Baculoviridae), the occlusion-derived virus (ODV), which initiates infection in host insects, may contain only a single nucleocapsid per virion (the SNPVs) or one to many nucleocapsids per virion (the MNPVs), but the significance of this difference is unclear. To gain insight into the biological relevance of these different packaging strategies, we compared pathogenesis induced by ODV fractions enriched for multiple nucleocapsids (ODV-M) or single nucleocapsids (ODV-S) of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) containing a β-galactosidase reporter gene. In time course experiments wherein newly molted fourth-instar Trichoplusia ni were challenged with doses of ODV-S or ODV-M that yielded the same final mortality (~70%), we characterized viral foci as either being restricted to the midgut or involving tracheal cells (the secondary target tissue, indicative of systemic infection). We found that while the timing of primary infection by ODV-S and ODV-M was similar, ODV-S established significantly more primary midgut cell foci than ODV-M, but ODV-M infected tracheal cells at twice the rate of ODV-S. The more efficient establishment of tracheal infections by ODV-M decreased the probability that infections were lost by midgut cell sloughing, explaining why higher numbers of primary infections established by ODV-S within larvae were needed to achieve the same final mortality. These results showed that the multiple nucleocapsid packaging strategy of AcMNPV accelerates the onset of irreversible systemic infections and may indicate why MNPVs have wider individual host ranges than SNPVs.  相似文献   

20.
The study of hemolymph melanization in Lepidoptera has contributed greatly to our understanding of its role in insect immunity. Manduca sexta in particular has been an excellent model for identifying the myriad components of the phenoloxidase (PO) cascade and their activation through exposure to pathogen-associated molecular patterns (PAMPs). However, in a process that is not well characterized or understood, some insect species rapidly melanize upon wounding in the absence of added PAMPs. We sought to better understand this process by measuring wound-induced melanization in four insect species. Of these, only plasma from late 5th instar M. sexta was unable to melanize, even though each contained millimolar levels of the putative melanization substrate tyrosine (Tyr). Analysis of Tyr metabolism using substrate-free plasmas (SFPs) from late 5th instar larvae of each species showed that only M. sexta SFP failed to melanize with added Tyr. In contrast, early instar M. sexta larvae exhibited wound-induced melanization and Tyr metabolism, and SFPs prepared from these larvae melanized in the presence of Tyr. Early instar melanization in M. sexta was associated with the formation of a high mass protein complex that could be observed enzymatically in native gels or by PO-specific immunoblotting. Topical treatment of M. sexta larvae with the juvenile hormone (JH) analog methoprene delayed pupation and increased melanizing ability late in the instar, thus linking development with immunity. Our results demonstrate that melanization rates are highly variable in Lepidoptera, and that developmental stage can be an important factor for melanization within a species. More specifically, we show that the physiological substrate for melanization in M. sexta is Tyr, and that melanization is associated with the formation of a PO-containing protein complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号