首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophages are crucial for innate immunity, apoptosis, and tissue remodeling, processes that rely on the capacity of macrophages to internalize and process cargo through phagocytosis. Coronin 1, a member of the WD repeat protein family of coronins specifically expressed in leukocytes, was originally identified as a molecule that is recruited to mycobacterial phagosomes and prevents the delivery of mycobacteria to lysosomes, allowing these to survive within phagosomes. However, a role for coronin 1 in mycobacterial pathogenesis has been disputed in favor for its role in mediating phagocytosis and cell motility. In this study, a role for coronin 1 in actin-mediated cellular processes was addressed using RNA interference in the murine macrophage cell line J774. It is shown that the absence of coronin 1 in J774 macrophages expressing small interfering RNA constructs specific for coronin 1 does not affect phagocytosis, macropinocytosis, cell locomotion, or regulation of NADPH oxidase activity. However, in coronin 1-negative J774 cells, internalized mycobacteria were rapidly transferred to lysosomes and killed. Therefore, these results show that in J774 cells coronin 1 has a specific role in modulating phagosome-lysosome transport upon mycobacterial infection and that it is dispensable for most F-actin-mediated cytoskeletal rearrangements.  相似文献   

2.
Coronin 1 is a member of the evolutionarily conserved coronin protein family. Coronin proteins are characterized by the presence of a central WD repeat and a C-terminal coiled coil that in coronin 1 is responsible for trimerization. Coronin 1 was identified as a host protein protecting intracellularly residing mycobacteria from degradation by activating the Ca2+/calcineurin pathway but whether or not trimerization is essential for this function remains unknown. We here show that trimerization is essential to promote mycobacterial survival within macrophages and activate calcineurin. Furthermore, macrophage activation that induces serine-phosphorylation on coronin 1 resulted in coronin 1 monomerization. These results suggest that modulation of coronin 1 oligomerization is an effective way to determine the outcome of a mycobacterial infection in macrophages.  相似文献   

3.
By applying density gradient electrophoresis (DGE) to human macrophages infected with Mycobacterium bovis BCG, we were able to separate three different bacterial fractions representing arrested phagosomes, phagolysosomes and mycobacterial clumps. After further purification of the phagosomal population, we found that isolated phagosomes containing live BCG were arrested in maturation as they exhibited only low amounts of the lysosomal glycoprotein LAMP-1 and processing of the lysosomal hydrolase cathepsin D was blocked. In addition, low amounts of MHC class I and class II molecules and the absence of HLA-DM suggest sequestration of mycobacterial phagosomes from antigen-processing pathways. We further investigated the involvement of the actin-binding protein coronin in intracellular survival of mycobacteria and showed that human coronin, as well as F-actin, were associated with early stages of mycobacterial phagocytosis but not with phagosome maintenance. Therefore, we conclude that the unique DGE migration pattern of arrested phagosomes is not as a result of retention of coronin, but that there are other proteins or lipids responsible for the block in maturation in human macrophages.  相似文献   

4.
Pathogenic mycobacteria escape host innate immune responses by surviving within phagosomes of host macrophages and blocking their delivery to lysosomes. Avoiding lysosomal delivery may also be involved in the capacity of living mycobacteria to modulate MHC class I- or II-dependent T cell responses, which may contribute to their pathogenicity in vivo. In this study, we show that the presentation of mycobacterial Ags is independent of the site of intracellular residence inside professional APCs. Infection of mouse macrophages or dendritic cells in vitro with mycobacterial mutants that are unable to escape lysosomal transfer resulted in an identical efficiency of Ag presentation compared with wild-type mycobacteria. Moreover, in vivo, such mutants induced CD4(+) Th1 or CD8(+) CTL responses in mice against various mycobacterial Ags that were comparable to those induced by their wild-type counterparts. These results suggest that the limiting factor for the generation of an adaptive immune response against mycobacteria is not the degree of lysosomal delivery. These findings are important in the rational design of improved vaccines to combat mycobacterial diseases.  相似文献   

5.
We previously demonstrated that extracellular ATP stimulated macrophage death and mycobacterial killing within Mycobacterium bovis Bacille Calmette-Guérin (BCG)-infected human macrophages. ATP increases the cytosolic Ca(2+) concentration in macrophages by mobilizing intracellular Ca(2+) via G protein-coupled P2Y receptors, or promoting the influx of extracellular Ca(2+) via P2X purinoceptors. The relative contribution of these receptors and Ca(2+) sources to ATP-stimulated macrophage death and mycobacterial killing was investigated. We demonstrate that 1) ATP mobilizes Ca(2+) in UTP-desensitized macrophages (in Ca(2+)-free medium) and 2) UTP but not ATP fails to deplete the intracellular Ca(2+) store, suggesting that the pharmacological properties of ATP and UTP differ, and that a Ca(2+)-mobilizing P2Y purinoceptor in addition to the P2Y(2) subtype is expressed on human macrophages. ATP and the Ca(2+) ionophore, ionomycin, promoted macrophage death and BCG killing, but ionomycin-mediated macrophage death was inhibited whereas BCG killing was largely retained in Ca(2+)-free medium. Pretreatment of cells with thapsigargin (which depletes inositol (1,4,5)-trisphosphate-mobilizable intracellular stores) or 1,2-bis-(2-aminophenoxy)ethane-N, N, N',N'-tetraacetic acid acetoxymethyl ester (an intracellular Ca(2+) chelator) failed to inhibit ATP-stimulated macrophage death but blocked mycobacterial killing. Using the acidotropic molecular probe, 3-(2,4-dinitroanilino)-3'-amino-N-methyl dipropylamine, it was revealed that ATP stimulation promoted the acidification of BCG-containing phagosomes within human macrophages, and this effect was similarly dependent upon Ca(2+) mobilization from intracellular stores. We conclude that the cytotoxic and bactericidal effects of ATP can be uncoupled and that BCG killing is not the inevitable consequence of death of the host macrophage.  相似文献   

6.
TB or not TB: calcium regulation in mycobacterial survival   总被引:1,自引:0,他引:1  
Trimble WS  Grinstein S 《Cell》2007,130(1):12-14
Mycobacterium tuberculosis (Mtb)-the bacterium that causes tuberculosis-resides in phagosomes inside macrophages. This bacterium evades destruction by preventing phagosome maturation, which involves the fusion of phagosomes with lysosomes. In this issue of Cell, Jayachandran et al. (2007) suggest that mycobacteria co-opt the actin-binding protein coronin 1 to activate the phosphatase calcineurin, thereby preventing phagosomal maturation.  相似文献   

7.
Non-pathogenic mycobacteria such us Mycobacterium smegmatis reside in macrophages within phagosomes that fuse with late endocytic/lysosomal compartments. This sequential fusion process is required for the killing of non-pathogenic mycobacteria by macrophages. Porins are proteins that allow the influx of hydrophilic molecules across the mycobacterial outer membrane. Deletion of the porins MspA, MspC and MspD significantly increased survival of M. smegmatis in J774 macrophages. However, the mechanism underlying this observation is unknown. Internalization of wild-type M. smegmatis (SMR5) and the porin triple mutant (ML16) by macrophages was identical indicating that the viability of the porin mutant in vivo was enhanced. This was not due to effects on phagosome trafficking since fusion of phagosomes containing the mutant with late endocytic compartments was unaffected. Moreover, in ML16-infected macrophages, the generation of nitric oxide (NO) was similar to the wild type-infected cells. However, ML16 was significantly more resistant to the effects of NO in vitro compared to SMR5. Our data provide evidence that porins render mycobacteria vulnerable to killing by reactive nitrogen intermediates within phagosomes probably by facilitating uptake of NO across the mycobacterial outer membrane.  相似文献   

8.
The intracellular trafficking processes controlling phagosomal maturation remain to be fully delineated. Mycobacterium tuberculosis var. bovis BCG, an organism that causes phagosomal maturation arrest, has emerged as a tool for dissection of critical phagosome biogenesis events. In this work, we report that cellubrevin, a v-SNARE functioning in endosomal recycling and implicated in endosomal interactions with post-Golgi compartments, plays a role in phagosomal maturation and that it is altered on mycobacterial phagosomes. Both mycobacterial phagosomes, which undergo maturation arrest, and model phagosomes containing latex beads, which follow the normal pathway of maturation into phagolysosomes, acquired cellubrevin. However, the mycobacterial and model phagosomes differed, as a discrete proteolytic degradation of this SNARE was detected on mycobacterial phagosomes. The observed cellubrevin alteration on mycobacterial phagosomes was not a passive event secondary to a maturation arrest at another checkpoint of the phagosome maturation pathway, since pharmacological inhibitors of phagosomal/endosomal pathways blocking phagosomal maturation did not cause cellubrevin degradation on model phagosomes. Cellubrevin status on phagosomes had consequences on phagosomal membrane and lumenal content trafficking, involving plasma membrane marker recycling and delivery of lysosomal enzymes. These results suggest that cellubrevin plays a role in phagosomal maturation and that it is a target for modification by mycobacteria or by infection-induced processes in the host cell.  相似文献   

9.
Mycobacterium tuberculosis is sensitive to nitric oxide generated by inducible nitric oxide synthase (iNOS). Consequently, to ensure its survival in macrophages, M. tuberculosis inhibits iNOS recruitment to its phagosome by an unknown mechanism. Here we report the mechanism underlying this process, whereby mycobacteria affect the scaffolding protein EBP50, which normally binds to iNOS and links it to the actin cytoskeleton. Phagosomes harboring live mycobacteria showed reduced capacity to retain EBP50, consistent with lower iNOS recruitment. EBP50 was found on purified phagosomes, and its expression increased upon macrophage activation, paralleling expression changes seen with iNOS. Overexpression of EBP50 increased while EBP50 knockdown decreased iNOS recruitment to phagosomes. Knockdown of EBP50 enhanced mycobacterial survival in activated macrophages. We tested another actin organizer, coronin-1, implicated in mycobacterium-macrophage interaction for contribution to iNOS exclusion. A knockdown of coronin-1 resulted in increased iNOS recruitment to model latex bead phagosomes but did not increase iNOS recruitment to phagosomes with live mycobacteria and did not affect mycobacterial survival. Our findings are consistent with a model for the block in iNOS association with mycobacterial phagosomes as a mechanism dependent primarily on reduced EBP50 recruitment.  相似文献   

10.
Mycobacteria have the ability to persist within host phagocytes, and their success as intracellular pathogens is thought to be related to the ability to modify their intracellular environment. After entry into phagocytes, mycobacteria-containing phagosomes acquire markers for the endosomal pathway, but do not fuse with lysosomes. The molecular machinery that is involved in the entry and survival of mycobacteria in host cells is poorly characterized. Here we describe the use of organelle electrophoresis to study the uptake of Mycobacterium bovis bacille Calmette Guerin (BCG) into murine macrophages. We demonstrate that live, but not dead, mycobacteria occupy a phagosome that can be physically separated from endosomal/lysosomal compartments. Biochemical analysis of purified mycobacterial phagosomes revealed the absence of endosomal/lysosomal markers LAMP-1 and β-hexosaminidase. Combining subcellular fractionation with two-dimensional gel electrophoresis, we found that a set of host proteins was present in phagosomes that were absent from endosomal/lysosomal compartments. The residence of mycobacteria in compartments outside the endosomal/lysosomal system may explain their persistence inside host cells and their sequestration from immune recognition. Furthermore, the approach described here may contribute to an improved understanding of the molecular mechanisms that determine the intracellular fate of mycobacteria during infection.  相似文献   

11.
Mycobacterium tuberculosis survives within host macrophages by actively inhibiting phagosome fusion with lysosomes. Treatment of infected macrophages with ATP induces both cell apoptosis and rapid killing of intracellular mycobacteria. The following studies were undertaken to characterize the effector pathway(s) involved. Macrophages were obtained from p47(phox) and inducible NO synthase gene-disrupted mice (which are unable to produce reactive oxygen and nitrogen radicals, respectively) and P2X(7) gene-disrupted mice. RAW murine macrophages transfected with either the natural resistance-associated macrophage protein gene 1 (Nramp1)-resistant or Nramp1-susceptible gene were also used. The cells were infected with bacille Calmette-Guérin (BCG), and intracellular mycobacterial trafficking was analyzed using confocal and electron microscopy. P2X(7) receptor activation was essential for effective ATP-induced mycobacterial killing, as its bactericidal activity was radically diminished in P2X(7)(-/-) macrophages. ATP-mediated killing of BCG within p47(phox-/-), inducible NO synthase(-/-), and Nramp(s) cells was unaffected, demonstrating that none of these mechanisms have a role in the ATP/P2X(7) effector pathway. Following ATP stimulation, BCG-containing phagosomes rapidly coalesce and fuse with lysosomes. Blocking of macrophage phospholipase D activity with butan-1-ol blocked BCG killing, but not macrophage death. ATP stimulates phagosome-lysosome fusion with concomitant mycobacterial death via P2X(7) receptor activation. Macrophage death and mycobacterial killing induced by the ATP/P2X(7) signaling pathway can be uncoupled, and diverge proximal to phospholipase D activation.  相似文献   

12.
Pathogenic mycobacteria survive in macrophages of the host organism by residing in phagosomes which they prevent from undergoing maturation and fusion with lysosomes. Several molecular mechanisms have been associated with the phagosome maturation block. Here we show for Mycobacterium avium in mouse bone marrow-derived macrophages that the maturation block required an all-around close apposition between the mycobacterial surface and the phagosome membrane. When small (0.1 μm) latex beads were covalently attached to the mycobacterial surface to act as a spacer that interfered with a close apposition, phagosomes rapidly acquired lysosomal characteristics as indicators for maturation and fusion with lysosomes. As a result, several mycobacteria were delivered into single phagolysosomes. Detailed electron-microscope observations of phagosome morphology over a 7-day post-infection period showed a linear correlation between bead attachment and phagosome–lysosome fusion. After about 3 days post infection, conditions inside phagolysosomes caused a gradual release of beads. This allowed mycobacteria to re-establish a close apposition with the surrounding membrane and sequester themselves into individual, non-maturing phagosomes which had lost lysosomal characteristics. By rescuing themselves from phagolysosomes, mycobacteria remained fully viable and able to multiply at the normal rate. In order to unify the present observations and previously reported mechanisms for the maturation block, we discuss evidence that they may act synergistically to interfere with 'Phagosome Membrane Economics' by causing relative changes in incoming and outgoing endocytic membrane fluxes.  相似文献   

13.
During phagosome maturation, the late endosomal marker Rab7 and the lysosomal marker LAMP1 localize to the phagosomes. We investigated the mobility of Rab7 and LAMP1 on the phagosomes in macrophages by fluorescence recovery after photobleaching (FRAP) analysis. Rab7 was mobile between the phagosomal membrane and the cytosol in macrophages that ingested latex beads during phagosome maturation. The addition of interferon-γ (IFN-γ) restricted this mobility, suggesting that Rab7 is forced to bind to the phagosomal membrane by IFN-γ-mediated activation. Immobilization of LAMP1 on the phagosomes was observed irrespective of IFN-γ-activation. We further examined the mobility of Rab7 on the phagosomes containing Mycobacterium bovis BCG by FRAP analysis. The rate of fluorescence recovery for Rab7 on mycobacterial phagosomes was lower than that on the phagosomes containing latex beads, suggesting that mycobacteria impaired the mobility of Rab7 and arrested phagosome maturation.  相似文献   

14.
G Ferrari  H Langen  M Naito  J Pieters 《Cell》1999,97(4):435-447
Mycobacteria are intracellular pathogens that can survive within macrophage phagosomes, thereby evading host defense strategies by largely unknown mechanisms. We have identified a WD repeat host protein that was recruited to and actively retained on phagosomes by living, but not dead, mycobacteria. This protein, termed TACO, represents a component of the phagosome coat that is normally released prior to phagosome fusion with or maturation into lysosomes. In macrophages lacking TACO, mycobacteria were readily transported to lysosomes followed by their degradation. Expression of TACO in nonmacrophages prevented lysosomal delivery of mycobacteria and prolonged their intracellular survival. Active retention of TACO on phagosomes by living mycobacteria thus represents a mechanism preventing cargo delivery to lysosomes, allowing mycobacteria to survive within macrophages.  相似文献   

15.
Mycobacterium tuberculosis successfully parasitizes macrophages by disrupting the maturation of its phagosome, creating an intracellular compartment with endosomal rather than lysosomal characteristics. We have recently demonstrated that live M. tuberculosis infect human macrophages in the absence of an increase in cytosolic Ca(2+) ([Ca(2+)](c)), which correlates with inhibition of phagosome-lysosome fusion and intracellular viability. In contrast, killed M. tuberculosis induces an elevation in [Ca(2+)](c) that is coupled to phagosome-lysosome fusion. We tested the hypothesis that defective activation of the Ca(2+)-dependent effector proteins calmodulin (CaM) and CaM-dependent protein kinase II (CaMKII) contributes to the intracellular pathogenesis of tuberculosis. Phagosomes containing live M. tuberculosis exhibited decreased levels of CaM and the activated form of CaMKII compared with phagosomes encompassing killed tubercle bacilli. Furthermore, ionophore-induced elevations in [Ca(2+)](c) resulted in recruitment of CaM and activation of CaMKII on phagosomes containing live M. tuberculosis. Specific inhibitors of CaM or CaMKII blocked Ca(2+) ionophore-induced phagosomal maturation and enhanced the bacilli's intracellular viability. These results demonstrate a novel role for CaM and CaMKII in the regulation of phagosome-lysosome fusion and suggest that defective activation of these Ca(2+)-activated signaling components contributes to the successful parasitism of human macrophages by M. tuberculosis.  相似文献   

16.
Previous studies have shown that the ability of Mycobacterium tuberculosis to block a Ca(2+) flux is an important step in its capacity to halt phagosome maturation. This affect on Ca(2+) release results from M. tuberculosis inhibition of sphingosine kinase (SPK) activity. However, these studies did not address the potential role of SPK and Ca(2+) in other aspects of macrophage activation including production of proinflammatory mediators. We previously showed that nonpathogenic Mycobacterium smegmatis and to a lesser extent pathogenic Mycobacterium avium, activate Ca(2+)-dependent calmodulin/calmodulin kinase and MAPK pathways in murine macrophages leading to TNF-alpha production. However, whether SPK functions in promoting MAPK activation upon mycobacterial infection was not defined in these studies. In the present work we found that SPK is required for ERK1/2 activation in murine macrophages infected with either M. avium or M. smegmatis. Phosphoinositide-specific phospholipase C (PI-PLC) and conventional protein kinase C (cPKC) were also important for ERK1/2 activation. Moreover, there was increased activation of cPKC and PI3K in macrophages infected with M. smegmatis compared with M. avium. This cPKC and PI3K activation was dependent on SPK and PI-PLC. Finally, in macrophages infected with M. smegmatis compared with M. avium, we observed enhanced secretion of TNF-alpha, IL-6, RANTES, and G-CSF and found production of these inflammatory mediators to be dependent on SPK, PI-PLC, cPKC, and PI3K. These studies are the first to show that the macrophage proinflammatory response following a mycobacterial infection is regulated by SPK/PI-PLC/PKC activation of ERK1/2 and PI3K pathways.  相似文献   

17.
Pathogenic mycobacteria are able to survive and proliferate in phagosomes within host macrophages (Mphi). This capability has been attributed in part to their cell wall, which consists of various unique lipids. Some of these are important in the host-pathogen interaction, such as resistance against microbicidal effector mechanisms and modulation of host cell functions, and/or are presented as Ags to T cells. Here we show that two lipids are released from the mycobacterial cell wall within the phagosome of infected Mphi and transported out of this compartment into intracellular vesicles. One of these lipids was identified as lysocardiolipin. Lysocardiolipin was generated through cleavage of mycobacterial cardiolipin by a Ca2+-independent phospholipase A2 present in Mphi lysosomes. This result indicates that lysosomal host cell enzymes can interact with released mycobacterial lipids to generate new products with a different intracellular distribution. This represents a novel pathway for the modification of bacterial lipid Ags.  相似文献   

18.
Pathogenic mycobacteria infect macrophages where they replicate in phagosomes that minimize contact with late endosomal/lysosomal compartments. Loading of Ags to MHC class II molecules occurs in specialized compartments with late endosomal characteristics. This points to a sequestration of mycobacteria-containing phagosomes from the sites where Ags meet MHC class II molecules. Indeed, in resting macrophages MHC class II levels decreased strongly in phagosomes containing M. avium during a 4-day infection. Phagosomal MHC class II of early (4 h) infections was partly surface-derived and associated with peptide. Activation of host macrophages led to the appearance of H2-M, a chaperon of Ag loading, and to a strong increase in MHC class II molecules in phagosomes of acute (1 day) infections. Comparison with the kinetics of MHC class II acquisition by IgG-coated bead-containing phagosomes suggests that the arrest in phagosome maturation by mycobacteria limits the intersection of mycobacteria-containing phagosomes with the intracellular trafficking pathways of Ag-presenting molecules.  相似文献   

19.
Phagocytic entry of mycobacteria into macrophages requires the presence of cholesterol in the plasma membrane. This suggests that pathogenic mycobacteria may require cholesterol for their subsequent intra-cellular survival in non-maturing phagosomes. Here we report on the effect of cholesterol depletion on pre-existing phagosomes in mouse bone marrow-derived macrophages infected with Mycobacterium avium. Cholesterol depletion with methyl-beta-cyclodextrin resulted in a loosening of the close apposition between the phagosome membrane and the mycobacterial surface, followed by fusion with lysosomes. The resulting phagolysosomes then autonomously executed autophagy, which did not involve the endoplasmic reticulum. After 5 h of depletion, intact mycobacteria had accumulated in large auto-phagolysosomes. Autophagy was specific for phagolysosomes that contained mycobacteria, as it did not involve latex bead-containing phagosomes in infected cells. Upon replenishment of cholesterol, mycobacteria became increasingly aligned to the lysosomal membrane, from where they were individually sequestered in phagosomes with an all-around closely apposed phagosome membrane and which no longer fused with lysosomes. These observations indicate that, cholesterol depletion (i) resulted in phagosome maturation and fusion with lysosomes and (ii) caused mycobacterium-containing phagolysosomes to autonomously undergo autophagy. Furthermore, (iii) mycobacteria were not killed in auto-phagolysosomes, and (iv) cholesterol replenishment enabled mycobacterium to rescue itself from autophagic phagolysosomes to again reside individually in phagosomes which no longer fused with lysosomes.  相似文献   

20.
Mycobacteria reside intracellularly in a vacuole that allows it to circumvent the antimicrobial environment of the host macrophage. Although the mycobacterial phagosome exhibits selective fusion with vesicles of the endosomal system, identification of host and bacterial factors associated with phagosome bio-genesis is limited. To identify these potential factors, mAbs were generated to a membrane preparation of mycobacterial phagosomes isolated from M. tuberculosis -infected macrophages. A mAb recognizing a 32–35 kDa macrophage protein associated with the phagosomal membrane of Mycobacterium was identified. N-terminal sequence analysis identified this protein as Mac-2 or galectin-3, a galactoside-binding protein of macrophages. Galectin-3 (gal-3) was shown to accumulate in Mycobacterium -containing phagosomes during the course of infection. This accumu-lation was specific for phagosomes containing live mycobacteria and occurred primarily at the cytosolic face of the phagosome membrane. In addition, bind-ing of gal-3 to mycobacterial phosphatidylinositol mannosides (PIMs) demonstrated a novel interaction between host carbohydrate-binding proteins and released mycobacterial glycolipids. Infection of macrophages from gal-3-deficient mice indicated that the protein did not play a role in infection in vitro . In contrast, infection of gal-3-deficient mice revealed a reduced capacity to clear late but not early infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号