共查询到20条相似文献,搜索用时 15 毫秒
1.
BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis 总被引:4,自引:0,他引:4
The bone morphogenetic protein (BMP) signaling pathway is essential during gastrulation for the generation of ventral mesoderm, which makes it a challenge to define functions for this pathway at later stages of development. We have established an approach to disrupt BMP signaling specifically in lateral mesoderm during somitogenesis, by targeting a dominant-negative BMP receptor to Lmo2+ cells in developing zebrafish embryos. This results in expansion of hematopoietic and endothelial cells, while restricting the expression domain of the pronephric marker pax2.1. Expression of a constitutively active receptor and transplantation experiments were used to confirm that BMP signaling in lateral mesoderm restricts subsequent hemato-vascular development. The results show that the BMP signaling pathway continues to function after cells are committed to a lateral mesoderm fate, and influences subsequent lineage decisions by restricting hemato-vascular fate in favor of pronephric development. 相似文献
2.
Wakahara T Kusu N Yamauchi H Kimura I Konishi M Miyake A Itoh N 《Developmental biology》2007,303(2):527-535
We identified a novel secreted protein, fibin, in zebrafish, mice and humans. We inhibited its function in zebrafish embryos by injecting antisense fibin morpholino oligonucleotides. A knockdown of fibin function in zebrafish resulted in no pectoral fin bud initiation and abolished the expression of tbx5, which is involved in the specification of pectoral fin identification. The lack of pectoral fins in fibin-knockdown embryos was partially rescued by injection of fibin RNA. fibin was expressed in the lateral plate mesoderm of the presumptive pectoral fin bud regions. Its expression region was adjacent to that of tbx5. fibin expression temporally preceded tbx5 expression in presumptive pectoral fin bud regions, and not abolished in tbx5-knockdown presumptive fin bud regions. In contrast, fibin expression was abolished in retinoic acid signaling-inhibited or wnt2b-knockdown presumptive fin bud regions. These results indicate that fibin is a secreted signal essential for pectoral fin bud initiation in that it potentially acts downstream of retinoic acid and wnt signaling and is essential for tbx5 expression. The present findings have revealed a novel secreted lateral plate mesoderm signal essential for fin initiation in the lateral plate mesoderm. 相似文献
3.
4.
5.
Data obtained from studies on the origin and development of hemopoietic cells in several classes of vertebrate embryos argue for two distinct sources of hemopoietic cells, the intraembryonic dorsal lateral plate and the extraembryonic ventral blood island/yolk sac. In the present study, a stage by stage comparison of the hemopoietic potential of both of these regions was made during development of the frog, Rana pipiens. Either dorsal lateral plate or ventral blood island mesoderm was reciprocally transplanted between cytogenetically labeled triploid and diploid embryos. The ratio of donor-derived cells to host-derived cells (labeling index) was determined from Feulgen-stained DNA measurements of cells harvested from hemopoietic organs of young larvae. Blood island transplants consistently resulted in larvae with positive labeling of the circulating blood. Transplanted dorsal mesoderm supplied mesonephric granulocytes and thymocytes, but not circulating erythrocytes to larvae. However, the contribution of dorsal mesoderm to larval hemopoiesis fluctuated with respect to embryonic stage at transplantation. 相似文献
6.
During vertebrate gastrulation, cells forming the prechordal plate undergo directed migration as a cohesive cluster. Recent studies revealed that E-cadherin-mediated coherence between these cells plays an important role in effective anterior migration, and that platelet-derived growth factor (Pdgf) appears to act as a guidance cue in this process. However, the mechanisms underlying this process at the individual cell level remain poorly understood. We have identified miles apart (mil) as a suppressor of defective anterior migration of the prospective prechordal plate in silberblick (slb)/wnt11 mutant embryos, in which E-cadherin-mediated coherence of cell movement is reduced. mil encodes Edg5, a sphingosine-1-phosphate (S1P) receptor belonging to a family of five G-protein-coupled receptors (S1PRs). S1P is a lipid signalling molecule that has been implicated in regulating cytoskeletal rearrangements, cell motility and cell adhesion in a variety of cell types. We examined the roles of Mil in anterior migration of prechordal plate progenitor cells and found that, in slb embryos injected with mil-MO, cells migrate with increased motility but decreased directionality, without restoring the coherence of cell migration. This indicates that prechordal plate progenitor cells can migrate effectively as individuals, as well as in a coherent cluster of cells. Moreover, we demonstrate that Mil regulates cell motility and polarisation through Pdgf and its intracellular effecter PI3K, but modulates cell coherence independently of the Pdgf/PI3K pathway, thus co-ordinating cell motility and coherence. These results suggest that the net migration of prechordal plate progenitors is determined by different parameters, including motility, persistence and coherence. 相似文献
7.
Amniote kidney tissue is derived from the intermediate mesoderm (IM), a strip of mesoderm that lies between the somites and the lateral plate. While much has been learned concerning the later events which regulate the differentiation of IM into tubules and other types of kidney tissue, much less is known concerning the earlier events which regulate formation of the IM itself. In the current study, the chick pronephros was used as a model system to identify tissues that play a role in patterning the IM and the critical time periods during which such patterning events take place. Explant studies revealed that the prospective pronephric IM is already specified to express kidney genes by stage 6, shortly after its gastrulation through the primitive streak, and earlier than previously reported. Transplant and explant experiments revealed that the lateral plate contains an activity that can repress IM formation in tissues that are already specified to express IM genes. In contrast, Hensen's node can promote formation of IM in the lateral plate. Paraxial tissues (presomitic mesoderm plus neural plate and notochord) were found to influence the morphogenesis of the nephric duct, but did not induce IM tissue to an appreciable extent. Combining lateral plate and paraxial tissue in vivo or in vitro led to induction of IM genes in the paraxial mesoderm but not in the lateral plate mesoderm. Based on these results and those of others, we propose a two-step model for the patterning of the IM. While tissue is still in the primitive streak, the prospective IM is relatively uncommitted. By stage 6, shortly after cells leave the primitive streak, a field of cells is generate which is specified to give rise to IM (Step 1). Subsequently, competing signals from the lateral plate and axial tissues modulate the number of cells that commit to an IM fate (Step 2). 相似文献
8.
9.
The floor plate is a signaling center in the ventral neural tube of vertebrates with important functions during neural patterning and axon guidance. It is composed of a centrally located medial floor plate (MFP) and a bilaterally positioned lateral floor plate (LFP). While the role of the MFP as source of signaling molecules like, e.g., Sonic Hedgehog (Shh) is well understood, the exact organization and function of the LFP are currently unclear. Based on expression analyses, the one cell wide LFP in zebrafish has been postulated to be a homogenous structure. We instead show that the zebrafish trunk LFP is discontinuously arranged. Single LFP cells alternate with p3 neuronal precursor cells, which develop V3 interneurons along the anteroposterior (AP) axis. Our mutant analyses indicate that both, formation of LFP and p3 cells require Delta-Notch signaling. Importantly, however, the two cell types are differentially regulated by Hedgehog (HH) and Nkx2.2 activities. This implicates a novel mechanism of neural tube patterning, in which distinct cell populations within one domain of the ventral neural tube are differently specified along the AP axis. We conclude that different levels of HH and Nkx2.2 activities are responsible for the alternating appearance of LFP and p3 neuronal progenitor cells in the zebrafish ventral neural tube. 相似文献
10.
Paula B. Smith James B. Turpen 《Differentiation; research in biological diversity》1985,28(3):244-249
Ventral blood island mesoderm and dorsal lateral plate mesoderm were removed from Rana pipiens embryos at successive developmental stages (stages 13-19; 50-118 h) and cultured as individual explants in serum-free medium. After 5-7 days, the cultures were harvested, and differential counts were made of Wright-Giemsa-stained cells. Ventral blood island explants gave rise to cells of the myeloid lineage, suggesting that ventral blood island mesoderm was committed to hemopoiesis at the time of explant. Although erythrocytes were present in the cultures, granulocytes and monocyte/macrophages predominated. This differentiation profile occurred without the addition of any exogenous humoral factors. Monocyte/macrophages and immature precursor cells exhibited recurring inverse fluctuations with respect to one another. In all cases examined, cultures of dorsal lateral plate mesoderm showed marginal hemopoietic cell differentiation, suggesting a requirement for exogenous humoral factors and/or cell-cell interactions. When viewed in the context of previous studies from our laboratory, these results demonstrate that, in the amphibian embryo, there are two sources of hemopoietic stem cells separated both in space and time. 相似文献
11.
12.
McGraw HF Drerup CM Culbertson MD Linbo T Raible DW Nechiporuk AV 《Development (Cambridge, England)》2011,138(18):3921-3930
The zebrafish posterior lateral line (pLL) is a sensory system that comprises clusters of mechanosensory organs called neuromasts (NMs) that are stereotypically positioned along the surface of the trunk. The NMs are deposited by a migrating pLL primordium, which is organized into polarized rosettes (proto-NMs). During migration, mature proto-NMs are deposited from the trailing part of the primordium, while progenitor cells in the leading part give rise to new proto-NMs. Wnt signaling is active in the leading zone of the primordium and global Wnt inactivation leads to dramatic disorganization of the primordium and a loss of proto-NM formation. However, the exact cellular events that are regulated by the Wnt pathway are not known. We identified a mutant strain, lef1(nl2), that contains a lesion in the Wnt effector gene lef1. lef1(nl2) mutants lack posterior NMs and live imaging reveals that rosette renewal fails during later stages of migration. Surprisingly, the overall primordium patterning, as assayed by the expression of various markers, appears unaltered in lef1(nl2) mutants. Lineage tracing and mosaic analyses revealed that the leading cells (presumptive progenitors) move out of the primordium and are incorporated into NMs; this results in a decrease in the number of proliferating progenitor cells and eventual primordium disorganization. We concluded that Lef1 function is not required for initial primordium organization or migration, but is necessary for proto-NM renewal during later stages of pLL formation. These findings revealed a novel role for the Wnt signaling pathway during mechanosensory organ formation in zebrafish. 相似文献
13.
14.
15.
16.
A Deinard R Dorit C Castiglione Z Jiang D Becker F Ruddle K Schugart K Kidd 《The Journal of experimental zoology》1999,285(2):170-176
This study reports the results of a comparative sequencing study in higher primates, focusing on the intergenic region located between HOXB6 and HOXB7. We have examined an 832 bp. region, encompassing a putative Lateral Plate Mesoderm (LPM) enhancer element in a variety of anthropoid apes. The interspecific comparisons reveal extensive substitutions occurring within this region, with a marked bias in favor of C-->T transitions within the enhancer element. The pattern of these substitutions suggests that the LPM enhancer region is subject to specific sequence and compositional constraints that are only revealed through comparative sequencing. These constraints produce an enhancer signature, the CpG microisland, which may be useful in identifying additional regulatory elements located within the HOX complexes. J. Exp. Zool. (Mol. Dev. Evol.) 285:170-176, 1999. 相似文献
17.
N Funayama Y Sato K Matsumoto T Ogura Y Takahashi 《Development (Cambridge, England)》1999,126(18):4129-4138
Most triploblastic animals including vertebrates have a coelomic cavity that separates the outer and inner components of the body. The coelom is lined by two different tissue components, somatopleure and splanchnopleure, which are derived from the lateral plate region. Thus, the coelom is constructed as a result of a binary decision during early specification of the lateral plate. In this report we studied the molecular mechanisms of this binary decision. We first demonstrate that the splitting of the lateral plate into the two cell sheets progresses in an anteroposterior order and this progression is not coordinated with that of the somitic segmentation. By a series of embryological manipulations we found that young splanchnic mesoderm is still competent to be respecified as somatic mesoderm, and the ectoderm overlying the lateral plate is sufficient for this redirection. The lateral ectoderm is also required for maintenance of the somatic character of the mesoderm. Thus, the ectoderm plays at least two roles in the early subdivision of the lateral plate: specification and maintenance of the somatic mesoderm. We also show that the latter interactions are mediated by BMP molecules that are localized in the lateral ectoderm. Evolutionary aspects of the coelom formation are also considered. 相似文献
18.
Dylan Sweetman Laura Wagstaff Oliver Cooper Cornelis Weijer Andrea Münsterberg 《BMC developmental biology》2008,8(1):63
Background
Co-ordinated cell movement is a fundamental feature of developing embryos. Massive cell movements occur during vertebrate gastrulation and during the subsequent extension of the embryonic body axis. These are controlled by cell-cell signalling and a number of pathways have been implicated. Here we use long-term video microscopy in chicken embryos to visualize the migration routes and movement behaviour of mesoderm progenitor cells as they emerge from the primitive streak (PS) between HH stages 7 and 10. 相似文献19.
20.
Huang S Tang Y Cai X Peng X Liu X Zhang L Xiang Y Wang D Wang X Pan T 《Biochemical and biophysical research communications》2012,423(3):467-472
Bone marrow (BM)-derived endothelial progenitor cells (EPCs) play a critical role in tumor vasculogenesis because they provide both instructive (release of pro-angiogenic cytokines, such as VEGF) and structural (vessel incorporation and stabilization) functions. Celastrol, derived from Trypterygium wilfordii Hook F., a traditional Chinese medicine plant, has been studied for its antitumorigenic properties, but its mechanism of action is not well understood. The aims of this study are to investigate the effects of Celastrol on VEGF-induced functional activity of BM-EPCs and to identify any mechanisms associated with this process. Here, we show that Celastrol attenuates VEGF secretion in BM-EPCs in vitro. This attenuation, in turn, inhibits the in vitro VEGF-induced cell viability, cell-cell adhesion, cell-ECM adhesion, migration response and vascular tube formation of BM-EPCs. Additionally, Celastrol inhibits the phosphorylation of VEGFR2, endothelial nitric oxide synthase (eNOS), and Akt to attenuate cell functions. Taken together, the present study demonstrates that Celastrol decreases Akt/eNOS signaling in BM-EPCs in vitro. These findings identify novel mechanisms that regulate EPC function and may provide new insights for the medicinal use of Celastrol. 相似文献