首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dysregulation in the expression of miRNAs contributes to the occurrence and development of many human cancers. We herein attempted to obtain the potential association between miRNA expression profile and breast cancer by applying high-throughput sequencing technology. Small RNAs from seven paired tumor and adjacent normal tissue samples were sequenced. To determine the miRNA expression profiles in tissues and sera, another five equally pooled serum samples from 20 patients and 30 normal women were sequenced. Despite a similar number in abundantly expressed miRNAs across samples, we detected varying miRNA expression profiles. Some miRNAs showed inconsistent or opposite dysregulation trends across different tumor tissues, including some abundantly expressed miRNA gene clusters and gene families. Wilcoxon sign-rank test for paired samples analysis revealed that abnormal miRNAs showed a higher level of variation across the seven tumor samples. We also completely surveyed abnormal miRNAs expressed in tumor and serum tissues in the mixed datasets based on the relative expression levels. Most of these miRNAs were significantly down-regulated in tumor samples, but nine abnormal miRNAs (miR-18a, 19a, 20a, 30a, 103b, 126, 126*, 192, 1287) were consistently expressed in tumor tissues and serum samples. Based on experimentally validated target mRNAs, functional enrichment analysis indicated that these abnormal miRNAs and miRNA groups (miRNA gene clusters and gene families) have important roles in multiple biological processes. Dynamic miRNA expression profiles, various abnormal miRNA profiles and complexity of the miRNA regulatory network reveal that the miRNA expression profile is a potential biomarker for classifying or detecting human disease.  相似文献   

2.

Introduction

Emerging evidence suggests that microRNAs (miRNAs) are crucially involved in tumorigenesis and that paired expression profiles of miRNAs and mRNAs can be used to identify functional miRNA-target relationships with high precision. However, no studies have applied integrated analysis to miRNA and mRNA profiles in chordomas. The purpose of this study was to provide insights into the pathogenesis of chordomas by using this integrated analysis method.

Methods

Differentially expressed miRNAs and mRNAs of chordomas (n = 3) and notochord tissues (n = 3) were analyzed by using microarrays with hierarchical clustering analysis. Subsequently, the target genes of the differentially expressed miRNAs were predicted and overlapped with the differentially expressed mRNAs. Then, GO and pathway analyses were performed for the intersecting genes.

Results

The microarray analysis indicated that 33 miRNAs and 2,791 mRNAs were significantly dysregulated between the two groups. Among the 2,791 mRNAs, 911 overlapped with putative miRNA target genes. A pathway analysis showed that the MAPK pathway was consistently enriched in the chordoma tissue and that miR-149-3p, miR-663a, miR-1908, miR-2861 and miR-3185 likely play important roles in the regulation of MAPK pathways. Furthermore, the Notch signaling pathway and the loss of the calcification or ossification capacity of the notochord may also be involved in chordoma pathogenesis.

Conclusion

This study provides an integrated dataset of the miRNA and mRNA profiles in chordomas, and the results demonstrate that not only the MAPK pathway and its related miRNAs but also the Notch pathway may be involved in chordoma development. The occurrence of chordoma may be associated with dysfunctional calcification or ossification of the notochord.  相似文献   

3.
This study aimed to explore the roles of microRNAs (miRNAs) in calf rumen development during early life. Rumen tissues were collected from 16 calves (8 at pre-weaning and 8 at post-weaning) for miRNA-sequencing, differential expression (DE), miRNA weighted gene co-expression network (WGCNA) and miRNA-mRNA co-expression analyses. 295 miRNAs were identified. Bta-miR-143, miR-26a, miR-145 and miR-27b were the most abundantly expressed. 122 miRNAs were significantly DE between the pre- and post-weaning periods and the most up- and down-regulated miRNAs were bta-miR-29b and bta-miR-493, respectively. Enrichment analyses of the target genes of DE miRNAs revealed important roles for miRNA in rumen developmental processes, immune system development, protein digestion and processes related to the extracellular matrix. WGCNA indicated that bta-miR-145 and bta-miR-199a-3p are important hub miRNAs in the regulation of these processes. Therefore, bta-miR-143, miR-29b, miR-145, miR-493, miR-26a and miR-199 family members might be key regulators of calf rumen development during early life.  相似文献   

4.
Expanding roles for miRNAs and siRNAs in cell regulation   总被引:6,自引:0,他引:6  
The role of small RNAs as key regulators of mRNA turnover and translation has been well established. Recent advances indicate that the small RNAs termed microRNAs play important roles in cell proliferation, apoptosis and differentiation. Moreover, the microRNA mechanism is an efficient means to regulate production of a diverse range of proteins. As new microRNAs and their mRNA targets rapidly emerge, it is becoming apparent that RNA-based regulation of mRNAs may rival ubiquitination as a mechanism to control protein levels.  相似文献   

5.
6.
Proteins associated with cancer cell plasma membranes are rich in known drug and antibody targets as well as other proteins known to play key roles in the abnormal signal transduction processes required for carcinogenesis. We describe here a proteomics process that comprehensively annotates the protein content of breast tumor cell membranes and defines the clinical relevance of such proteins. Tumor-derived cell lines were used to ensure an enrichment for cancer cell-specific plasma membrane proteins because it is difficult to purify cancer cells and then obtain good membrane preparations from clinical material. Multiple cell lines with different molecular pathologies were used to represent the clinical heterogeneity of breast cancer. Peptide tandem mass spectra were searched against a comprehensive data base containing known and conceptual proteins derived from many public data bases including the draft human genome sequences. This plasma membrane-enriched proteome analysis created a data base of more than 500 breast cancer cell line proteins, 27% of which were of unknown function. The value of our approach is demonstrated by further detailed analyses of three previously uncharacterized proteins whose clinical relevance has been defined by their unique cancer expression profiles and the identification of protein-binding partners that elucidate potential functionality in cancer.  相似文献   

7.
Activation of the serine/threonine protein kinase Akt/PKB is a multi-step process involving membrane recruitment, phosphorylation, and membrane detachment. To investigate this process in the cellular context, we employed a live-cell fluorescence imaging approach to examine conformational changes of Akt and its membrane association. A fluorescence resonance energy transfer-based reporter of Akt action (ReAktion) reveals a conformational change that is critically dependent on the existence of a phosphorylatable threonine 308 in the activation loop, because mutations to either aspartate or alanine abolished the change. Furthermore, a mutant carrying a phosphorylation mimic at this position showed diminished membrane association, suggesting that this phosphorylation plays an important role of promoting the dissociation of activated Akt from the membrane. In addition, the membrane-associating pleckstrin homology domain was found to associate with the catalytic domain when Thr308 is phosphorylated, suggesting such an interdomain interaction as a mechanism by which phosphorylation within the catalytic domain can affect membrane association. These studies uncover new regulatory roles of this critical phosphorylation event of Akt for ensuring its proper activation and function.  相似文献   

8.
Dicer is an RNase III family endoribonuclease and haploinsufficient tumor suppressor that processes mature miRNAs from the 5' (5p) or 3' (3p) arm of hairpin precursors. In murine Dicer knockout fibroblasts, we expressed human Dicer with point mutations in the RNase III, helicase, and PAZ domains and characterized miRNA expression by Northern blot and massively parallel sequencing of small RNAs. We report that inactivation of the RNase IIIA domain results in complete loss of 3p-derived mature miRNAs, but only partial reduction in 5p-derived mature miRNAs. Conversely, inactivation of the RNase IIIB domain by mutation of D1709, a residue mutated in a subset of nonepithelial ovarian cancers, results in complete loss of 5p-derived mature miRNAs, including the tumor-suppressive let-7 family, but only partial reduction in 3p-derived mature miRNAs. Mutation of the PAZ domain results in global reduction of miRNA processing, while mutation of the Walker A motif in the helicase domain of Dicer does not alter miRNA processing. These results provide insight into the biochemical activity of human Dicer in vivo and, furthermore, suggest that mutation of the clinically relevant residue D1709 within the RNase IIIB results in a uniquely miRNA-haploinsufficient state in which the let-7 family of tumor suppressor miRNAs is lost while a complement of 3p-derived miRNAs remains expressed.  相似文献   

9.
Highly tumor selective near-infrared (NIR) pH-activatable probe was developed by conjugating pH-sensitive cyanine dye to a cyclic arginine-glycine-aspartic acid (cRGD) peptide targeting α(v)β(3) integrin (ABIR), a protein that is highly overexpressed in endothelial cells during tumor angiogenesis. The NIR pH-sensitive dye used to construct the probe exhibits high spectral sensitivity with pH changes. It has negligible fluorescence above pH 6 but becomes highly fluorescent below pH 5, with a pK(a) of 4.7. This probe is ideal for imaging acidic cell organelles such as tumor lysosomes or late endosomes. Cell microscopy data demonstrate that binding of the cRGD probe to ABIR facilitated the endocytosis-mediated lysosomal accumulation and subsequent fluorescence enhancement of the NIR pH-activatable dye in tumor cells (MDA-MB-435 and 4T1/luc). A similar fluorescence enhancement mechanism was observed in vivo, where the tumors were evident within 4 h post injection. Moreover, lung metastases were also visualized in an orthotopic tumor mouse model using this probe, which was further confirmed by histologic analysis. These results demonstrate the potential of using the new integrin-targeted pH-sensitive probe for the detection of primary and metastatic cancer.  相似文献   

10.
《Genomics》2021,113(6):3881-3894
Members of the REM (Reproductive Meristem) gene family are expressed primarily in reproductive meristems and floral organs. However, their evolution and their functional profiles in flower development remain poorly understood. Here, we performed genome-wide identification and evolutionary analysis of the REM gene family in Rosaceae. This family has been greatly expanded in rose (Rosa chinensis) compared to other species, primarily through tandem duplication. Expression analysis revealed that most RcREM genes are specifically expressed in reproductive organs and that their specific expression patterns are dramatically altered in rose plants with mutations affecting floral organs. Protein-protein interaction analysis indicated that RcREM14 interact with RcAP1 (one of the homology of A class genes in ABCDE model), highlighting the roles of RcREM genes in floral organ identity. Finally, co-expression network analysis indicated that RcREM genes are co-expressed with a high proportion of key genes that regulate flowering time, floral organ development, and cell proliferation and expansion in R. chinensis.  相似文献   

11.
Cdc14 phosphatase regulates multiple events during anaphase and is essential for mitotic exit in budding yeast. Cdc14 is regulated in both a spatial and temporal manner. It is sequestered in the nucleolus for most of the cell cycle by the nucleolar protein Net1 and is released into the nucleus and cytoplasm during anaphase. To identify novel binding partners of Cdc14, we used affinity purification of Cdc14 and mass spectrometric analysis of interacting proteins from strains in which Cdc14 localization or catalytic activity was altered. To alter Cdc14 localization, we used a strain deleted for NET1, which causes full release of Cdc14 from the nucleolus. To alter Cdc14 activity, we generated mutations in the active site of Cdc14 (C283S or D253A), which allow binding of substrates, but not dephosphorylation, by Cdc14. Using this strategy, we identified new interactors of Cdc14, including multiple proteins involved in mitotic events. A subset of these proteins displayed increased affinity for catalytically inactive mutants of Cdc14 compared with the wild-type version, suggesting they are likely substrates of Cdc14. We have also shown that several of the novel Cdc14-interacting proteins, including Kar9 (a protein that orients the mitotic spindle) and Bni1 and Bnr1 (formins that nucleate actin cables and may be important for actomyosin ring contraction) are specifically dephosphorylated by Cdc14 in vitro and in vivo. Our findings suggest the dephosphorylation of the formins may be important for their observed localization change during exit from mitosis and indicate that Cdc14 targets proteins involved in wide-ranging mitotic events.  相似文献   

12.
13.
BackgroundAbout half-century ago, Immunoglobulin A nephropathy (IgAN) was discovered as a complicated disease with frequent clinical symptoms. Until now, exact mechanism underlying the pathogenesis of IgAN is poorly known. Therefore, current study was aimed to understand the molecular mechanism of IgAN by identifying the key miRNAs and their targeted hub genes. The key miRNAs might contribute to the diagnosis and therapy of IgAN, and could turn out to be a new star in the field of IgAN.MethodsThe microarray datasets were downloaded from Gene Expresssion Omnibus (GEO) database and analyzed using R package (LIMMA) in order to obtain differential expressed genes (DEGs). Then, the hub genes were identified using cytoHubba plugin of cytoscpae tool and other bioinformatics approaches including protein-protein interaction (PPI) network analysis, module analysis, and miRNA-hub gene network construction was also performed.ResultsA total of 348 DEGs were identified, of which 107 were upregulated genes and 241 were downregulated genes. Subsequently, the 12 overlapped genes were predicted from cytoHubba, and considered as hub genes. Moreover, a network among miRNA-hub genes was created to explore the correlation between the hub genes and their targeted miRNAs. Network construction ultimately lead to the identification of nine gene named FN1, EGR1, FOS, JUN, SERPINE1, MMP2, ATF3, MYC, and IL1B and one novel key miRNA namely, has-miR-144-3p as biomarker for diagnosis and therapy of IgAN.ConclusionThis study updates the information and yield a new perspective in context of understanding the pathogenesis and development of IgAN. In future, key miRNAs might be capable of improving the personalized detection and therapies for IgAN. In vivo and in vitro investigation of miRNAs and pathway interaction is essential to delineate the specific roles of the novel miRNAs, which may help to further reveal the mechanisms underlying IgAN.  相似文献   

14.
15.
During development, it is essential for gene expression to occur in a very precise spatial and temporal manner. There are many levels at which regulation of gene expression can occur, and recent evidence demonstrates the importance of mRNA stability in governing the amount of mRNA that can be translated into functional protein. One of the most important discoveries in this field has been miRNAs (microRNAs) and their function in targeting specific mRNAs for repression. The wing imaginal discs of Drosophila are an excellent model system to study the roles of miRNAs during development and illustrate their importance in gene regulation. This review aims at discussing the developmental processes where control of gene expression by miRNAs is required, together with the known mechanisms of this regulation. These developmental processes include Hox gene regulation, developmental timing, growth control, specification of SOPs (sensory organ precursors) and the regulation of signalling pathways.  相似文献   

16.
17.
18.
19.
We determined the relationship of clonogenic in vitro growth and histopathologic features of 31 primary human breast tumors. Well-differentiated primary tumors formed fewer colonies than poorly differentiated tumors, and the clonogenic in vitro growth of tumors correlated inversely with patient survival. The potential of the clonogenic assay to serve as a predictor of disease course should be explored further.  相似文献   

20.
《Cell》2022,185(20):3807-3822.e12
  1. Download : Download high-res image (240KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号