首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The brush border of pig small intestine is a local hotspot for β-galactoside-recognizing lectins, as evidenced by its prominent labeling with fluorescent lectin PNA. Previously, galectins 3-4, intelectin, and lectin-like anti-glycosyl antibodies have been localized to this important body boundary. Together with the membrane glycolipids these lectins form stable lipid raft microdomains that also harbour several of the major digestive microvillar enzymes. In the present work, we identified a lactose-sensitive 14-kDa protein enriched in a microvillar detergent resistant fraction as galectin-2. Its release from closed, right-side-out microvillar membrane vesicles shows that at least some of the galectin-2 resides at the lumenal surface of the brush border, indicating that it plays a role in the organization/stabilization of the lipid raft domains. Galectin-2 was released more effectively from the membrane by lactose than was galectin-4, and surprisingly, it was also released by the noncanonical disaccharides sucrose and maltose. Furthermore, unlike galectin-4, galectin-2 was preferentially coimmunoisolated with sucrase-isomaltase rather than with aminopeptidase N. Together, these results show that the galectins are not simply redundant proteins competing for the same ligands but rather act in concert to ensure an optimal cross-linking of membrane glycolipids and glycoproteins. In this way, they offer a maximal protection of the brush border against exposure to bile, pancreatic enzymes and pathogens.  相似文献   

2.
Intelectin is a mammalian Ca2+-dependent, D-galactosyl-specific lectin expressed in Paneth and goblet cells of the small intestine and proposed to serve a protective role in the innate immune response to parasite infection. In addition, it is structurally identical to the intestinal lactoferrin receptor known to reside in the enterocyte brush border. To clarify this apparent discrepancy with regard to localization, the aim of this work was to study the cellular and subcellular distribution of small intestinal intelectin by immunofluorescence and immunogold electron microscopy. Secretory granules of lysozyme-positive Paneth cells in the bottom of the crypts as well as goblet cells along the crypt-villus axis were intensively labeled with intelectin antibodies, but quantitatively, the major site of intelectin deposition was the enterocyte brush border. This membrane is organized in stable glycolipid-based lipid raft microdomains, and like the divalent lectin galectin-4, intelectin was enriched in microvillar "superrafts", i.e., membranes that resist solubilization with Triton X-100 at 37 degrees C. This strategic localization suggests that the trimeric intelectin, like galectin-4, serves as an organizer and stabilizer of the brush border membrane, preventing loss of digestive enzymes to the gut lumen and protecting the glycolipid microdomains from pathogens.  相似文献   

3.
Uptake of cholesterol by the intestinal absorptive epithelium can be selectively blocked by specific small molecules, like the sterol glycoside, L-166,143. Furthermore, (3)H-labeled L-166,143 administered orally to hamsters binds specifically to the intestinal mucosa, suggesting the existence of a cholesterol transporter. Using autoradiography, the binding site of (3)H-L-166,143 in the hamster small intestine was localized to the very apical aspect of the absorptive epithelial cells. Label was competed by non-radioactive L-166,143 and two structurally distinct cholesterol absorption inhibitors, suggesting a common site of action for these compounds. L-166,143 blocked uptake of (3)H-cholesterol into enterocytes in vivo, as demonstrated by autoradiography, suggesting that it inhibits a very early step of cholesterol absorption, incorporation into the brush border membrane. This conclusion was confirmed by studies in which intestinal brush borders were isolated from hamsters dosed with (3)H-cholesterol in the presence or absence of L-166,143. Uptake of (3)H-cholesterol into the membranes was substantially inhibited by the compound. In contrast, an inhibitor of acyl CoA:cholesterol acyltransferase, did not affect uptake of (3)H-cholesterol into the brush border membranes. These results strongly support the existence of a specific transporter that facilitates the movement of cholesterol from bile acid micelles into the brush border membranes of enterocytes.  相似文献   

4.
We analyzed brush border membrane vesicle proteins from isolated midguts of the mosquito Aedes aegypti, by two proteomic methods: two-dimensional gel electrophoresis (isoelectric focusing and SDS-PAGE) and a shotgun two-dimensional liquid chromatographic (LS/LS) approach based on multidimensional protein identification technology (MudPIT). We were interested in the most abundant proteins of the apical brush border midgut membrane. About 400 spots were detected on 2D gels and 39 spots were cored and identified by mass spectrometry. 86 proteins were identified by MudPIT. Three proteins, arginine kinase, putative allergen and actin are shown to be the most predominant proteins in the sample. The total number of 36 proteins detected by both methods represents the most abundant proteins in the BBMV.  相似文献   

5.
In polarized epithelial cells such as those that line the inner ear, kidney and gut, myosin VI has been localized to the intermicrovillar domains where it is proposed to regulate clathrin-dependent endocytosis; however, a direct role for myosin VI in apical endocytosis has not been shown. We examined the apical membrane distribution and endocytosis of cystic fibrosis transmembrane conductance regulator (CFTR) in myosin VI-deficient Snell's Waltzer Myo6((sv/sv)) mice. Confocal microscopy and cell-surface biotinylation confirmed that surface levels of CFTR in the intestine of Myo6((sv/sv)) mice were markedly higher, and CFTR internalization from the apical plasma membrane was reduced compared with heterozygous controls. Consistent with a defect in CFTR endocytosis and accumulation at the cell surface, exaggerated CFTR-mediated fluid secretion was observed in Myo6((sv/sv)) mice following treatment of isolated jejunum with the cyclic GMP-activated heat stable enterotoxin. These data establish that myosin VI modulates apical endocytosis and may be an important physiological modulator of CFTR function and CFTR-associated secretory diarrhea in the gut.  相似文献   

6.
This study identifies calpain as being instrumental for brush border (BB) microvillus assembly during differentiation and effacement during bacterial pathogenesis. Calpain activity is decreased by 25-80% in Caco 2 lines stably overexpressing calpastatin, the physiological inhibitor of calpain, and the effect is proportional to the calpastatin/calpain ratio. These lines exhibit a 2.5-fold reduction in the rate of microvillus extension. Apical microvillus assembly is reduced by up to 50%, as measured by quantitative fluorometric microscopy (QFM) of ezrin, indicating that calpain recruits ezrin to BB microvilli. Calpain inhibitors ZLLYCHN2, MDL 28170, and PD 150606 block BB assembly and ezrin recruitment to the BB. The HIV protease inhibitor ritonavir, which inhibits calpain at clinically relevant concentrations, also blocks BB assembly, whereas cathepsin and proteasome inhibitors do not. Microvillus effacement is inhibited after exposure of calpastatin-overexpressing cells to enteropathogenic Escherichia coli. These results suggest that calpain regulates BB assembly as well as pathological effacement, and indicate that it is an important regulator involved in HIV protease inhibitor toxicity and host-microbial pathogen interactions.  相似文献   

7.
Absorption of dietary fat in the small intestine is accompanied by a rise of intestinal alkaline phosphatase (IAP) in the serum and of secretion of IAP-containing surfactant-like particles from the enterocytes. In the present work, fat absorption was studied in organ cultured mouse intestinal explants. By immunofluorescence microscopy, fat absorption caused a translocation of IAP from the enterocyte brush border to the interior of the cell, whereas other brush-border enzymes were unaffected. By electron microscopy, the translocation occurred by a rapid (5 min) induction of endocytosis via clathrin-coated pits. By 60 min, IAP was seen in subapical endosomes and along membranes surrounding fat droplets. IAP is a well-known lipid raft-associated protein, and fat absorption was accompanied by a marked change in the density and morphology of the detergent-resistant membranes harboring IAP. A lipid analysis revealed that fat absorption caused a marked increase in the microvillar membrane contents of free fatty acids. In conclusion, fat absorption rapidly induces a transient clathrin-dependent endocytosis via coated pits from the enterocyte brush border. The process selectively internalizes IAP and may contribute to the appearance of the enzyme in serum and surfactant-like particles.  相似文献   

8.
Basolateral membranes obtained by self-orienting Percoll-gradient centrifugation were treated with 5 mM CaCl2 to minimize the cross-contamination by brush border membranes. From marker enzyme-specific activities it was calculated that in this preparation the basolateral/brush border membrane ratio was 22.6. A low L-glucose permeability across basolateral membrane vesicles together with ATP-dependent sodium uptake was observed.  相似文献   

9.
To assess intestinal lipid rafts functions through the characterization of their protein markers, we have isolated lipid rafts of rat mucosa either from the total membrane or purified brush-border membrane (BBM) by sucrose gradient fractionation after detergent treatment. In both membrane preparations, the floating fractions (4-5) were enriched in cholesterol, ganglioside GM1, and N aminopeptidase (NAP) known as intestinal lipid rafts markers. Based on MALDI-TOF/MS identification and simultaneous detection by immunoblotting, 12 proteins from BBM cleared from contaminants were selected as rafts markers. These proteins include several signaling/trafficking proteins belonging to the G protein family and the annexins as well as GPI-anchored proteins. Remarkably GP2, previously described as the pancreatic granule GPI-anchored protein, was found in intestinal lipid rafts. The proteomic strategy assayed on the intestine leads to the characterization of known (NAP, alkaline phosphatase, dipeptidyl aminopeptidase, annexin II, and galectin-4) and new (GP2, annexin IV, XIIIb, Galpha(q), Galpha(11), glutamate receptor, and GPCR 7) lipid rafts markers. Together our results indicate that some digestive enzymes, trafficking and signaling proteins may be functionally distributed in the intestine lipid rafts.  相似文献   

10.
There is an overlap of carrier-mediated L-amino acid transport and apparent simple diffusion when measured in intestinal brush border membrane vesicles. Using L-threonine and L-glutamine as representative amino acids, this study was undertaken to estimate apparent simple diffusion of L-amino acids and to establish the effective dosage of HgCl2 for completely blocking carrier-mediated L-amino acid transport in porcine jejunal enterocyte brush border membrane vesicles. Jejunal mucosa was scraped from three pigs weighing 26 kg. Enterocyte brush border membrane vesicles, with an average enrichment of 24-fold in sucrase specific activity, were prepared by Mg2+-precipitation and differential centrifugation. In vitro uptake was measured by the fast filtration manual procedure. HgCl2 blocked the carrier-mediated initial transport of L-threonine and L-glutamine under Na+-gradient condition in a dose-dependent manner. At the minimal concentration of 0.165 micromol HgCl2 mg(-1) protein, carrier-mediated L-threonine and L-glutamine transport was completely inhibited. The apparent L-threonine and L-glutamine diffusion was estimated to be 8.6+/-0.7 and 12.4+/-1.0% of the total uptake at the substrate concentrations of 5 microM (L-threonine) and 50 microM (L-glutamine). Therefore, the treatment of porcine brush border membrane vesicles with a minimum of 0.165 micromol HgCl2 mg(-1) protein completely blocks carrier-mediated L-amino acid transport and enables the direct estimation of apparent L-amino acid diffusion in enterocyte brush border membrane vesicles.  相似文献   

11.
The pig small intestinal brush border is a glycoprotein- and glycolipid-rich membrane that functions as a digestive/absorptive surface for dietary nutrients as well as a permeability barrier for pathogens. The present work was performed to identify carbohydrate-binding (lectinlike) proteins associated with the brush border. Chromatography on lactose-agarose was used to isolate such proteins, and their localization was studied biochemically and by immunofluorescence microscopy and immunogold electron microscopy. IgG and IgM were the two major proteins isolated, indicating that naturally occurring anti-glycosyl antibodies are among the major lectinlike proteins in the gut. IgG and IgM as well as IgA were localized to the enterocyte brush border, and a brief lactose wash partially released all three immunoglobulins from the membrane, indicating that anti-glycosyl antibodies constitute a major part of the immunoglobulins at the lumenal surface of the gut. The antibodies were associated with lipid rafts at the brush border, and they frequently (52%) coclustered with the raft marker galectin 4. A lactose wash increased the susceptibility of the brush border toward lectin peanut agglutin and cholera toxin B, suggesting that anti-glycosyl antibodies compete with other carbohydrate-binding proteins at the lumenal surface of the gut. Thus anti-glycosyl antibodies constitute a major group of proteins associated with the enterocyte brush border membrane. We propose they function by protecting the lipid raft microdomains of the brush border against pathogens.  相似文献   

12.
Interaction of epidermal growth factor (EGF) with its specific receptor (EGFR) was explored in the intact rat small intestine and in highly purified isolated enterocyte membrane preparations. Despite the fact that the EGF ligand is known to be present at physiological concentrations within the intestinal cavity, no significant binding of the ligand to the brush border surface was observed. Instead, binding of EGF to the EGFR was confined to other membrane populations, and correlation of ligand interaction with the laterobasal membranes (LBM) was nearly perfect (p less than 0.001) across a special equilibrium gradient enriched in brush border and LBM but devoid of intracellular membranes. Specific binding to another minor population of intracellular membranes that migrated to a position less dense than typical endoplasmic reticulum-Golgi vesicles on equilibrium gradients was also observed. Immunocytochemical exposure of intestine to EGFR antibody confirmed the localization of the EGFR to LBM and intracellular membranes. As estimated from the intensity of the staining, there may be immunologically active but nonbinding receptor species in the intracellular membrane compartment. Thus, despite the secretion of EGF into the intestinal lumen, the growth and maturational effects of EGF probably result from a specific interaction between EGF and EGFR solely at the laterobasal surface of the enterocyte. The functional role of the intracellular membrane species of EGFR, which remains to be established, may involve a source of inactive receptor that can be rapidly recruited and transferred to the LBM surface under changing environmental conditions.  相似文献   

13.
Danielsen EM  van Deurs B  Hansen GH 《Biochemistry》2003,42(49):14670-14676
Annexin A2 is a member of the annexin family of Ca(2+)-dependent lipid binding proteins and believed to be engaged in membrane transport processes in a number of cell types. In small intestinal enterocytes, we localized annexin A2 to the brush border region, where it was found mainly on the lumenal side of the microvilli, showing an apical secretion by a "nonclassical" mechanism. In addition, annexin A2 was associated with surface-connected, deep apical tubules in the apical terminal web region and with an underlying pleiomorphic, tubulo-vesicular compartment (subapical compartment/multivesicular bodies). By subcellular fractionation, the 36 kDa full-length form of annexin A2 was approximately equally distributed between the Mg(2+)-precipitated fraction (containing intracellular and basolateral membranes) and the microvillar membrane fraction. In addition, a 33 kDa molecular form of annexin A2 was seen in the latter fraction that could be generated from the full-length annexin A2 by digestion with trypsin. Taken together, the results suggest that annexin A2 acts in exocytic apical membrane trafficking and is proteolytically cleaved in situ by pancreatic proteinases once it has become externalized to the lumenal side of the brush border membrane. On the basis of its well-known membrane fusogenic properties, we propose a model for the nonclassical membrane translocation of annexin A2.  相似文献   

14.
15.
The influence of low dietary linoleic acid level (an essential fatty acid deficiency) on the intestine mucosal morphology and the purified brush border membrane (BBM) lipid composition was investigated in the rat. Electron micrographs and morphometric measurements showed that villi and crypt sizes as well as the ultrastructure of epithelial cells were altered. Cholesterol (CHOL) and phospholipid (PL) levels, CHOL/PL ratio and PL class distribution were not changed by the low linoleate diet. However, the fatty acid composition of phospholipids was markedly modified in the enterocyte BBM, showing elevated amounts of palmitoleic (16:1n-7), oleic (18:1n-9) and 5,8,11-eicosatrienoic (20:3n-9) acids and, by contrast, depressed linoleic (18:2n-6) and arachidonic (20:4n-6) acid levels. Although the underlying mechanisms remain unknown the results obtained suggest that essential fatty acids (EFA) could be directly involved in the trigger action of the observed alterations, as regards both their dynamic (metabolic) and structural roles.  相似文献   

16.
The assembly of the intestinal microvillus cytoskeleton was examined during the differentiation of enterocytes along the crypt-villus axis in adult chicken duodenum using light and electron microscopic immunolocalization techniques. Using antibodies reactive with villin, fimbrin, and the heavy chain (hc) of brush border (BB) myosin I (110K-calmodulin complex) and rhodamine-conjugated phalloidin as a probe for F-actin, we determined that while actin, villin, and fimbrin were all localized apically along the entire axis, BB myosin I (hc) did not assume this localization until the crypt-villus transition zone. In addition to their localization at the BB surface, all four proteins were present at significant levels along the lateral margins of enterocytes along the entire crypt-villus axis, suggesting that these proteins may be involved in the organization and function of the basolateral membrane cytoskeleton as well. The pattern of expression of the microvillar core proteins along the crypt-villus axis in the adult was comparable to that seen in the intestine of the late stage chicken embryo and suggests that a common program for brush border assembly may be used in both modes of enterocyte differentiation.  相似文献   

17.
Absorption of cholesterol from the intestine is a central part of body cholesterol homeostasis. The molecular mechanisms of intestinal cholesterol absorption and the proteins mediating membrane transport are not known. We therefore aimed to identify the proteins involved in intestinal cholesterol absorption across the luminal brush border membrane of small intestinal enterocytes. By photoaffinity labeling using photoreactive derivatives of cholesterol and 2-azetidinone cholesterol absorption inhibitors, an 80-kDa and a 145-kDa integral membrane protein were identified as specific binding proteins for cholesterol and cholesterol absorption inhibitors, respectively, in the brush border membrane of small intestinal enterocytes. The 80-kDa cholesterol-binding protein did not interact with cholesterol absorption inhibitors and vice versa; cholesterol or plant sterols did not interfere with the 145-kDa molecular target for cholesterol absorption inhibitors. Both proteins showed an identical tissue distribution and were exclusively found at the anatomical sites of cholesterol absorption-duodenum, jejunum and ileum. Neither stomach, cecum, colon, rectum, kidney, liver nor fat tissue expressed the 80- or 145-kDa binding proteins for cholesterol and cholesterol absorption inhibitors. Both proteins are different from the hitherto described candidate proteins for the intestinal cholesterol transporter,-SR-BI, ABC G5/ABC G8 or ABC A1. Our data strongly suggest that intestinal cholesterol absorption is not facilitated by a single transporter protein but occurs by a complex machinery. Two specific binding proteins for cholesterol (80 kDa) and cholesterol absorption inhibitors (145 kDa) of the enterocyte brush border membrane are probable protein constituents of the mechanism responsible for the intestinal absorption of cholesterol.  相似文献   

18.
Actin binding proteins of the brush border   总被引:3,自引:0,他引:3  
M S Mooseker 《Cell》1983,35(1):11-13
  相似文献   

19.
Intestinal cholesterol absorption is an important regulator of serum cholesterol levels. Ezetimibe is a specific inhibitor of intestinal cholesterol absorption recently introduced into medical practice; its mechanism of action, however, is still unknown. Ezetimibe neither influences the release of cholesterol from mixed micelles in the gut lumen nor the transfer of cholesterol to the enterocyte brush border membrane. With membrane-impermeable Ezetimibe analogues we could demonstrate that binding of cholesterol absorption inhibitors to the brush border membrane of small intestinal enterocytes from the gut lumen is sufficient for inhibition of cholesterol absorption. A 145-kDa integral membrane protein was identified as the molecular target for cholesterol absorption inhibitors in the enterocyte brush border membrane by photoaffinity labeling with photoreactive Ezetimibe analogues (Kramer, W., Glombik, H., Petry, S., Heuer, H., Schafer, H. L., Wendler, W., Corsiero, D., Girbig, F., and Weyland, C. (2000) FEBS Lett. 487, 293-297). The 145-kDa Ezetimibe-binding protein was purified by three different methods and sequencing revealed its identity with the membrane-bound ectoenzyme aminopeptidase N ((alanyl)aminopeptidase; EC 3.4.11.2; APN; leukemia antigen CD13). The enzymatic activity of APN was not influenced by Ezetimibe (analogues). The uptake of cholesterol delivered by mixed micelles by confluent CaCo-2 cells was partially inhibited by Ezetimibe and nonabsorbable Ezetimibe analogues. Preincubation of confluent CaCo-2 cells with Ezetimibe led to a strong decrease of fluorescent APN staining with a monoclonal antibody in the plasma membrane. Independent on its enzymatic activity, aminopeptidase N is involved in endocytotic processes like the uptake of viruses. Our findings suggest that binding of Ezetimibe to APN from the lumen of the small intestine blocks endocytosis of cholesterol-rich membrane microdomains, thereby limiting intestinal cholesterol absorption.  相似文献   

20.
Molecular organization of the intestinal brush border   总被引:2,自引:0,他引:2  
The brush border of enterocytes represents one of the more specialized apical poles of epithelial cells. It is formed by particularly well-developed apical plasma membrane microvilli, whose shape is ensured by a highly organized cytoskeleton. The molecular organization of the cytoskeleton is described. Whereas several cytoskeleton proteins are ubiquitous, villin is highly specific for intestinal cells and can be used as a differentiation marker of these cells. The major glycoproteins, in particular hydrolases, of the brush border membrane have been characterized. They have many common structural features, in particular their mode of integration into the membrane by their N-terminal hydrophobic sequences that also plays the role of the 'signal peptide' responsible for their co-translational insertions into the endoplasmic reticulum. Studies on the biosynthesis and intracellular pathway of aminopeptidase N strongly suggest that sorting of apical and basolateral glycoproteins could occur after their integration into the basolateral domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号