首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An integral part to understanding the biology of an invasive species is determining its origin, particularly in pest species. As one of the oldest known invasive species, the goals of this study were to evaluate the evidence of a westward expansion of Hessian fly into North America, from a potential singular introduction event, and the population genetic structure of current populations. Levels of genetic diversity and population structure in the Hessian fly were compared across North America, Europe, North Africa, Western Asia, and New Zealand. Furthermore, Old World populations were evaluated as possible sources of introduction. We tested diversity and population structure by examining 18 microsatellite loci with coverage across all four Hessian fly chromosomes. Neither genetic diversity nor population genetic structure provided evidence of a westward movement from a single introduction in North America. Introduced populations in North America did not show identity or assignment to any Old World population, likely indicating a multiple introduction scenario with subsequent gene flow between populations. Diversity and selection were assessed on a chromosomal level, with no differences in diversity or selection between chromosomes or between native and introduced populations.  相似文献   

2.
Abstract The amphibian fauna of New Zealand consists of three native species (Leiopelma spp.), and three Litoria species introduced from Australia in the last 140 years. We conducted a molecular phylogeographical study that aimed to identify the Australian origins of two species, Litoria aurea and Litoria raniformis. We used partial sequences of the mitochondrial cytochrome oxidase I (cox1) gene from 59 specimens sampled from across the range of both species to identify the probable source populations for the New Zealand introductions, and to describe the current genetic diversity among New Zealand Litoria populations. Our genetic data suggest that L. aurea was introduced into the North Island of New Zealand from two regions in Australia, once from the northern part of coastal New South Wales and once from the southern part of coastal New South Wales. Our data indicate that L. raniformis introductions originated from the Melbourne region of southern Victoria and once established in the South Island of New Zealand, the species subsequently spread throughout both islands. In addition, we found a distinct haplotype in L. raniformis from Tasmania that strongly suggests, contrary to earlier reports, that this species was not introduced into New Zealand from Tasmania. Finally, we identified two very distinctive mitochondrial lineages of L. raniformis within the mainland Australia distribution, which may be previously unrecognized species.  相似文献   

3.
Spatial patterns of genetic diversity provide insight into the demography and history of species. Morphologically similar but genetically distinct “cryptic” species are increasingly being recognized in marine organisms through molecular analyses. Such species are, on closer inspection, often discovered to display contrasting life histories or occasionally minor morphological differences; molecular tools can thus be useful indicators of diversity. Bostrychia intricata, a marine red alga, is widely distributed throughout the Southern Hemisphere and comprises many cryptic species. We used mitochondrial cytochrome c oxidase I gene sequences to assess the genetic variation, population genetic structure, and demographic history of B. intricata in New Zealand. Our results supported the existence of three cryptic species of B. intricata (N2, N4, and N5) in New Zealand. Cryptic species N4, which was found throughout New Zealand, showed a higher genetic diversity and wider distribution than the other two species, which were only found in the North Island and northern South Island. Our analyses showed low to moderate genetic differentiation among eastern North Island populations for cryptic species N2, but high differentiation among North and South Island populations for N4, suggesting different population structure between these cryptic species. Data also indicated that N2 has recently undergone population expansion, probably since the Last Glacial Maximum (LGM), while the higher genetic diversity in N4 populations suggests persistence in situ through the LGM. The contrasting population structures and inferred demographic histories of these species highlight that life history can vary greatly even among morphologically indistinguishable taxa.  相似文献   

4.
Species invasions and exotic species introductions can be considered as ??unplanned experiments??, which help us to understand the evolution of organisms. In this study, we investigated whether an exotic bird species, the dunnock (Prunella modularis), has diverged genetically and morphologically from its native source population (Cambridge, England) after introduction into a new environment (Dunedin, South Island of New Zealand; exotic population). We used a set of microsatellite markers and three morphological traits to quantify the divergence between these two populations. We quantified neutral genotypic differentiation between the populations, and also used an individual-based Bayesian clustering method to assess genetic structure. We compared morphological divergence using univariate and principal components analyses. We found that individuals from the Dunedin population are genetically distinct from the Cambridge population, but levels of differentiation are very low. Overall within-population levels of genetic diversity are low compared to other bird species, and effective population sizes are small; indicating that the native population probably has a historically low level of genetic diversity, and that the introduced population retained most of that diversity after its introduction into New Zealand. We found little evidence of morphological divergence, and the evolutionary rate of change in these traits is below the average for other taxa. Our study adds support to the growing literature showing that invasive species maintain most of their initial genetic diversity after multiple founder events, even when population size is severely reduced. Moreover, our morphological data indicate slow evolutionary rates in species introduced to similar habitats.  相似文献   

5.
The Formosan subterranean termite, Coptotermes formosanus is recognized as one of the most important invasive pest species. Originating from China, C. formosanus has spread to many tropical and subtropical regions around the globe in the last 400 years, including Japan, Hawaii and the continental USA. Although the current distribution is well documented, information about the patterns of invasion and effects of introduction on the population genetics of this species is largely lacking. We analyzed the genetic structure of populations from two native populations (Guangdong and Hunan provinces, China) and two introduced populations (Maui and Kauai, Hawaii) using microsatellite genotyping. We also reanalyzed published data of additional populations from China, Japan, Hawaii, and the continental USA. The population from Hunan, the earliest introduction outside of China (Japan) and the first introduction to the continental USA (South Carolina) showed little genetic similarity with any of the native or introduced populations investigated. However, populations from Oahu (HI), New Orleans (LA) and Rutherford County (NC) showed close similarity. In general, genetic patterns suggest multiple introductions to the USA, with, for example, two separate introductions to the island of Maui. Bottleneck effects were detected in almost all recent introductions (after 1940). All populations in the introduced range showed lower genetic diversity than those in the native range. However, this low genetic diversity did not result in the formation of polygynous supercolonies as has been described for other invasive termite and ant species.  相似文献   

6.
  1. The parasitoid wasp Ibalia leucospoides is native to the northern hemisphere and has been introduced to the southern hemisphere as a biological control agent for the invasive woodwasp Sirex noctilio. Two subspecies of the parasitoid, Ibalia leucospoides leucospoides (Palearctic distribution) and Ibalia leucospoides ensiger (Nearctic distribution), were introduced and are reported to have hybridized.
  2. Despite extensive records of the numbers and origins of the wasps imported into the southern hemisphere, nothing is known regarding their current population diversity. We investigated the genetic variation of I. leucospoides in its native and introduced ranges using mitochondrial (COI) and nuclear (ITS) markers.
  3. Mitochondrial DNA diversity in the introduced range was limited, with only five haplotypes, although sequence divergence between these haplotypes was high. Similarly, the ITS rDNA sequences revealed multiple clades present in the introduced range.
  4. These results reflect introductions from a wide geographical range but where genetic bottlenecks have possibly reduced the genetic diversity. The data further reflect the origin of the I. leucospoides populations in South America and South Africa from New Zealand or Australia. We found no evidence of hybridization between the two subspecies of the parasitoid in its introduced range, and no evidence that I. leucospoides ensiger has established outside its native range.
  相似文献   

7.
Evolutionary biologists have been puzzled by the success of introduced species: despite founder effects that reduce genetic variability, invasive species are still successful at colonizing new environments. It is possible that the evolutionary processes during the post-colonization period may increase the genetic diversity and gene flow among invasive populations over time, facilitating their long-term success. Therefore, genetic diversity and population structure would be expected to show greater temporal variation for successful introduced populations than for native populations. We studied the population genetics of the walnut husk fly, Rhagoletis completa, which was introduced into California from the Midwestern US in the early 1900s. We used microsatellites and allozymes to genotype current and historic fly populations, providing a rare perspective on temporal variability in population genetic parameters. We found that introduced populations showed greater temporal fluctuations in allele frequencies than native populations. Some introduced populations also showed an increase in genetic diversity over time, indicating multiple introductions had occurred. Population genetic structure decreased in both native and introduced populations over time. Our study demonstrates that introduced species are not at equilibrium and post-colonization processes may be important in ameliorating the loss of genetic diversity associated with biological invasions.  相似文献   

8.
Kang M  Buckley YM  Lowe AJ 《Molecular ecology》2007,16(22):4662-4673
Knowledge of the introduction history of invasive plants informs on theories of invasiveness and assists in the invasives management. For the highly successful invasive shrub Scotch broom, Cytisus scoparius, we analysed a combination of nuclear and chloroplast microsatellites for eight native source regions and eight independent invasion events in four countries across three continents. We found that two exotic Australian populations came from different sources, one of which was derived from multiple native populations, as was an invasive sample from California. An invasive population from New Zealand appeared to be predominantly sourced from a single population, either from the native or exotic ranges. Four invasive populations from Chile were genetically differentiated from the native range samples analysed here and so their source of introduction could not be confirmed, but high levels of differentiation between the Chilean populations suggested a combination of different sources. This extensive global data set of replicated introductions also enabled tests of key theories of invasiveness in relation to genetic diversity. We conclude that invasive populations have similar levels of high genetic diversity to native ranges; levels of admixture may vary across invasive populations so admixture does not appear to have been an essential requirement for invasion; invasive and native populations exhibit similar level of genetic structure indicating similar gene flow dynamics for both types of populations. High levels of diversity and multiple source populations for invasive populations observed here discount founder effects or drift as likely explanations for previously observed seed size differences between ranges. The high levels of genetic diversity, differential and source admixture identified for most exotic populations are likely to limit the ability to source biocontrol agents from the native region of origin of invasive populations.  相似文献   

9.
The North American native species Drosophila pseudoobscura was first identified in New Zealand in the last few decades. Here, we have studied the genetic consequences of its spread across the Pacific Ocean. Using 10 microsatellites that are highly variable in North American populations, we found that the New Zealand population has substantially fewer alleles, a much lower average heterozygosity, and significantly different allele frequencies at these loci. We have discussed the relative sensitivity of these parameters for detecting the founding event. X-linked loci were more strongly differentiated between continents than autosomal loci, as reflected by larger changes in allele frequencies and greater reductions in numbers of alleles and average heterozygosity. The severity of the genetic diversity loss supports a scenario of a few D. pseudoobscura females being introduced to New Zealand from North America.  相似文献   

10.
The common house crow (Corvus splendens) is one of the best known and most wide spread species of the family Corvidae. It is a successful invasive species able to exploit urban environments, well removed from its natural distribution. It is considered a pest as it attains high population densities, can cause serious economic losses and has many adverse effects on native fauna and flora, including predation, competitive displacement and disease transmission. Little genetic research on the house crow has been undertaken so we have only a limited understanding of its natural genetic population structure and invasion history. In this study, we employ microsatellite and mitochondrial DNA markers to assess genetic diversity, phylogeography and population structure of C. splendens within its native range represented by Sri Lanka and Bangladesh and introduced range represented by Malaysia, Singapore, Kenya and South Africa. We found high levels of genetic diversity in some of the invasive populations for which multiple invasions are proposed. The lowest genetic diversity was found for the intentionally introduced population in Selangor, Malaysia. Sri Lanka is a possible source population for Malaysia Selangor consistent with a documented introduction over 100 years ago, with port cities within the introduced range revealing possible presence of migrants from other unsampled locations. We demonstrate the power of the approach of using multiple molecular markers to untangle patterns of invasion, provide insights into population structure and phylogeographic relationships and illustrate how historical processes may have contributed to making this species such a successful invader.  相似文献   

11.
Intentional or accidental introduction of species to new locations is predicted to result in loss of genetic variation and increase the likelihood of inbreeding, thus reducing population viability and evolutionary potential. However, multiple introductions and large founder numbers can prevent loss of genetic diversity and may therefore facilitate establishment success and range expansion. Based on a meta‐analysis of 119 introductions of 85 species of plants and animals, we here show a quantitative effect of founding history on genetic diversity in introduced populations. Both introduction of large number of individuals and multiple introduction events significantly contribute to maintaining or even increasing genetic diversity in introduced populations. The most consistent loss of genetic diversity is seen in insects and mammals, whereas introduced plant populations tend to have higher genetic variation than native populations. However, loss or gain of genetic diversity does not explain variation in the extent to which plant or animal populations become invasive outside of their native range. These results provide strong support for predictions from population genetics theory with respect to patterns of genetic diversity in introduced populations, but suggest that invasiveness is not limited by genetic bottlenecks.  相似文献   

12.
Genetic diversity and the way a species is introduced influence the capacity of populations of invasive species to persist in, and adapt to, their new environment. The diversity of introduced populations affects their evolutionary potential, which is particularly important for species that have invaded a wide range of habitats and climates, such as European gorse, Ulex europaeus. This species originated in the Iberian peninsula and colonised Europe in the Neolithic; over the course of the past two centuries it was introduced to, and has become invasive in, other continents. We characterised neutral genetic diversity and its structure in the native range and in invaded regions. By coupling these results with historical data, we have identified the way in which gorse populations were introduced and the consequences of introduction history on genetic diversity. Our study is based on the genotyping of individuals from 18 populations at six microsatellite loci. As U. europaeus is an allohexaploid species, we used recently developed tools that take into account genotypic ambiguity. Our results show that genetic diversity in gorse is very high and mainly contained within populations. We confirm that colonisation occurred in two stages. During the first stage, gorse spread out naturally from Spain towards northern Europe, losing some genetic diversity. During the second stage, gorse was introduced by humans into different regions of the world, from northern Europe. These introductions resulted in the loss of rare alleles but did not significantly reduce genetic diversity and thus the evolutionary potential of this invasive species.  相似文献   

13.
The dramatic increase in marine bio‐invasions, particularly of non‐indigenous ascidians, has highlighted the vulnerability of marine ecosystems and the productive sectors that rely on them. A critical issue in managing invasive species is determining the relative roles of ongoing introductions, versus the local movement of propagules from established source populations. Styela clava (Herdman, 1882), the Asian clubbed tunicate, once restricted to the Pacific shores of Asia and Russia, is now abundant throughout the northern and southern hemispheres and has had significant economic impact in at least one site of incursion. In 2005 S. clava was identified in New Zealand. The recent introduction of this species, coupled with its restricted distribution, provided an ideal model to compare and contrast the introduction and expansion process. In this study, the mitochondrial DNA cytochrome oxidase subunit I gene (COI) gene and 11 microsatellite markers were used to test the regional genetic structure and diversity of 318 S. clava individuals from 10 populations within New Zealand. Both markers showed significant differentiation between the northern and southern populations, indicative of minimal pre‐ or post‐border connectivity. Additional statistics further support pre‐ and post‐border differentiation among Port and Harbour populations (i.e. marinas and aquaculture farms). We conclude that New Zealand receives multiple introductions, and that the primary vector for pre‐border incursions and post‐border spread is most likely the extensive influx of recreational vessels that enter northern marinas independent of the Port. This is a timely reminder of the potential for hull‐fouling organisms to expand their range as climates change and open new pathways.  相似文献   

14.
Many plants exchanged in the global redistribution of species in the last 200 years, particularly between South Africa and Australia, have become threatening invasive species in their introduced range. Refining our understanding of the genetic diversity and population structure of native and alien populations, introduction pathways, propagule pressure, naturalization, and initial spread, can transform the effectiveness of management and prevention of further introductions. We used 20,221 single nucleotide polymorphisms to reconstruct the invasion of a coastal shrub, Chrysanthemoides monilifera ssp. rotundata (bitou bush) from South Africa, into eastern Australia (EAU), and Western Australia (WAU). We determined genetic diversity and population structure across the native and introduced ranges and compared hypothesized invasion scenarios using Bayesian modeling. We detected considerable genetic structure in the native range, as well as differentiation between populations in the native and introduced range. Phylogenetic analysis showed the introduced samples to be most closely related to the southern‐most native populations, although Bayesian analysis inferred introduction from a ghost population. We detected strong genetic bottlenecks during the founding of both the EAU and WAU populations. It is likely that the WAU population was introduced from EAU, possibly involving an unsampled ghost population. The number of private alleles and polymorphic SNPs successively decreased from South Africa to EAU to WAU, although heterozygosity remained high. That bitou bush remains an invasion threat in EAU, despite reduced genetic diversity, provides a cautionary biosecurity message regarding the risk of introduction of potentially invasive species via shipping routes.  相似文献   

15.
Non‐native invasive species are threatening ecosystems and biodiversity worldwide. High genetic variation is thought to be a critical factor for invasion success. Accordingly, the global invasion of a few clonal lineages of the gastropod Potamopyrgus antipodarum is thus both puzzling and has the potential to help illuminate why some invasions succeed while others fail. Here, we used SNP markers and a geographically broad sampling scheme (N = 1617) including native New Zealand populations and invasive North American and European populations to provide the first widescale population genetic assessment of the relationships between and among native and invasive P. antipodarum. We used a combination of traditional and Bayesian molecular analyses to demonstrate that New Zealand populations harbour very high diversity relative to the invasive populations and are the source of the two main European genetic lineages. One of these two European lineages was in turn the source of at least one of the two main North American genetic clusters of invasive P. antipodarum, located in Lake Ontario. The other widespread North American group had a more complex origin that included the other European lineage and two New Zealand clusters. Altogether, our analyses suggest that just a small handful of clonal lineages of P. antipodarum were responsible for invasion across continents. Our findings provide critical information for prevention of additional invasions and control of existing invasive populations and are of broader relevance towards understanding the establishment and evolution of asexual populations and the forces driving biological invasion.  相似文献   

16.
The genetic characteristics of introduced populations have a relevant impact on their ability to establish and spread. The American mink (Neovison vison), native to North America, is an important invasive species in the Iberian Peninsula. Here, we used mitochondrial DNA sequences data to investigate the genetic diversity and phylogeographic structure of invasive versus native populations of this species. We also evaluated whether genetic diversity in invasive populations could be explained by the genetic characteristics of the native sources from which they derived. Phylogenetic analysis revealed two major lineages in the native range, which indicated a clear separation between western and eastern populations. On the contrary, we found no evidence of genetic structure in the invasive range. This was probably the result of the diverse origins of the released specimens and the rapid expansion and encounters of the introduced populations. We detected spatial mixing of both North American lineages in several sampling localities of the north central area of the Iberian Peninsula, giving rise to high levels of genetic diversity in some areas compared to North American populations. This could potentially lead to higher fitness of these individuals and thus increase the population viability and invasiveness of this species. These results point to the need to better study the populations in which lineages mix and, if necessary, intensify control efforts in them.  相似文献   

17.
Jacobaea vulgaris (Asteraceae) is a species of Eurasian origin that has become a serious non-indigenous weed in Australia, New Zealand, and North America. We used neutral molecular markers to (1) test for genetic bottlenecks in invasive populations and (2) to investigate the invasion pathways. It is for the first time that molecular markers were used to unravel the process of introduction in this species.The genetic variation of 15 native populations from Europe and 16 invasive populations from Australia, New Zealand and North America were compared using the amplified fragment length polymorphisms (AFLP's). An analysis of molecular variance showed that a significant part (10%) of the total genetic variations between all individuals could be explained by native or invasive origin.Significant among-population differentiation was detected only in the native range, whereas populations from the invasive areas did not significantly differ from each other; nor did the Australian, New Zealand and North American regions differ within the invasive range. The result that native populations differed significantly from each other and that the amount of genetic variation, measured as the number of polymorphic bands, did not differ between the native and invasive area, strongly suggests that introductions from multiple source populations have occurred. The lack of differentiation between invasive regions suggests that either introductions may have occurred from the same native sources in all invasive regions or subsequent introductions took place from one into another invasive region and the same mix of genotypes was subsequently introduced into all invasive regions.An assignment test showed that European populations from Ireland, the Netherlands and the United Kingdom most resembled the invasive populations.  相似文献   

18.
Chapman H  Robson B  Pearson ML 《Heredity》2004,92(3):182-188
Understanding the breeding system and population genetic structure of invasive weed species is important for biocontrol, and contributes to our understanding of the evolutionary processes associated with invasions. Hieracium lepidulum is an invasive weed in New Zealand, colonising a diverse range of habitats including native Nothofagus forest, pine plantations, scrubland and tussock grassland. It is competing with native subalpine and alpine grassland and herbfield vegetation. H. lepidulum is a triploid, diplosporous apomict, so theoretically all seed is clonal, and there is limited potential for the creation of variation through recombination. We used intersimple sequence repeats (ISSRs) to determine the population genetic structure of New Zealand populations of H. lepidulum. ISSR analysis of five populations from two regions in the South Island demonstrated high intrapopulation genotypic diversity, and high interpopulation genetic structuring; PhiST = 0.54 over all five populations. No private alleles were found in any of the five populations, and allelic differentiation was correlated to geographic distance. Cladistic compatibility analysis indicated that both recombination and mutation were important in the creation of genotypic diversity. Our data will contribute to any biocontrol program developed for H. lepidulum. It will also be a baseline data set for future comparisons of genetic structure during the course of H. lepidulum invasions.  相似文献   

19.
Chen YH  Opp SB  Berlocher SH  Roderick GK 《Oecologia》2006,149(4):656-667
The success of invasive species appears to be a paradox: despite experiencing strong population bottlenecks, invasive species are able to successfully establish in new environments. We studied how the walnut husk fly, Rhagoletis completa, was able to successfully colonize California from the Midwestern United States, by examining genetic diversity and diapause variation of native and introduced fly populations. Climate plays an important role in the successful establishment of introduced insects, because insect diapause is highly dependent upon external climatic conditions. We examined if: (1) fly populations show signs of a population bottleneck, (2) native and introduced flies differ in diapause length when exposed to California and Midwestern climatic conditions, and (3) population genetic diversity is related to variation in diapause length. We assessed if fly diapause conformed more to a model of establishment by local adaptation or to a model of a highly plastic “general-purpose genotype”. Our results indicate that only two populations close to the original introduced location showed signs of a population bottleneck, and native and introduced populations did not differ in genetic diversity. Genetic diversity increased in the northern introduced populations, suggesting that multiple introductions have occurred. Flies emerged about 2 weeks earlier under the Midwestern treatment than the California treatment, and introduced flies emerged about a week earlier than native flies. All flies emerged when walnuts are typically available in California. Although variance in diapause length differed between populations, it did not vary between populations or regions. Furthermore, genetic diversity was not associated with diapause variation. Therefore, multiple introductions and a “general-purpose genotype” appear to have facilitated the fly’s invasion into California.  相似文献   

20.
We compared the levels and distribution of genetic diversity in Eurasian and North American populations of Brachypodium sylvaticum (Huds.) Beauv. (false brome), a newly invasive perennial bunchgrass in western North America. Our goals were to identify source regions for invasive populations, determine the number of independent invasion events, and assess the possibility that postinvasion bottlenecks and hybridization have affected patterns of genetic diversity in the invaded range. We tested the hypothesis that this Eurasian grass was accidentally introduced into two areas in Oregon and one site in California by examining nuclear microsatellites and chloroplast haplotype variation in 23 introduced and 25 native populations. In the invaded range, there was significantly lower allelic richness (R(S)), observed heterozygosity (H(O)) and within-population gene diversity (H(S)), although a formal test failed to detect a significant genetic bottleneck. Most of the genetic variation existed among populations in the native range but within populations in the invaded range. All of the allelic variation in the invaded range could be explained based on alleles found in western European populations. The distribution of identified genetic clusters in the North American populations and the unique alleles associated with them is consistent with two historical introductions in Oregon and a separate introduction to California. Further analyses of population structure indicate that intraspecific hybridization among genotypes from geographically distinct regions of western Europe occurred following colonization in Oregon. The California populations, however, are more likely to be derived from one or perhaps several genetically similar regions in the native range. The emergence and spread of novel recombinant genotypes may be facilitating the rapid spread of this invasive species in Oregon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号