首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase activities are essential for the supply of guanine nucleotides in Schistosoma mansoni schistosomules. In crude extracts of adult S. mansoni, these two activities co-elute in size exclusion, ion exchange, and chromatofocusing chromatography and exhibit similar stabilities to heat treatment, suggesting that they are associated in one enzyme protein hypoxanthine-guanine phosphoribosyltransferase. This enzyme has been purified by a combination of heat treatment at 85 degrees C and chromatofocusing chromatography with elution at an apparent pI of 5.27 +/- 0.15. Pore gradient electrophoresis of the native enzyme followed by subsequent activity staining demonstrate an enzyme molecular weight of 105,000. The activity staining pattern remains the same whether hypoxanthine or guanine is used as the substrate, further supporting the existence of a single protein, hypoxanthine-guanine phosphoribosyltransferase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified protein results in a single protein band with a subunit molecular weight estimate of 64,000, suggesting that the native enzyme is a dimer. Preliminary kinetic studies showed that the purified hypoxanthine-guanine phosphoribosyltransferase reacted with guanine at a rate twice as fast as it did with hypoxanthine, but it did not act on xanthine at all. A full-length mouse neuroblastoma hypoxanthine-guanine phosphoribosyltransferase cDNA clone pHPT5 and a plasmid pSV2-gpt containing the xanthine-guanine phosphoribosyltransferase gene for Escherichia coli were utilized as probes on Southern blots of S. mansoni DNA digests, and no significant hybridization was found under relatively relaxed conditions. Polyclonal antibodies made against human erythrocyte hypoxanthine-guanine phosphoribosyltransferase and E. coli xanthine-guanine phosphoribosyltransferase were tested in enzyme-linked immunosorbent assays of S. mansoni protein extracts, and no detectable cross-reacting protein was found. S. mansoni hypoxanthine-guanine phosphoribosyltransferase thus may bear rather limited homology to mammalian hypoxanthine-guanine phosphoribosyltransferase or bacterial xanthine-guanine phosphoribosyltransferase and could be an attractive target for antischistosomal chemotherapeutic drug design.  相似文献   

2.
The enzyme xanthine-guanine phosphoribosyltransferase from Escherichia coli cells harboring the plasmid pSV2gpt has been purified 30-fold to near homogeneity by single-step GMP-agarose affinity chromatography. It has a Km value of 2.5, 42 and 182 microM for the substrates guanine, xanthine and hypoxanthine, respectively, with guanine being the most preferred substrate. The enzyme exhibits a Km value of 38.5 microM for PRib-PP with guanine as second substrate and of 100 microM when xanthine is used as the second substrate. It is markedly inhibited by 6-thioguanine, GMP and to a lesser extent by some other purine analogues. Thioguanine has been found to be the most potent inhibitor. The subunit molecular weight of xanthine-guanine phosphoribosyltransferase was determined to be 19 000. The in situ activity assay on a nondenaturing polyacrylamide gel electrophoresis gel has indicated that a second E. coli phosphoribosyltransferase preferentially uses hypoxanthine as opposed to guanine as a substrate, and it does not use xanthine.  相似文献   

3.
The gene for Escherichia coli guanine-xanthine phosphoribosyltransferase was placed after the high efficiency lambda phage leftward promoter in plasmid pHEGPT also containing the lambda CI857 temperature-sensitive repressor. Guanine-xanthine phosphoribosyltransferase increases 780-fold when cells containing pHEGPT are shifted from 30 to 42 degrees C. Guanine-xanthine phosphoribosyltransferase represents approximately 5% of the protein in a crude extract of induced cells. Guanine-xanthine phosphoribosyltransferase may be purified to apparent homogeneity by ammonium sulfate fractionation, Sephadex G-100, and DEAE-cellulose column chromatography. The enzyme has a subunit molecular weight of 18,600 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and behaves as a trimer during Sephadex G-100 column chromatography. Guanine-xanthine phosphoribosyltransferase is active from pH 7.5 to 10.5 with maximum activity at pH 9.5. The enzyme is protected from heat inactivation by phosphoribosylpyrophosphate (PRPP). At 65 degrees C, the enzyme has a half-life of 2 min in the absence of PRPP and 90 min in the presence of PRPP. The enzyme displays Michaelis-Menten kinetics with apparent Michaelis constants for guanine, xanthine, hypoxanthine, and PRPP of 2.6, 39, 167, and 95 microM, respectively. The activity of the enzyme with guanine is 2-fold greater than that with xanthine and 3-fold greater than that with hypoxanthine.  相似文献   

4.
Leishmania possess distinct xanthine phosphoribosyltransferase and hypoxanthine-guanine phosphoribosyltransferase enzymes that mediate purine salvage, an obligatory nutritional function for these pathogenic parasites. The xanthine phosphoribosyltransferase preferentially uses xanthine as a substrate, while the hypoxanthine-guanine phosphoribosyltransferase phosphoribosylates only hypoxanthine and guanine. These related phosphoribosyltransferases were used as model system to investigate the molecular determinants regulating the 6-oxopurine specificity of these enzymes. Analysis of the purine binding domains showed two conserved acidic amino acids; glutamate residues in the xanthine phosphoribosyltransferase (E198 and E215) and aspartate residues in the hypoxanthine-guanine phosphoribosyltransferase (D168 and D185). Genetic and biochemical analysis established that the single E198D and E215D mutations increased the turnover rates of the xanthine phosphoribosyltransferase without altering purine nucleobase specificity. However, the E215Q and E198,215D mutations converted the Leishmania xanthine phosphoribosyltransferase into a broad-specificity enzyme capable of utilizing guanine, hypoxanthine, and xanthine as substrates. Similarly, the D168,185E double mutation transformed the Leishmania hypoxanthine-guanine phosphoribosyltransferase into a mutant enzyme capable phosphoribosylating only xanthine, albeit with a much lower catalytic efficiency. These studies established that these conserved acidic residues play an important role in governing the nucleobase selectivity of the Leishmania 6-oxopurine phosphoribosyltransferases.  相似文献   

5.
1. Hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8) from Saccharomyces cerevisiae was purified 9400-fold by affinity chromatography giving rise to an electrophoretically homogeneous preparation. 2. The molecular weight of the enzyme was determined by gel filtration with Sephadex G-100 and by sodium dodecylsulfate gel electrophoresis. Both methods reveal a molecular weight of 51,000. 3. The enzyme requires Mg2+ and has its pH optimum at 8.5. 4. Isoelectric focussing as well as gel electrophoresis of the purified extract reveals a single band which exhibits enzyme activity. The isoelectric point of the enzyme is 5.1. 5. The enzyme displays Michaelis-Menten kinetics with apparent Michaelis constants for hypoxanthine, guanine and phosphoribosylpyrophosphate of 23 microns, 18 microns, and 50 microns respectively.  相似文献   

6.
The enzyme xanthine-guanine phosphoribosyltransferase from scherichia coli cells harboring the plasmid pSV2gpt has been purified 30-fold to near homogeneity by single-step GMP-agarose affinity chromatography. It has a Km value of 2.5, 42 and 182 μM for the substrates guanine, xanthine and hypoxanthine, respectively, with guanine being the most preferred substrate. The enzyme exhibits a Km value of 38.5 μM for PRib-PP with guanine as second substrate and of 100 μM when xanthine is used as the second substrate. It is markedly inhibited by 6-thioguanine, GMP and to a lesser extent by some other purine analogues. Thioguanine has been found to be the most potent inhibitor. The subunit molecular weight of xanthine-guanine phosphoribosyltransferase was determined to be 19 000. The in situ activity assay on a nondenaturing polyacrylamide gel electrophoresis gel has indicated that a second E. coli phosphoribosyltransferase preferentially uses hypoxanthine as opposed to guanine as a substrate, and it does not use xanthine.  相似文献   

7.
Streptococcus faecalis (ATCC 8043) was shown to have a purine phosphoribosyltransferase specific for xanthine. This enzyme was separated from interfering activities by heat treatment, ammonium sulfate fractionation, hydroxylapatite chromatography, and affinity chromatography. The xanthine phosphoribosyltransfer activity of this preparation was stable between pH 5.6 and 10, had a pH optimum between pH 7.4 and 8.8, and had a particle weight of 42,000 as determined by G-100 Sephadex chromatography. An initial velocity analysis when plotted in double-reciprocal form resulted in a family of parallel lines which when extrapolated to infinite concentration gave Km values for xanthine and PP-ribose-P of 20 and 53 μm, respectively. Inhibition studies with 42 purine and purine analogs indicated that oxo groups at positions 2 and 6 of the purine ring were required for optimal binding. The substitution of thio for oxo reduced binding to the enzyme ca. 20-fold. In contrast to its rigid specificity with respect to the 2,6-dioxo substituents, the enzyme bound a variety of 4,5-condensed pyrimidine systems containing a nitrogen at the position corresponding to the N-7 of xanthine. At concentrations of 1 mm, hypoxanthine, adenine, and 4,6-dihydroxypyrazolo[3,4-d]pyrimidine were converted to their corresponding ribonucleotides at rates approximately 0.1% of the rate for xanthine. Guanine was not detected as a substrate (rate <0.007% that of xanthine). The enzyme was inhibited by the ribonucleoside mono-, di-, and triphosphates of xanthine and guanine but not by those of adenine.  相似文献   

8.
Bacillus subtilis mutants defective in purine metabolism have been isolated by selecting for resistance to purine analogs. Mutants resistant to 2-fluoroadenine were found to be defective in adenine phosphoribosyltransferase (apt) activity and slightly impaired in adenine uptake. By making use of apt mutants and mutants defective in adenosine phosphorylase activity, it was shown that adenine deamination is an essential step in the conversion of both adenine and adenosine to guanine nucleotides. Mutants resistant to 8-azaguanine, pbuG mutants, appeared to be defective in hypoxanthine and guanine transport and normal in hypoxanthine-guanine phosphoribosyltransferase activity. Purine auxotrophic pbuG mutants grew in a concentration-dependent way on hypoxanthine, while normal growth was observed on inosine as the purine source. Inosine was taken up by a different transport system and utilized after conversion to hypoxanthine. Two mutants resistant to 8-azaxanthine were isolated: one was defective in xanthine phosphoribosyltransferase (xpt) activity and xanthine transport, and another had reduced GMP synthetase activity. The results obtained with the various mutants provide evidence for the existence of specific purine base transport systems. The genetic lesions causing the mutant phenotypes, apt, pbuG, and xpt, have been located on the B. subtilis linkage map at 243, 55, and 198 degrees, respectively.  相似文献   

9.
In contrast to the cytocidal effect of 6-thiopurines on mammalian cells, the action of 6-thioxanthine on Toxoplasma gondii was only parasitostatic. 6-Thioxanthine was a substrate of the parasite's hypoxanthine-guanine phosphoribosyltransferase. That enzyme converted 6-thioxanthine to 6-thioxanthosine 5'-phosphate which accumulated to near millimolar concentrations within parasites incubated intracellularly in medium containing the drug. 6-Thioxanthosine 5'-phosphate was the only detectable metabolite of 6-thioxanthine. The absence of 6-thioguanine nucleotides explains the lack of a parasitocidal effect because the incorporation of 6-thiodeoxyguanosine triphosphate into DNA is the mechanism of the lethal effect of 6-thiopurines on mammalian cells. Extracellular parasites that had accumulated a high concentration of 6-thioxanthosine 5'-phosphate incorporated more labeled hypoxanthine or xanthine into their nucleotide pools than did control parasites. The basis for this increased nucleobase salvage remains unexplained. It was not due to up-regulation of hypoxanthine-guanine phosphoribosyltransferase and could not be explained by reduced use of labeled nucleotides for nucleic acid synthesis. Extracellular parasites that had accumulated a high concentration of 6-thioxanthosine 5'-phosphate used labeled hypoxanthine almost entirely to make adenine nucleotides while control parasites made both adenine and guanine nucleotides. Both extracellular parasites that had accumulated a high concentration of 6-thioxanthosine 5'-phosphate and control parasites efficiently used labeled xanthine to make guanine nucleotides. These observations suggested that inosine 5'-phosphate-dehydrogenase was inhibited while guanosine 5'-phosphate synthase was not. Assay of inosine 5'-phosphate dehydrogenase in soluble extracts of T. gondii confirmed that 6-thioxanthosine 5'-phosphate was an inhibitor. We conclude that 6-thioxanthine blocks the growth of T. gondii by a depletion a guanine nucleotides.  相似文献   

10.
Uricase activity was found in Enterobacter cloacae KY3074 grown on guanine, hypoxanthine, uric acid, and xanthine media. The enzyme was purified from cells grown on uric acid as a source of nitrogen. The purification procedure included ammonium sulfate fractionation, gel filtration on Sephadex G-150, and column chromatography on DEAE-cellulose and DEAE-Sephadex. The enzyme had a molecular weight of about 105,000 and was specific for uric acid. The optimum pH was around 9.5, and the activity was inhibited by the presence of potassium cyanide, Ag+ or Cu2+. This uricase can be used for estimation of uric acid.  相似文献   

11.
Xanthine dehydrogenase has been purified to a homogeneous state from cell-free extracts of a strain of Streptomyces. The enzyme has a molecular weight of 125,000 and consists of two subunits with a molecular weight of 67,000. The isoelectric point is at pH 4.4. The enzyme exhibits absorption maxima at 273, 355, and 457 nm and contains FAD, iron, and labile sulfide in a molar ratio of 1 : 7 : 1 per subunit. Little molybdenum could be detected. The enzyme is most active at pH 8.7 and at 40 degrees C, and is stable between pH 7 and 12 (at 4 degrees C for 24 h) and below 55 degrees C (at pH 9 for 10 min). The activity is stimulated by K+ at a concentration of 50 mM or more and also by keeping the enzyme at pH 9 to 11. The activity is inhibited by cyanide, Tiron, and p-chloromercuribenzoate and by adenine and urate. Among the compounds tested, hypoxanthine, guanine, xanthine 2-hydroxypurine, and 6,8-dihydroxypurine are oxidized at considerable rates; hypoxanthine is the best substrate. NAD+ is the preferred electron acceptor. Km values of the enzyme for hypoxanthine, guanine, xanthine, and NAD+ are 0.055, 0.015, 0.15, and 0.11 mM, respectively. Marked differences in the properties of this enzyme compared to others are the activity towards guanine, which has a higher affinity for the enzyme than hypoxanthine and xanthine, and a higher reactivity with hypoxanthine than xanthine. The organism has been identified as Streptomyces cyanogenus.  相似文献   

12.
Two isozymes of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT) of the apicomplexan protozoan Toxoplasma gondii are encoded by the single HGPRT gene as a result of differential splicing. Western blotting of total T. gondii protein shows that both isozymes I and II, which differ by 49 amino acids, are expressed. Both form enzymatically active homotetramers when overexpressed in Escherichia coli. The specific activity of HGPRT-I is five times that of HGPRT-II. When both isozymes are co-expressed in E. coli, HGPRT-I.HGPRT-II heterotetramers form. The predominant heterotetramer has enzymatic activity similar to HGPRT-II, and gel filtration chromatography demonstrates that its size is intermediate between the sizes of HGPRT-I and HGPRT-II. Mass spectrometric analysis of cross-linked homo- and heterotetramers reveals species of distinct molecular mass for HGPRT-I, HGPRT-II, and HGPRT-I.HGPRT-II and suggests that the predominant heterotetramer consists of one HGPRT-I subunit and three HGPRT-II subunits. The implications of this finding are discussed.  相似文献   

13.
Xanthine phosphoribosyltransferase (XPRT) from Leishmania donovani is a unique enzyme that lacks a mammalian counterpart and is, therefore, a potential target for antiparasitic therapy. To investigate the enzyme at the molecular and biochemical level, a cDNA encoding the L. donovani XPRT was isolated by functional complementation of a purine auxotroph of Escherichia coli that also harbors deficiencies in the prokaryotic phosphoribosyltransferase (PRT) activities. The cDNA was then used to isolate the XPRT genomic clone. XPRT encodes a 241-amino acid protein exhibiting approximately 33% amino acid identity with the L. donovani hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and significant homology with other HGPRT family members. Southern blot analysis revealed that XPRT was a single copy gene that co-localized with HGPRT within a 4.3-kilobase pair (kb) EcoRI fragment, implying that the two genes arose as a result of an ancestral duplication event. Sequencing of this EcoRI fragment confirmed that HGPRT and XPRT were organized in a head-to-tail arrangement separated by an approximately 2.2-kb intergenic region. Both the 3.2-kb XPRT mRNA and XPRT enzyme were significantly up-regulated in Deltahgprt and Deltahgprt/Deltaaprt L. donovani mutants. Genetic obliteration of the XPRT locus by targeted gene replacement indicated that XPRT was not an essential gene under most conditions and that the Deltaxprt null strain was competent of salvaging all purines except xanthine. XPRT was overexpressed in E. coli and the recombinant protein purified to homogeneity. Kinetic analysis revealed that the XPRT preferentially phosphoribosylated xanthine but could also recognize hypoxanthine and guanine. K(m) values of 7.1, 448.0, and >100 microM and k(cat) values of 3.5, 2.6, and approximately 0.003 s(-1) were calculated for xanthine, hypoxanthine, and guanine, respectively. The XPRT gene and XPRT protein provide the requisite molecular and biochemical reagents for subsequent studies to validate XPRT as a potential therapeutic target.  相似文献   

14.
15.
The 6-oxopurine phosphoribosyltransferase (HPRT, EC 2.4.2.8) from the hyperthermophile Pyrococcus horikoshii was expressed in Escherichia coli and purified. Steady-state kinetic studies indicated that the enzyme is able to use hypoxanthine, guanine and xanthine. The first two substrates showed similar catalytic efficiencies, and xanthine presented a much lower value (around 20 times lower), but the catalytic constant was comparable to that of hypoxanthine. The enzyme was not able to bind to GMP-agarose, but was able to bind the other reverse reaction substrate, inorganic pyrophosphate, with low affinity (K(d) of 4.7+/-0.1 mM). Dynamic light scattering and analytical gel filtration suggested that the enzyme exists as a homohexamer in solution.  相似文献   

16.
We defined the amino acid sequence of adenine phosphoribosyltransferase isolated from human erythrocytes. Peptide fragments formed by cleavage at arginine, lysine, glutamic acid, and methionine were purified by high pressure liquid chromatography and sequenced by manual Edman degradation. The complete primary structure of human adenine phosphoribosyltransferase was established by sequence analysis of 19 peptide fragments. Presumed homology between the human and rodent enzymes was used to order fragments that had inadequate overlapping sequences. The enzyme has 179 residues with a calculated subunit molecular weight of 19,481. Mass spectrometry indicated that the NH2-terminal residue is acetylated. Human adenine phosphoribosyltransferase has sequence homology with xanthine-guanine phosphoribosyltransferase from Escherichia coli in 110-amino acid region encompassing the NH2-terminal section of the enzyme.  相似文献   

17.
Purine nucleoside phosphorylase (EC 2.4.2.1, purine nucleoside:orthophosphate ribosyltransferase) was purified and characterized from the malarial parasite, Plasmodium lophurae, using a chromatofocusing (Pharmacia) column and a formycin B affinity column. The apparent isoelectric point of the native protein, as determined by chromatofocusing, was 6.80. By gel filtration and both native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the native enzyme appeared to be a pentamer with a native molecular weight of 125,300 and a subunit molecular weight of 23,900. The enzyme had a broad pH optimum, pH 5.5-7.5, with maximum activity at pH 6.0-6.5. The enzyme reaction was readily reversible with a Km for inosine of 33 microM and a Km for hypoxanthine of 82 microM. Thioinosine, guanosine, and guanine were also substrates for the plasmodial enzyme, but allopurinol and adenine were not. The parasite enzyme was competitively inhibited by formycin B (Ki = 0.39 microM). Formycin A, azaguanine, and 8-aminoguanosine were not inhibitors of the enzyme.  相似文献   

18.
l-Tryptophan-activating enzyme [l-tryptophan-tRNA ligase (AMP), EC 6.1.1.2] of water-buffalo brain was purified to near homogeneity by heat and pH treatments, ammonium sulphate fractionation, column chromatography on DEAE-cellulose, hydroxyapatite and Amberlite CG-50, and gel filtration on Sephadex G-200. The purified enzyme catalyses tryptophanyl-tRNA formation with yeast tRNA, but not with Escherichia coli tRNA. The enzyme exhibits multiple peaks of activity in Sephadex gel filtration with molecular weights corresponding to 155000, 105000 and 50000. However, only one peak of activity with molecular weight of 155000 can be detected when the enzyme is subjected to gel filtration at high concentration. Disc gel electrophoresis in the presence of sodium dodecyl sulphate reveals a single band with molecular weight of 55000. The activity of the enzyme is concentration dependent. Different K(m) and V(max.) values are obtained at different enzyme concentrations. These data suggest that this enzyme may exist in different quaternary structures, each with its own kinetic constants. The enzyme activity is inhibited by p-chloromercuribenzoate, and is not protected by the presence of the substrates, l-tryptophan, Mg(2+), ATP, in any combination.  相似文献   

19.
Lesch-Nyhan syndrome (LNS) is caused by a severe deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) and clinically characterized by self-injurious behavior and nephrolithiasis; the latter is treatable with allopurinol, an inhibitor of xanthine oxidase which converts xanthine and hypoxanthine into uric acid. In the HPRT gene, more than 200 different mutations are known, and de novo mutation occurs at a high rate. Thus, there is a great need to develop a highly specific method to detect patients with HPRT dysfunction by quantifying the metabolites related to this enzyme. A simplified urease pretreatment of urine, gas chromatography-mass spectrometry, and stable isotope dilution method, developed for cutting-edge metabonomics, was further applied to quantify hypoxanthine, xanthine, urate, guanine and adenine in 100 microl or less urine or eluate from filter-paper-urine strips by additional use of stable isotope labeled guanine and adenine as the internal standards. In this procedure, the recoveries were above 93% and linearities (r(2)=0.9947-1.000) and CV values (below 7%) of the indicators were satisfactory. In four patients with proven LNS, hypoxanthine was elevated to 8.4-9.0 SD above the normal mean, xanthine to 4-6 SD above the normal mean, guanine to 1.9-3.7 SD, and adenine was decreased. Because of the allopurinol treatment for all the four patients, their level of urate was not elevated, orotate increased, and uracil was unchanged as compared with the control value. It was concluded that even in the presence of treatment with allopurinol, patients with LNS can be chemically diagnosed by this procedure. Abnormality in the levels of hypoxanthine and xanthine was quite prominent and n, the number of standard deviations above the normal mean, combined for the two, was above 12.9.  相似文献   

20.
R L Nussbaum  C T Caskey 《Biochemistry》1981,20(16):4584-4590
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) was purified 12 000-fold to homogeneity from yeast by a three-step procedure including acid precipitation, anion-exchange chromatography, and guanosine 5' -monophosphate affinity chromatography. The enzyme is a dimer consisting of two, probably identical, subunits of Mr 29 500. The enzyme recognized hypoxanthine and guanine, but not adenine or xanthine, as substrates. An antiserum against both native and denatured enzyme has been raised and shown to be specific for the enzyme. The antiserum has no affinity for Chinese hamster or human HPRT but does recognize subunits of yeast HPRT as well as some cyanogen bromide fragments of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号