首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although skeletal muscle perfusion is fundamental to proper muscle function, in vivo measurements are typically limited to those of limb or arterial blood flow, rather than flow within the muscle bed itself. We present a noninvasive functional MRI (fMRI) technique for measuring perfusion-related signal intensity (SI) changes in human skeletal muscle during and after contractions and demonstrate its application to the question of occlusion during a range of contraction intensities. Eight healthy men (aged 20-31 yr) performed a series of isometric ankle dorsiflexor contractions from 10 to 100% maximal voluntary contraction. Axial gradient-echo echo-planar images (repetition time = 500 ms, echo time = 18.6 ms) were acquired continuously before, during, and following each 10-s contraction, with 4.5-min rest between contractions. Average SI in the dorsiflexor muscles was calculated for all 240 images in each contraction series. Postcontraction hyperemia for each force level was determined as peak change in SI after contraction, which was then scaled to that obtained following a 5-min cuff occlusion of the thigh (i.e., maximal hyperemia). A subset of subjects (n = 4) performed parallel studies using venous occlusion plethysmography to measure limb blood flow. Hyperemia measured by fMRI and plethysmography demonstrated good agreement. Postcontraction hyperemia measured by fMRI scaled with contraction intensity up to approximately 60% maximal voluntary contraction. fMRI provides a noninvasive means of quantifying perfusion-related changes during and following skeletal muscle contractions in humans. Temporal changes in perfusion can be observed, as can the heterogeneity of perfusion across the muscle bed.  相似文献   

2.
The signal intensity (SI) in gradient-echo, echo-planar magnetic resonance images (repetition time/echo time = 1,000/40) of anterior tibialis muscle in active [estimated energy expenditure 42.4 +/- 3.7 (SD), n = 8] vs. sedentary (32.3 +/- 0.6 kcal.kg(-1).day(-1), n = 8) young adult (18-34 yr old) human subjects was measured after single, 1-s-duration maximum voluntary ankle dorsiflexion contractions. There was no difference between groups in anterior tibial muscle cross-sectional area or peak force. In both groups there was a transient increase in anterior tibialis muscle SI, which peaked 5-7 s after the end of each contraction. The magnitude of the SI transient was over threefold greater [5.5 +/- 1.0 (SE) vs. 1.5 +/- 0.4%] and persisted twice as long (half-recovery time 5.4 +/- 0.4 vs. 2.7 +/- 0.3 s) in the active subjects. In the same subjects, blood flow in popliteal, anterior tibial, and posterior tibial arteries was measured by cardiac-gated CINE magnetic resonance angiography before and after 2 min of dynamic, repetitive ankle dorsiflexion exercise. There was no difference between groups in resting or postexercise flow in anterior tibial artery, although popliteal and posterior tibial artery flow after exercise tended to be greater in the active group. The results indicate that transient hyperemia and oxygenation in muscle after single contractions are enhanced by chronic physical activity to a greater extent than peak muscle blood flow.  相似文献   

3.
A previous study (Grassi B, Gladden LB, Samaja M, Stary CM, and Hogan MC, J Appl Physiol 85: 1394-1403, 1998) showed that convective O(2) delivery to muscle did not limit O(2) uptake (VO(2)) on-kinetics during transitions from rest to contractions at approximately 60% of peak VO(2). The present study aimed to determine whether this finding is also true for transitions involving contractions of higher metabolic intensities. VO(2) on-kinetics were determined in isolated canine gastrocnemius muscles in situ (n = 5) during transitions from rest to 4 min of electrically stimulated isometric tetanic contractions corresponding to the muscle peak VO(2). Two conditions were compared: 1) spontaneous adjustment of muscle blood flow (Q) (Control) and 2) pump-perfused Q, adjusted approximately 15-30 s before contractions at a constant level corresponding to the steady-state value during contractions in Control (Fast O(2) Delivery). In Fast O(2) Delivery, adenosine was infused intra-arterially. Q was measured continuously in the popliteal vein; arterial and popliteal venous O(2) contents were measured at rest and at 5- to 7-s intervals during the transition. Muscle VO(2) was determined as Q times the arteriovenous blood O(2) content difference. The time to reach 63% of the VO(2) difference between resting baseline and steady-state values during contractions was 24.9 +/- 1.6 (SE) s in Control and 18.5 +/- 1.8 s in Fast O(2) Delivery (P < 0.05). Faster VO(2) on-kinetics in Fast O(2) Delivery was associated with an approximately 30% reduction in the calculated O(2) deficit and with less muscle fatigue. During transitions involving contractions at peak VO(2), convective O(2) delivery to muscle, together with an inertia of oxidative metabolism, contributes in determining the VO(2) on-kinetics.  相似文献   

4.
The purpose of this study was to determine whether there are differences in postisometric contraction blood volume and oxygenation responses among groups of type 2 diabetes mellitus (T2DM), obese, and lean individuals detectable using MRI. Eight T2DM patients were individually matched by age, sex, and race to non-T2DM individuals with similar body mass index (obese) and lean subjects. Functional MRI was performed using a dual-gradient-recalled echo, echo-planar imaging sequence with a repetition time of 1 s and at two echo times (TE = 6 and 46 ms). Data were acquired before, during, and after 10-s isometric dorsiflexion contractions performed at 50 and 100% of maximal voluntary contraction (MVC) force. MRI signal intensity (SI) changes from the tibialis anterior and extensor digitorum longus muscles were plotted as functions of time for each TE. From each time course, the difference between the minimum and the maximum postcontraction SI (ΔSI) were determined for TE = 6 ms (ΔSI(6)) and TE = 46 ms (ΔSI(46)), reflecting variations in blood volume and oxyhemoglobin saturation, respectively. Following 50% MVC contractions, the mean postcontraction ΔSI(6) values were similar in the three groups. Following MVC only, and in the EDL muscle only, T2DM and obese participants had ~56% lower ΔSI(6) than the lean individuals. Also following MVC only, the ΔSI(46) response in the EDL was lower in T2DM subjects than in lean individuals. These data suggest that skeletal muscle small vessel impairment occurs in T2DM and body mass index-matched subjects, in muscle-specific and contraction intensity-dependent manners.  相似文献   

5.
To test the hypothesis that hypoxia centrally affects performance independently of afferent feedback and peripheral fatigue, we conducted two experiments under complete vascular occlusion of the exercising muscle under different systemic O(2) environmental conditions. In experiment 1, 12 subjects performed repeated submaximal isometric contractions of the elbow flexor to exhaustion (RCTE) with inspired O(2) fraction fixed at 9% (severe hypoxia, SevHyp), 14% (moderate hypoxia, ModHyp), 21% (normoxia, Norm), or 30% (hyperoxia, Hyper). The number of contractions (performance), muscle (biceps brachii), and prefrontal near-infrared spectroscopy (NIRS) parameters and high-frequency paired-pulse (PS100) evoked responses to electrical muscle stimulation were monitored. In experiment 2, 10 subjects performed another RCTE in SevHyp and Norm conditions in which the number of contractions, biceps brachii electromyography responses to electrical nerve stimulation (M wave), and transcranial magnetic stimulation responses (motor-evoked potentials, MEP, and cortical silent period, CSP) were recorded. Performance during RCTE was significantly reduced by 10-15% in SevHyp (arterial O(2) saturation, SpO(2) = ~75%) compared with ModHyp (SpO(2) = ~90%) or Norm/Hyper (SpO(2) > 97%). Performance reduction in SevHyp occurred despite similar 1) metabolic (muscle NIRS parameters) and functional (changes in PS100 and M wave) muscle states and 2) MEP and CSP responses, suggesting comparable corticospinal excitability and spinal and cortical inhibition between SevHyp and Norm. It is concluded that, in SevHyp, performance and central drive can be altered independently of afferent feedback and peripheral fatigue. It is concluded that submaximal performance in SevHyp is partly reduced by a mechanism related directly to brain oxygenation.  相似文献   

6.
Muscle contractions evoke an immediate rise in blood flow. Distribution of this hyperemia within the capillary bed may be deterministic for muscle O(2) diffusing capacity and remains unresolved. We developed the exteriorized rat (n = 4) spinotrapezius muscle for evaluation of capillary hemodynamics before (rest), during, and immediately after (post) a bout of twitch contractions to resolve (second-by-second) alterations in red blood cell velocity (V(RBC)) and flux (f(RBC)). Contractions increased (all P < 0.05) capillary V(RBC) (rest: 270 +/- 62 microm/s; post: 428 +/- 47 microm/s), f(RBC) (rest: 22.4 +/- 5.5 cells/s; post: 44.3 +/- 5.5 cells/s), and hematocrit but not the percentage of capillaries supporting continuous RBC flow (rest: 84.0 +/- 0.7%; post: 89.5+/-1.4%; P > 0.05). V(RBC) peaked within the first one or two contractions, whereas f(RBC) increased to an initial short plateau (first 12-20 s) followed by a secondary rise to steady state. Hemodynamic temporal profiles were such that capillary hematocrit tended to decrease rather than increase over the first approximately 15 s of contractions. We conclude that contraction-induced alterations in capillary RBC flux and distribution augment both convective and diffusive mechanisms for blood-myocyte O(2) transfer. However, across the first 10-15 s of contractions, the immediate and precipitous rise in V(RBC) compared with the biphasic and prolonged increase of f(RBC) may act to lower O(2) diffusing capacity by not only reducing capillary transit time but by delaying the increase in the instantaneous RBC-to-capillary surface contact thought crucial for blood-myocyte O(2) flux.  相似文献   

7.
The aim of this study was to investigate local muscle O(2) consumption (muscV(O(2))) and forearm blood flow (FBF) in resting and exercising muscle by use of near-infrared spectroscopy (NIRS) and to compare the results with the global muscV(O(2)) and FBF derived from the well-established Fick method and plethysmography. muscV(O(2)) was derived from 1) NIRS using venous occlusion, 2) NIRS using arterial occlusion, and 3) the Fick method [muscV(O(2(Fick)))]. FBF was derived from 1) NIRS and 2) strain-gauge plethysmography. Twenty-six healthy subjects were tested at rest and during sustained isometric handgrip exercise. Local variations were investigated with two independent and simultaneously operating NIRS systems at two different muscles and two measurement depths. muscV(O(2)) increased more than fivefold in the active flexor digitorum superficialis muscle, and it increased 1.6 times in the brachioradialis muscle. The average increase in muscV(O(2(Fick))) was twofold. FBF increased 1.4 times independent of the muscle or the method. It is concluded that NIRS is an appropriate tool to provide information about local muscV(O(2)) and local FBF because both place and depth of the NIRS measurements reveal local differences that are not detectable by the more established, but also more global, Fick method.  相似文献   

8.
This study evaluated the hypothesis that active muscle blood flow is lower during exercise at a given submaximal power output after aerobic conditioning as a result of unchanged cardiac output and blunted splanchnic vasoconstriction. Eight untrained subjects (4 men, 4 women, 23-31 yr) performed high-intensity aerobic training for 9-12 wk. Leg blood flow (femoral vein thermodilution), splanchnic blood flow (indocyanine green clearance), cardiac output (acetylene rebreathing), whole body O(2) uptake (VO(2)), and arterial-venous blood gases were measured before and after training at identical submaximal power outputs (70 and 140 W; upright 2-leg cycling). Training increased (P < 0.05) peak VO(2) (12-36%) but did not significantly change submaximal VO(2) or cardiac output. Leg blood flow during both submaximal power outputs averaged 18% lower after training (P = 0.001; n = 7), but these reductions were not correlated with changes in splanchnic vasoconstriction. Submaximal leg VO(2) was also lower after training. These findings support the hypothesis that aerobic training reduces active muscle blood flow at a given submaximal power output. However, changes in leg and splanchnic blood flow resulting from high-intensity training may not be causally linked.  相似文献   

9.
The purpose of this study was to examine O(2) uptake (Vo(2)) on-kinetics when the spontaneous blood flow (and therefore O(2) delivery) on-response was slowed by 25 and 50 s. The isolated gastrocnemius muscle complex (GS) in situ was studied in six anesthetized dogs during transitions from rest to a submaximal metabolic rate (≈50-70% of peak Vo(2)). Four trials were performed: 1) a pretrial in which resting and steady-state blood flows were established, 2) a control trial in which the blood flow on-kinetics mean response time (MRT) was set at 20 s (CT20), 3) an experimental trial in which the blood flow on-kinetics MRT was set at 45 s (EX45), and 4) an experimental trial in which the blood flow on-kinetics MRT was set at 70 s (EX70). Slowing O(2) delivery via slowing blood flow on-kinetics resulted in a linear slowing of the Vo(2) on-kinetics response (R = 0.96). Average MRT values for CT20, EX45, and EX70 Vo(2) on-kinetics were (means ± SD) 17 ± 2, 23 ± 4, and 26 ± 3 s, respectively (P < 0.05 among all). During these transitions, slowing blood flow resulted in greater muscle deoxygenation (as indicated by near-infrared spectroscopy), suggesting that lower intracellular Po(2) values were reached. In this oxidative muscle, Vo(2) and O(2) delivery were closely matched during the transition period from rest to steady-state contractions. In conjunction with our previous work showing that speeding O(2) delivery did not alter Vo(2) on-kinetics under similar conditions, it appears that spontaneously perfused skeletal muscle operates at the nexus of sufficient and insufficient O(2) delivery in the transition from rest to contractions.  相似文献   

10.
The consequences of a decreased O2 supply to a contracting canine gastrocnemius muscle preparation were investigated during two forms of hypoxia: hypoxic hypoxia (HH) (n = 6) and CO hypoxia (COH) (n = 6). Muscle O2 uptake, blood flow, O2 extraction, and developed tension were measured at rest and at 1 twitch/s isometric contractions in normoxia and in hypoxia. No differences were observed between the two groups at rest. During contractions and hypoxia, however, O2 uptake decreased from the normoxic level in the COH group but not in the HH group. Blood flow increased in both groups during hypoxia, but more so in the COH group. O2 extraction increased further with hypoxia (P less than 0.05) during concentrations in the HH group but actually fell (P less than 0.05) in the COH group. The O2 uptake limitation during COH and contractions was associated with a lesser O2 extraction. The leftward shift in the oxyhemoglobin dissociation curve during COH may have impeded tissue O2 extraction. Other factors, however, such as decreased myoglobin function or perfusion heterogeneity must have contributed to the inability to utilize the O2 reserve more fully.  相似文献   

11.
The effect of creatine (Cr) supplementation on muscle isometric torque generation and relaxation was investigated in healthy male volunteers. Maximal torque (Tmax), contraction time (CT) from 0.25 to 0.75 of Tmax, and relaxation time (RT) from 0.75 to 0.25 of Tmax were measured during 12 maximal isometric 3-s elbow flexions interspersed by 10-s rest intervals. Between the pretest and the posttest, subjects ingested Cr monohydrate (4 x 5 g/day; n = 8) or placebo (n = 8) for 5 days. Pretest Tmax, CT, and RT were similar in Cr and placebo groups. Also in the posttest, Tmax and CT were similar between groups. However, posttest RT was decreased consistently by approximately 20% (P < 0.05) in the Cr group from the first to the last of the 12 contractions. In addition, the mean decrease in RT after Cr loading was positively correlated with pretest RT (r = 0.82). It is concluded that Cr loading facilitates the rate of muscle relaxation during brief isometric muscle contractions without affecting torque production.  相似文献   

12.
The effect of exercise-induced arterial hypoxemia (EIAH) on quadriceps muscle fatigue was assessed in 11 male endurance-trained subjects [peak O2 uptake (VO2 peak) = 56.4 +/- 2.8 ml x kg(-1) x min(-1); mean +/- SE]. Subjects exercised on a cycle ergometer at >or=90% VO2 peak) to exhaustion (13.2 +/- 0.8 min), during which time arterial O2 saturation (Sa(O2)) fell from 97.7 +/- 0.1% at rest to 91.9 +/- 0.9% (range 84-94%) at end exercise, primarily because of changes in blood pH (7.183 +/- 0.017) and body temperature (38.9 +/- 0.2 degrees C). On a separate occasion, subjects repeated the exercise, for the same duration and at the same power output as before, but breathed gas mixtures [inspired O2 fraction (Fi(O2)) = 0.25-0.31] that prevented EIAH (Sa(O2) = 97-99%). Quadriceps muscle fatigue was assessed via supramaximal paired magnetic stimuli of the femoral nerve (1-100 Hz). Immediately after exercise at Fi(O2) 0.21, the mean force response across 1-100 Hz decreased 33 +/- 5% compared with only 15 +/- 5% when EIAH was prevented (P < 0.05). In a subgroup of four less fit subjects, who showed minimal EIAH at Fi(O2) 0.21 (Sa(O2) = 95.3 +/- 0.7%), the decrease in evoked force was exacerbated by 35% (P < 0.05) in response to further desaturation induced via Fi(O2) 0.17 (Sa(O2) = 87.8 +/- 0.5%) for the same duration and intensity of exercise. We conclude that the arterial O2 desaturation that occurs in fit subjects during high-intensity exercise in normoxia (-6 +/- 1% DeltaSa(O2) from rest) contributes significantly toward quadriceps muscle fatigue via a peripheral mechanism.  相似文献   

13.
To test the hypothesis that vasodilation occurs because of the release of a vasoactive substance after a brief muscle contraction and to determine whether acetylcholine spillover from the motor nerve is involved in contraction-induced hyperemia, tetanic muscle contractions were produced by sciatic nerve stimulation in anesthetized dogs (n = 16), instrumented with flow probes on both external iliac arteries. A 1-s stimulation of the sciatic nerve at 1. 5, 3, and 10 times motor threshold increased blood flow above baseline (P < 0.01) for 20, 25, and 30 s, respectively. Blood flow was significantly greater 1 s after the contraction ended for 3 and 10 x motor threshold (P < 0.01) and did not peak until 6-7 s after the contraction. The elevations in blood flow to a 1-s stimulation of the sciatic nerve and a 30-s train of stimulations were abolished by neuromuscular blockade (vecuronium). The delayed peak blood flow response and the prolonged hyperemia suggest that a vasoactive substance is rapidly released from the contracting skeletal muscle and can affect blood flow with removal of the mechanical constraint imposed by the contraction. In addition, acetylcholine spillover from the motor nerve is not responsible for the increase in blood flow in response to muscle contraction.  相似文献   

14.
Near-infrared spectroscopy (NIRS) could allow insights into controversial issues related to blood lactate concentration ([La](b)) increases at submaximal workloads (). We combined, on five well-trained subjects [mountain climbers; peak O(2) consumption (VO(2peak)), 51.0 +/- 4.2 (SD) ml. kg(-1). min(-1)] performing incremental exercise on a cycle ergometer (30 W added every 4 min up to voluntary exhaustion), measurements of pulmonary gas exchange and earlobe [La](b) with determinations of concentration changes of oxygenated Hb (Delta[O(2)Hb]) and deoxygenated Hb (Delta[HHb]) in the vastus lateralis muscle, by continuous-wave NIRS. A "point of inflection" of [La](b) vs. was arbitrarily identified at the lowest [La](b) value which was >0.5 mM lower than that obtained at the following. Total Hb volume (Delta[O(2)Hb + HHb]) in the muscle region of interest increased as a function of up to 60-65% of VO(2 peak), after which it remained unchanged. The oxygenation index (Delta[O(2)Hb - HHb]) showed an accelerated decrease from 60- 65% of VO(2 peak). In the presence of a constant total Hb volume, the observed Delta[O(2)Hb - HHb] decrease indicates muscle deoxygenation (i.e., mainly capillary-venular Hb desaturation). The onset of muscle deoxygenation was significantly correlated (r(2) = 0.95; P < 0.01) with the point of inflection of [La](b) vs., i.e., with the onset of blood lactate accumulation. Previous studies showed relatively constant femoral venous PO(2) levels at higher than approximately 60% of maximal O(2) consumption. Thus muscle deoxygenation observed in the present study from 60-65% of VO(2 peak) could be attributed to capillary-venular Hb desaturation in the presence of relatively constant capillary-venular PO(2) levels, as a consequence of a rightward shift of the O(2)Hb dissociation curve determined by the onset of lactic acidosis.  相似文献   

15.
With advancing age, there is a reduction in exercise tolerance, resulting, in part, from a perturbed ability to match O(2) delivery to uptake within skeletal muscle. In the spinotrapezius muscle (which is not recruited during incline treadmill running) of aged rats, we tested the hypotheses that exercise training will 1) improve the matching of O(2) delivery to O(2) uptake, evidenced through improved microvascular Po(2) (Pm(O(2))), at rest and throughout the contractions transient; and 2) enhance endothelium-dependent vasodilation in first-order arterioles. Young (Y, ~6 mo) and aged (O, >24 mo) Fischer 344 rats were assigned to control sedentary (YSED; n = 16, and OSED; n = 15) or exercise-trained (YET; n = 14, and OET; n = 13) groups. Spinotrapezius blood flow (via radiolabeled microspheres) was measured at rest and during exercise. Phosphorescence quenching was used to quantify Pm(O(2)) in vivo at rest and across the rest-to-twitch contraction (1 Hz, 5 min) transition in the spinotrapezius muscle. In a follow-up study, vasomotor responses to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) stimuli were investigated in vitro. Blood flow to the spinotrapezius did not increase above resting values during exercise in either young or aged groups. Exercise training increased the precontraction baseline Pm(O(2)) (OET 37.5 ± 3.9 vs. OSED 24.7 ± 3.6 Torr, P < 0.05); the end-contracting Pm(O(2)) and the time-delay before Pm(O(2)) fell in the aged group but did not affect these values in the young. Exercise training improved maximal vasodilation in aged rats to acetylcholine (OET 62 ± 16 vs. OSED 27 ± 16%) and to sodium nitroprusside in both young and aged rats. Endurance training of aged rats enhances the Pm(O(2)) in a nonrecruited skeletal muscle and is associated with improved vascular smooth muscle function. These data support the notion that improvements in vascular function with exercise training are not isolated to the recruited muscle.  相似文献   

16.
The aim of this study was to investigate the effects of endurance training on skeletal muscle hemodynamics and oxygen consumption. Seven healthy endurance-trained and seven untrained subjects were studied. Oxygen uptake, blood flow, and blood volume were measured in the quadriceps femoris muscle group by use of positron emission tomography and [15O]O2, [15O]H2O, and [15O]CO during rest and one-legged submaximal intermittent isometric exercise. The oxygen extraction fraction was higher (0.49 +/- 0.14 vs. 0.29 +/- 0.12; P = 0.017) and blood transit time longer (0.6 +/- 0.1 vs. 0.4 +/- 0.1 min; P = 0.04) in the exercising muscle of the trained compared with the untrained subjects. The flow heterogeneity by means of relative dispersion was lower for the exercising muscle in the trained (50 +/- 9%) compared with the untrained subjects (65 +/- 13%, P = 0.025). In conclusion, oxygen extraction is higher, blood transit time longer, and perfusion more homogeneous in endurance-trained subjects compared with untrained subjects at the same workload. These changes may be associated with improved exercise efficiency in the endurance-trained subjects.  相似文献   

17.
Muscle force recovery from short term intense exercise was examined in 16 physically active men. They performed 50 consecutive maximal voluntary knee extensions. Following a 40-s rest period five additional maximal contractions were executed. The decrease in torque during the 50 contractions and the peak torque during the five contractions relative to initial torque were used as indices for fatigue and recovery, respectively. Venous blood samples were collected repeatedly up to 8 min post exercise for subsequent lactate analyses. Muscle biopsies were obtained from m. vastus lateralis and analysed for fiber type composition, fiber area, and capillary density. Peak torque decreased 67 (range 47-82%) as a result of the repeated contractions. Following recovery, peak torque averaged 70 (47-86%) of the initial value. Lactate concentration after the 50 contractions was 2.9 +/- 1.3 mmol X 1(-1) and the peak post exercise value averaged 8.7 +/- 2.1 mmol X 1(-1). Fatigue and recovery respectively were correlated with capillary density (r = -0.71 and 0.69) but not with fiber type distribution. A relationship was demonstrated between capillary density and post exercise/peak post exercise blood lactate concentration (r = 0.64). Based on the present findings it is suggested that lactate elimination from the exercising muscle is partly dependent upon the capillary supply and subsequently influences the rate of muscle force recovery.  相似文献   

18.
Barth syndrome (BTHS) is a mitochondrial myopathy characterized by reports of exercise intolerance. We sought to determine if 1) BTHS leads to abnormalities of skeletal muscle O(2) extraction/utilization and 2) exercise intolerance in BTHS is related to impaired O(2) extraction/utilization, impaired cardiac function, or both. Participants with BTHS (age: 17 ± 5 yr, n = 15) and control participants (age: 13 ± 4 yr, n = 9) underwent graded exercise testing on a cycle ergometer with continuous ECG and metabolic measurements. Echocardiography was performed at rest and at peak exercise. Near-infrared spectroscopy of the vastus lateralis muscle was continuously recorded for measurements of skeletal muscle O(2) extraction. Adjusting for age, peak O(2) consumption (16.5 ± 4.0 vs. 39.5 ± 12.3 ml·kg(-1)·min(-1), P < 0.001) and peak work rate (58 ± 19 vs. 166 ± 60 W, P < 0.001) were significantly lower in BTHS than control participants. The percent increase from rest to peak exercise in ejection fraction (BTHS: 3 ± 10 vs. control: 19 ± 4%, P < 0.01) was blunted in BTHS compared with control participants. The muscle tissue O(2) saturation change from rest to peak exercise was paradoxically opposite (BTHS: 8 ± 16 vs. control: -5 ± 9, P < 0.01), and the deoxyhemoglobin change was blunted (BTHS: 0 ± 12 vs. control: 10 ± 8, P < 0.09) in BTHS compared with control participants, indicating impaired skeletal muscle extraction in BTHS. In conclusion, severe exercise intolerance in BTHS is due to both cardiac and skeletal muscle impairments that are consistent with cardiac and skeletal mitochondrial myopathy. These findings provide further insight to the pathophysiology of BTHS.  相似文献   

19.
The precise role of the sympathetic nervous system in the regulation of skeletal muscle blood flow during exercise has been challenging to define in humans, partly because of the limited techniques available for measuring blood flow in active muscle. Recent studies using near-infrared (NIR) spectroscopy to measure changes in tissue oxygenation have provided an alternative method to evaluate vasomotor responses in exercising muscle, but this approach has not been fully validated. In this study, we tested the hypothesis that sympathetic activation would evoke parallel changes in tissue oxygenation and blood flow in resting and exercising muscle. We simultaneously measured tissue oxygenation with NIR spectroscopy and blood flow with Doppler ultrasound in skeletal muscle of conscious humans (n = 13) and anesthetized rats (n = 9). In resting forearm of humans, reflex activation of sympathetic nerves with the use of lower body negative pressure produced graded decreases in tissue oxygenation and blood flow that were highly correlated (r = 0.80, P < 0.0001). Similarly, in resting hindlimb of rats, electrical stimulation of sympathetic nerves produced graded decreases in tissue oxygenation and blood flow velocity that were highly correlated (r = 0.93, P < 0.0001). During rhythmic muscle contraction, the decreases in tissue oxygenation and blood flow evoked by sympathetic activation were significantly attenuated (P < 0.05 vs. rest) but remained highly correlated in both humans (r = 0.80, P < 0.006) and rats (r = 0.92, P < 0.0001). These data indicate that, during steady-state metabolic conditions, changes in tissue oxygenation can be used to reliably assess sympathetic vasoconstriction in both resting and exercising skeletal muscle.  相似文献   

20.
Near-infrared spectroscopy (NIRS) is a well-known method used to measure muscle oxygenation and hemodynamics in vivo. The application of arterial occlusions allows for the assessment of muscle oxygen consumption (mVo(2)) using NIRS. The aim of this study was to measure skeletal muscle mitochondrial capacity using blood volume-corrected NIRS signals that represent oxygenated hemoglobin/myoglobin (O(2)Hb) and deoxygenated hemoglobin/myoglobin (HHb). We also assessed the reliability and reproducibility of NIRS measurements of resting oxygen consumption and mitochondrial capacity. Twenty-four subjects, including four with chronic spinal cord injury, were tested using either the vastus lateralis or gastrocnemius muscles. Ten healthy, able-bodied subjects were tested on two occasions within a period of 7 days to assess the reliability and reproducibility. NIRS signals were corrected for blood volume changes using three different methods. Resting oxygen consumption had a mean coefficient of variation (CV) of 2.4% (range 1-32%). The recovery of oxygen consumption (mVo(2)) after electrical stimulation at 4 Hz was fit to an exponential curve, which represents mitochondrial capacity. The time constant for the recovery of mVo(2) was reproducible with a mean CV of 10% (range 1-22%) only when correcting for blood volume changes. We also examined the effects of adipose tissue thickness on measurements of mVo(2). We found the mVo(2) measurements using absolute units to be influenced by adipose tissue thickness (ATT), and this relationship was removed when an ischemic calibration was performed, supporting its use to compare mVo(2) between individuals of varying ATT. In conclusion, in vivo oxidative capacity can be assessed using blood volume-corrected NIRS signals with a high degree of reliability and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号