首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分泌蛋白质组是指在特定时间和特定条件下,由组织或细胞等分泌的全部蛋白质。在病原真菌与植物的相互作用过程中,病原真菌会分泌大量的蛋白质和代谢产物,在病原真菌对植物的侵入、定殖和扩展等致病过程中起着重要作用。本文主要介绍了分泌蛋白质在植物病原真菌致病性中的作用、重要植物病原真菌分泌蛋白质组的研究进展、及植物病原真菌分泌蛋白质组的生物信息学预测分析等,对于全面了解植物病原真菌的致病机理具有重要意义。  相似文献   

2.
Adhesion constitutes one of the initial stages of infection in microbial diseases and is mediated by adhesins. Hence, identification and comprehensive knowledge of adhesins and adhesin-like proteins is essential to understand adhesin mediated pathogenesis and how to exploit its therapeutic potential. However, the knowledge about fungal adhesins is rudimentary compared to that of bacterial adhesins. In addition to host cell attachment and mating, the fungal adhesins play a significant role in homotypic and xenotypic aggregation, foraging and biofilm formation. Experimental identification of fungal adhesins is labor- as well as time-intensive. In this work, we present a Support Vector Machine (SVM) based method for the prediction of fungal adhesins and adhesin-like proteins. The SVM models were trained with different compositional features, namely, amino acid, dipeptide, multiplet fractions, charge and hydrophobic compositions, as well as PSI-BLAST derived PSSM matrices. The best classifiers are based on compositional properties as well as PSSM and yield an overall accuracy of 86%. The prediction method based on best classifiers is freely accessible as a world wide web based server at http://bioinfo.icgeb.res.in/faap. This work will aid rapid and rational identification of fungal adhesins, expedite the pace of experimental characterization of novel fungal adhesins and enhance our knowledge about role of adhesins in fungal infections.  相似文献   

3.
4.
ATP-dependent Lon proteases function in bacterial pathogenesis by regulating the expression of the Type III secretion system; however, little is known about how Lon proteases regulate fungal pathogenesis. We previously investigated Lon-binding proteins involved in fungal pathogenesis that interact with PrePL, the smallest Magnaporthe oryzae Lon-binding protein. Here, we show that Lon cleaves PrePL and produces Pc, an extracellular 11-kDa isoform with catalase and peroxidase activity. The ΔPrePL loss-of-function strain showed stronger sporulation and accelerated disease development, suggesting a temporally specific negative regulatory mechanism controlled by PrePL in disease progression. Neither the truncated Pc, nor the full-length PrePL missing the Lon cleavage site complemented the ΔPrePL phenotype, suggesting that full-length PrePL and Pc both function in fungal development. PrePL targeted to the mitochondria undergoes hydrolysis by Lon to produce Pc, which accumulates in the fungal apoplast. Importantly, recombinant Pc induced plant defence responses and cell death after being infiltrated into selected plant leaves, indicating that it functions as an avirulence factor. This work thus reveals a novel pathogenic factor in the fungal Lon-mediated pathway. Additionally, our results provide new insight into the functions of a full-length protein and its cleaved isoform in fungal pathogenesis.  相似文献   

5.
The fungal cell surface contributes to pathogenesis by mediating interactions with host cells and eliciting host immune responses. This review focuses on the cell wall proteome of the major fungal pathogen Candida albicans and discusses how diversity at the cell surface can be introduced by altering the expression and structure of cell wall proteins. Remodelling the cell wall architecture is critical to maintain cellular integrity in response to different environments and stresses including challenge with antifungal drugs. In addition, the dynamic nature of the cell surface alters the physical properties of the fungal interface with host cells and thereby influences adhesion to the host and recognition by components of the host's immune system. Examples of the role of cell surface diversity in the pathogenesis of a number of microorganisms are described.  相似文献   

6.
CFEM, an eight cysteine-containing domain, has been identified by analyzing over 25 fungal sequences selected from database sequence searches. Features of CFEM suggest that it is a novel domain with characteristics distinct from known cysteine-rich domains. Some CFEM-containing proteins (e.g. Pth11 from Magnaporthe grisea) are proposed to have important roles in fungal pathogenesis.  相似文献   

7.

Background

It remains an open question whether plant phloem sap proteins are functionally involved in plant defense mechanisms.

Methods

The antifungal effects of two profilin proteins from Arabidopsis thaliana, AtPFN1 and AtPFN2, were tested against 11 molds and 4 yeast fungal strains. Fluorescence profiling, biophysical, and biochemical analyses were employed to investigate their antifungal mechanism.

Results

Recombinant AtPFN1 and AtPFN2 proteins, expressed in Escherichia coli, inhibited the cell growth of various pathogenic fungal strains at concentrations ranging from 10 to 160?μg/mL. The proteins showed significant intracellular accumulation and cell-binding affinity for fungal cells. Interestingly, the AtPFN proteins could penetrate the fungal cell wall and membrane and act as inhibitors of fungal growth via generation of cellular reactive oxygen species and mitochondrial superoxide. This triggered the AtPFN variant-induced cell apoptosis, resulting in morphological changes in the cells.

Conclusion

PFNs may play a critical role as antifungal proteins in the Arabidopsis defense system against fungal pathogen attacks.

General significance

The present study indicates that two profilin proteins, AtPFN1 and AtPFN2, can act as natural antimicrobial agents in the plant defense system.  相似文献   

8.
During ripening of grape (Vitis labruscana L. cv Concord) berries, abundance of several proteins increased, coordinately with hexoses, to the extent that these became the predominant proteins in the ovary. These proteins have been identified by N-terminal amino acid-sequence analysis and/or function to be a thaumatin-like protein (grape osmotin), a lipid-transfer protein, and a basic and an acidic chitinase. The basic chitinase and grape osmotin exhibited activities against the principal grape fungal pathogens Guignardia bidwellii and Botrytis cinerea based on in vitro growth assays. The growth-inhibiting activity of the antifungal proteins was substantial at levels comparable to those that accumulate in the ripening fruit, and these activities were enhanced by as much as 70% in the presence of 1 m glucose, a physiological hexose concentration in berries. The simultaneous accumulation of the antifungal proteins and sugars during berry ripening was correlated with the characteristic development of pathogen resistance that occurs in fruits during ripening. Taken together, accumulation of these proteins, in combination with sugars, appears to constitute a novel, developmentally regulated defense mechanism against phytopathogens in the maturing fruit.Plants have evolved a number of strategies to resist fungal infection. One strategy involves the accumulation of defense proteins that have direct inhibitory activity against the hyphae and/or germinating spores of the pathogen. Among these are PR proteins including chitinases (PR-3 family), thaumatin-like proteins (PR-5 family), and nsLTPs. Typically, these antifungal proteins are expressed constitutively at low levels in cells and accumulate in response to fungal attack or in response to other inducers of acquired resistance (Uknes et al., 1992). Reproductive organs are apparently an exception to induced acquired resistance. Presumably, the importance of flowers and ovaries to the maintenance of the species has mandated that reproductive organs acquire pathogen resistance during development. Developmentally regulated expression of PR proteins has been observed in floral organs (Lotan et al., 1989; Neal et al., 1990), including numerous examples of defensive gene mRNA accumulation in fruits. However, comparatively few data are available that interrelate developmental accumulation of antifungal proteins and the acquisition of resistance against fruit pathogens (Fils-Lycaon et al., 1996; Meyer et al., 1996).Another physiological adaptation of plants that affects fungal pathogenesis, but one that has received considerably less attention, is the accumulation of sugars. Results from studies of several host/pathogen systems have implicated accumulation or depletion of sugars in resistance to fungal infection (VanderPlank, 1984). Increased susceptibility to fungi in sugar-depleted vegetative tissues, a phenomenon termed “sink-induced loss of resistance,” has been documented in tomato (Horsfall, 1975), cotton (Eaton and Rigler, 1946), and maize (Holbert et al., 1935). Conversely, moderate levels of sugars can enhance colonization rates of some fungal pathogens, presumably because these are important sources of C for the microbes (Mains, 1917). However, higher levels of sugars can reverse this effect, leading to decreased susceptibility, a phenomenon termed “high-sugar resistance” (Horsfall and Dimond, 1957). This reversal of susceptibility has been suggested to occur as a result of high sugar levels furnishing an osmotic challenge to the fungi and suppressing their colonization of the plant (VanderPlank, 1984).We report here that accumulation of hexoses in grape (Vitis labruscana L. cv Concord) berries is accompanied by a developmental-stage-specific increase in a suite of proteins that are homologous to proteins known to be antifungal determinants. These proteins have been identified as a thaumatin-like protein (Salzman et al., 1994) (here we have named it GO), chitinases (both CBC and AC forms), and a nsLTP. Physiological levels of GO or CBC assayed in vitro alone or in combination with physiological levels of Glc exhibited individual and/or combinatorial activities against the important grape pathogens Guignardia bidwellii, the causal agent of black rot, and Botrytis cinerea. The interaction of the antifungal proteins and hexoses appears to constitute a developmentally regulated defense mechanism to restrict fungal pathogen infection as seeds are maturing in ripening berries.  相似文献   

9.

Background

The superfamily of ABC proteins is among the largest known in nature. Its members are mainly, but not exclusively, involved in the transport of a broad range of substrates across biological membranes. Many contribute to multidrug resistance in microbial pathogens and cancer cells. The diversity of ABC proteins in fungi is comparable with those in multicellular animals, but so far fungal ABC proteins have barely been studied.

Results

We performed a phylogenetic analysis of the ABC proteins extracted from the genomes of 27 fungal species from 18 orders representing 5 fungal phyla thereby covering the most important groups. Our analysis demonstrated that some of the subfamilies of ABC proteins remained highly conserved in fungi, while others have undergone a remarkable group-specific diversification. Members of the various fungal phyla also differed significantly in the number of ABC proteins found in their genomes, which is especially reduced in the yeast S. cerevisiae and S. pombe.

Conclusions

Data obtained during our analysis should contribute to a better understanding of the diversity of the fungal ABC proteins and provide important clues about their possible biological functions.  相似文献   

10.
Fungal hydrophobins are secreted proteins that self-assemble at hydrophobic:hydrophilic interfaces. They are essential for a variety of processes in the fungal life cycle, including mediating interactions with surfaces and infection of hosts. The fungus Magnaporthe oryzae, the causative agent of rice blast, relies on the unique properties of hydrophobins to infect cultivated rice as well as over 50 different grass species. The hydrophobin MPG1 is highly expressed during rice blast pathogenesis and has been implicated during host infection. Here we report the backbone and sidechain assignments for the class I hydrophobin MPG1 from the rice blast fungus Magnaporthe oryzae.  相似文献   

11.
Tetraspanin proteins on host cells are involved in the pathogenesis of infectious diseases at different stages. In this review, we will focus on tetraspanins expressed in the immune system and the role they play in the defense to viral, bacterial, parasitic and fungal infections.  相似文献   

12.
13.
Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America. The morbidity and mortality associated with paracoccidioidomycosis necessitate our understanding of fungal pathogenesis and discovering of new agents to treat this infection. Animal models have contributed much to the knowledge of fungal infections and their corresponding therapeutic treatments. This is true for animal models of the primary fungal pathogens such as P. brasiliensis. This review describes the development, details and utility of animal models of paracoccidioidomycosis for studying and developing the current antifungal agents used for therapy of this fungal disease and novel agents with antifungal properties against P. brasiliensis.  相似文献   

14.
The ATP‐dependent Lon protease is involved in many physiological processes. In bacteria, Lon regulates pathogenesis and, in yeast, Lon protects mitochondia from oxidative damage. However, little is known about Lon in fungal phytopathogens. MAP1, a homologue of Lon in Magnaporthe oryzae, was recently identified to be important for stress resistance and pathogenesis. Here, we focus on a novel pathogenic pathway mediated by MAP1. Based on an interaction system between rice and a tandem affinity purification (TAP)‐tagged MAP1 complementation strain, we identified 23 novel fungal proteins from infected leaves using a TAP approach with mass spectrometry, and confirmed that 14 of these proteins physically interact with MAP1 in vivo. Among these 14 proteins, 11 candidates, presumably localized to the mitochondria, were biochemically determined to be substrates of MAP1 hydrolysis. Deletion mutants were created and functionally analysed to further confirm the involvement of these proteins in pathogenesis. The results indicated that all mutants showed reduced conidiation and sensitivity to hydrogen peroxide. Appressorial formations were not affected, although conidia from certain mutants were morphologically altered. In addition, virulence was reduced in four mutants, enhanced (with lesions forming earlier) in two mutants and remained unchanged in one mutant. Together with the known virulence‐related proteins alternative oxidase and enoyl‐CoA hydratase, we propose that most of the Lon‐interacting proteins are involved in the pathogenic regulation pathway mediated by MAP1 in M. oryzae. Perturbation of this pathway may represent an effective approach for the inhibition of rice blast disease.  相似文献   

15.
王园园  陈昌斌 《菌物学报》2018,37(10):1364-1377
白念珠菌是人类最常见的条件性致病真菌之一,主要定植于人体粘膜表面。在白念珠菌与宿主相互作用过程中,分泌型蛋白起着非常重要的作用。针对分泌蛋白功能及其作用机理的研究有助于阐明白念珠菌致病分子机制,并为诊断、预防和治疗真菌感染提供新的理论策略。本文综述了白念珠菌分泌型蛋白在介导病原与宿主相互作用分子机制方面的最新研究进展,概括了分泌蛋白在组织侵入损伤、营养获取、细胞壁维持以及免疫逃避等方面的功能,同时对未来值得重点关注的研究方向进行了探讨。  相似文献   

16.
17.
The nuclear import of proteins is a fundamental process in the eukaryotes including plant. It has become evident that such basic process is exploited by nuclear effectors that contain nuclear localization signal (NLS) and are secreted into host cells by fungal pathogens of plants. However, only a handful of nuclear effectors have been known and characterized to date. Here, we first summarize the types of NLSs and prediction tools available, and then delineate examples of fungal nuclear effectors and their roles in pathogenesis. Based on the knowledge on NLSs and what has been gleaned from the known nuclear effectors, we point out the gaps in our understanding of fungal nuclear effectors that need to be filled in the future researches.  相似文献   

18.
19.
C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.  相似文献   

20.
We studied the effect of two proteins, PSPI-21 and PKSI, on the growth and development of phytopathogenic microorganisms (Phytophthora infestans oomycete and Fusarium culmorum fungus). Both proteins were isolated from potato tubers (Solanum tuberosum L., cv. Istrinskii) and served as inhibitors of serine proteinases. These proteins differed in the ability to inhibit growth of Phytophthora infestans oomycete and Fusarium culmorum fungus. PSPI-21 was the most potent in modulating the growth of oomycete mycelium. PKSI primarily affected the growth of the fungal mycelium. The proteins under study induced complete destruction of oomycete zoospores and partial destruction of fungal macroconidia. Our results suggest that these proteins are involved in the protection of potato plants from phytopathogenic microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号