首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geniohyoid (Genio) upper airway muscle shows phasic, inspiratory electrical activity in awake humans but no activity and lengthening in anesthetized cats. There is no information about the mechanical action of the Genio, including length and shortening, in any awake, nonanesthetized mammal during respiration (or swallowing). Therefore, we studied four canines, mean weight 28.8 kg, 1.5 days after Genio implantation with sonomicrometry transducers and bipolar electromyogram (EMG) electrodes. Awake recordings of breathing pattern, muscle length and shortening, and EMG activity were made with the animal in the right lateral decubitus position during quiet resting, CO2-stimulated breathing, inspiratory-resisted breathing (80 cmH2O. l-1. s), and airway occlusion. Genio length and activity were also measured during swallowing, when it shortened, showing a 9.31% change from resting length, and its EMG activity increased 6.44 V. During resting breathing, there was no phasic Genio EMG activity at all, and Genio showed virtually no movement during inspiration. During CO2-stimulated breathing, Genio showed minimal lengthening of only 0.07% change from resting length, whereas phasic EMG activity was still absent. During inspiratory-resisted breathing and airway occlusion, Genio showed phasic EMG activity but still lengthened. We conclude that the Genio in awake, nonanesthetized canines shows active contraction and EMG activity only during swallowing. During quiet or stimulated breathing, Genio is electrically inactive with passive lengthening. Even against resistance, Genio is electrically active but still lengthens during inspiration.  相似文献   

2.
Electromyographic activity of expiratory muscles in the rat   总被引:2,自引:0,他引:2  
We examined the participation of expiratory muscles on breathing in the rat. The experiments were performed on 16 male rats in halothane [1.5%] or urethane [1.3 g/kg i.p.] anaesthesia. We recorded the electromyographic [EMG] activity of intercostal and abdominal muscles with a concentric needle electrode during quiet breathing, breathing against increased pressure in the airways and during the expiration reflex. In halothane anaesthesia the EMG expiratory phasic activity was observed only in internal intercostal muscles in 40% of spots examined during quiet breathing and in 58.5% when breathing against increased pressure. The EMG activity during the expiratory reflex was difficult to evaluate. In the abdominal muscles permanent EMG activity was found in 66% of trials. In urethane anaesthesia no phasic expiratory EMG activity was observed in intercostal or abdominal muscles. In abdominal muscles in 9% of trials a permanent activity was found.  相似文献   

3.
Although there is electromyographic evidence for abdominal muscle activity during quiet breathing in standing subjects, several studies have shown, or assumed, that subjects normally breathe on their relaxation characteristics. This latter observation would by itself suggest that abdominal muscles do not contract during quiet breathing. To test this assumption we observed abdominal and rib cage displacements with magnetometers in 17 uninformed subjects. During quiet breathing most subjects showed evidence of tonic or phasic abdominal muscle contraction while standing and sitting but not supine. Subjects studied during hyperpnea immediately following exercise-showed evidence of greater abdominal muscle contraction than at rest. We conclude that most subjects standing at rest normally contract their abdominal muscles.  相似文献   

4.
Chest wall motion during epidural anesthesia in dogs   总被引:3,自引:0,他引:3  
To determine the relative contribution of rib cage and abdominal muscles to expiratory muscle activity during quiet breathing, we used lumbar epidural anesthesia in six pentobarbital sodium-anesthetized dogs lying supine to paralyze the abdominal muscles while leaving rib cage muscle motor function substantially intact. A high-speed X-ray scanner (Dynamic Spatial Reconstructor) provided three-dimensional images of the thorax. The contribution of expiratory muscle activity to tidal breathing was assessed by a comparison of chest wall configuration during relaxed apnea with that at end expiration. We found that expiratory muscle activity was responsible for approximately half of the changes in thoracic volume during inspiration. Paralysis of the abdominal muscles had little effect on the pattern of breathing, including the contribution of expiratory muscle activity to tidal breathing, in most dogs. We conclude that, although there is consistent phasic expiratory electrical activity in both the rib cage and the abdominal muscles of pentobarbital-anesthetized dogs lying supine, the muscles of the rib cage are mechanically the most important expiratory muscles during quiet breathing.  相似文献   

5.
To investigate airflow regulation in newborn infants, we recorded airflow, volume, diaphragm (Di), and laryngeal electromyogram (EMG) during spontaneous breathing in eight supine unsedated sleeping full-term neonates. Using an esophageal catheter electrode, we recorded phasic respiratory activity consistent with that of the principal laryngeal abductors, the posterior cricoarytenoids (PCA). Sequential activation of PCA and Di preceded inspiration. PCA activity typically peaked early in inspiration followed by either a decrescendo or tonic EMG activity of variable amplitude during expiration. Expiratory airflow retardation, or braking, accompanied by expiratory prolongation and reduced ventilation, was commonly observed. In some subjects we observed a time interval between PCA onset and a sudden increase in expiratory airflow just before inspiration, suggesting that release of the brake involved an abrupt loss of antagonistic adductor activity. Our findings suggest that airflow in newborn infants is controlled throughout the breathing cycle by the coordinated action of the Di and the reciprocal action of PCA and laryngeal adductor activities. We conclude that braking mechanisms in infants interact with vagal reflex mechanisms that modulate respiratory cycle timing to influence both the dynamic maintenance of end-expiratory lung volume and ventilation.  相似文献   

6.
We have tested the possibility that the electromyographic (EMG) activity present in the parasternal intercostal muscles during quiet inspiration was reflexive, rather than agonistic, in nature. Using concentric needle electrodes we measured parasternal EMG activity in four normal subjects during various inspiratory maneuvers. We found that 1) phasic inspiratory activity was invariably present in the parasternal intercostals during quiet breathing, 2) the parasternal EMG activity was generally increased during attempts to perform the tidal breathing maneuver with the diaphragm alone, 3) parasternal EMG activity was markedly decreased or suppressed in the presence of rib cage distortion during diaphragmatic isovolume maneuvers, and 4) that EMG activity could not be voluntarily suppressed during breathing unless the inspired volume was trivial. We conclude that the parasternal EMG activity detected during quiet inspiration in the normal subjects depends on a central involuntary mechanism and is not related to activation of intercostal mechanoreceptors.  相似文献   

7.
To assess the mechanical role of the expiratory musculature during eupnea, we recorded the electromyographic (EMG) activity of the triangularis sterni, the external oblique, and the transversus abdominis in eight supine lightly anesthetized dogs and have measured the volume generated by the phasic activation of the expiratory muscles. Activation of the expiratory muscles was invariably associated with a decrease in lung volume below the relaxed position of the respiratory system, a volume equal to 41.3 +/- 8.4 ml. This volume represented roughly 20% of tidal volume generated during spontaneous breathing. The fractional expiratory contribution to the tidal volume was unrelated to the size of the animal. Traction on the forelimbs (limb extension), however, tended to enhance the phasic expiratory activation of both the triangularis sterni and the transversus abdominis in the majority of animals. Moreover, after limb extension, the fractional contribution of tidal volume attributed to the phasic activation of the expiratory muscles increased in all but one animal. During spontaneous breathing with the forelimbs extended, roughly 25% of tidal volume was found to be due directly to phasic expiratory muscle contraction. The present observations firmly establish that in supine lightly anesthetized dogs breathing at rest the expiratory component of tidal volume represents a substantial contribution.  相似文献   

8.
The effect of isocapnic hypoxia and hyperoxic hypercapnia on the electrical activity of the posterior cricoarytenoid (PCA) muscle was determined in eight normal adult humans by use of standard rebreathing techniques and was compared with PCA activity during voluntary hyperventilation performed under isocapnic and hypocapnic conditions. PCA activity was recorded with intramuscular hooked-wire electrodes implanted through a fiberoptic nasopharyngoscope. During quiet breathing in all subjects, the PCA was phasically active on inspiration and tonically active throughout the respiratory cycle. At comparable increments in respiratory output, hypercapnia, hypoxia, and voluntary hyperventilation appeared to be associated with similar increases in phasic or tonic PCA activity. During quiet breathing, the onset of phasic PCA activity usually occurred before inspiratory airflow and extended beyond the start of expiratory airflow. The duration of phasic PCA preactivation and postinspiratory phasic PCA activity remained unchanged during progressive hypercapnia and progressive hypoxia. The results, in combination with recent findings for vocal cord adductors, suggest that vocal cord position throughout the respiratory cycle during hyperpnea is actively controlled by simultaneously acting and antagonistic intrinsic laryngeal muscles.  相似文献   

9.
We studied the effect of microgravity (0 Gz) on the anteroposterior diameters of the upper (URC-AP) and lower (LRC-AP) rib cage, the transverse diameter of the lower rib cage (LRC-TR), and the xiphipubic distance and on the electromyographic (EMG) activity of the scalene and parasternal intercostal muscles in five normal subjects breathing quietly in the seated posture. Gastric pressure was also recorded in four subjects. At 0 Gz, end-expiratory LRC-AP and xiphipubic distance increased but LRC-TR invariably decreased, as did end-expiratory gastric pressure. No consistent effect was observed on tidal LRC-TR and xiphipubic displacements, but tidal changes in URC-AP and LRC-AP were reduced. Although scalene and parasternal phasic inspiratory EMG activity tended to decrease at 0 Gz, both muscle groups demonstrated an increase in tonic activity. We conclude that during brief periods of weightlessness 1) the rib cage at end expiration is displaced in the cranial direction and adopts a more circular shape, 2) the tidal expansion of the ventral rib cage is reduced, particularly in its upper portion, and 3) the scalenes and parasternal intercostals generally show a decrease in phasic inspiratory EMG activity and an increase in tonic activity.  相似文献   

10.
In humans during stimulated ventilation, substantial abdominal muscle activity extends into the following inspiration as postexpiratory expiratory activity (PEEA) and commences again during late inspiration as preexpiratory expiratory activity (PREA). We hypothesized that the timing of PEEA and PREA would be changed systematically by posture. Fine-wire electrodes were inserted into the rectus abdominis, external oblique, internal oblique, and transversus abdominis in nine awake subjects. Airflow, end-tidal CO2, and moving average electromyogram (EMG) signals were recorded during resting and CO2-stimulated ventilation in both supine and standing postures. Phasic expiratory EMG activity (tidal EMG) of the four abdominal muscles at any level of CO2 stimulation was greater while standing. Abdominal muscle activities during inspiration, PEEA, and PREA, were observed with CO2 stimulation, both supine and standing. Change in posture had a significant effect on intrabreath timing of expiratory muscle activation at any level of CO2 stimulation. The transversus abdominis showed a significant increase in PEEA and a significant decrease in PREA while subjects were standing; similar changes were seen in the internal oblique. We conclude that changes in posture are associated with significant changes in phasic expiratory activity of the four abdominal muscles, with systematic changes in the timing of abdominal muscle activity during early and late inspiration.  相似文献   

11.
Intramuscular electromyographic activity of the thyroarytenoid (TA) muscle, a vocal cord adductor, was recorded in nine normal adult humans during progressive isocapnic hypoxia and hyperoxic hypercapnia. Four of the nine subjects also performed voluntary isocapnic hyperventilation. During quiet breathing of room air, the TA exhibited phasic activity in expiration and often tonic activity throughout the respiratory cycle. Both phasic and tonic TA activity progressively decreased with either increasing hypoxia or hypercapnia. Tonic activity appeared to decrease more rapidly than phasic activity with increasing chemical stimulation. At comparable tidal volume increments, the relative decrease in phasic TA activity appeared to be greater under hypoxic than under hypercapnic conditions. During voluntary isocapnic hyperventilation, phasic TA activity decreased without significant change in tonic activity. At tidal volumes approximately double those of base line, the relative decrease in TA activity was similar during both hypercapnia and voluntary hyperventilation, although differences appeared at higher tidal volumes. The results, in combination with recent findings in humans regarding the posterior cricoarytenoid muscle, a vocal cord abductor, suggest that vocal cord position is dependent on the net balance of counteracting forces not only during quiet breathing but also during involuntary and voluntary hyperpnea.  相似文献   

12.
Control of activity of the diaphragm in rapid-eye-movement sleep   总被引:2,自引:0,他引:2  
Respiration in rapid-eye-movement sleep (REMS) is known to be highly variable. The purpose of this study was to investigate the source of this variability and to determine which ordering principles remained operative in REM sleep. In unrestrained, naturally sleeping cats we recorded the electroencephalogram, electrooculogram, neck electromyogram, and diaphragmatic electromyogram (EMG) and computed its moving average (MAdi). As a reference, we first examined MAdi during "tonic" REMS, since breathing is fairly regular in this state. "Control" ranges for peak amplitude (PEMG), inspiratory time (TI), duration of postinspiratory inspiratory activity, expiratory time, and the calculated inspiratory slope (PEMG/TI) were determined by overlaying individual breath traces of the time course of MAdi during tonic REMS to form a composite tracing. Next, the time course of the EMG during individual breaths in slow-wave sleep (SWS) and a complete period of consecutive breaths in REMS (both tonic and phasic) were compared with this tonic REMS composite. The number of eye movements per breath was tabulated as an index of phasic activity. The inspiratory slopes during SWS and tonic REMS were similar. However, during phasic REMS, many breaths displayed either increases (excitation) or decreases (inhibition) in slope compared with the "typical" breaths seen in tonic REMS. The occurrence of these altered slopes increased with the frequency of phasic events. TI was inversely related to the slope of the EMG, which tended to minimize changes in PEMG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We hypothesized that the hyperinflation and pulmonary dysfunction of cystic fibrosis (CF) would distort feedback and therefore alter the abdominal muscle response to graded expiratory threshold loads (ETLs). We compared the respiratory and abdominal muscle responses with graded ETLs of seven CF patients with severe lung dysfunction with those of matched healthy control subjects in the supine and 60 degrees head-up positions. Breathing frequency, tidal volume, and ventilatory timing were determined from inspiratory flow recordings. Abdominal electromyograms (EMGs) were detected with surface electrodes placed unilaterally over the external and internal oblique and the rectus abdominis muscles. Thresholds, times of onset, and durations of phasic abdominal activity were determined from raw EMGs; peak amplitudes were determined from integrated EMGs. Graded ETLs were imposed by submerging a tube from the expiratory port of the breathing valve into a column of water at depths of 0-25 cmH2O. We found that breathing frequency, tidal volume, and expired minute ventilation were higher in CF patients than in control subjects during low ETLs; a change in body position did not alter these ventilatory responses in the CF patients but did in the control subjects. All CF patients, but none of the control subjects, had tonic abdominal activity while supine. CF patients recruited abdominal muscles at lower loads, earlier in the respiratory cycle, and to a higher recruitment level in both positions than the control subjects, but burst duration of phasic activity was not different between groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Transversus abdominis muscle function in humans   总被引:4,自引:0,他引:4  
We used a high-resolution ultrasound to make electrical recordings from the transversus abdominis muscle in humans. The behavior of this muscle was then compared with that of the external oblique and rectus abdominis in six normal subjects in the seated posture. During voluntary efforts such as expiration from functional residual capacity, speaking, expulsive maneuvers, and isovolume "belly-in" maneuvers, the transversus in general contracted together with the external oblique and the rectus abdominis. In contrast, during hyperoxic hypercapnia, all subjects had phasic expiratory activity in the transversus at ventilations between 10 and 18 l/min, well before activity could be recorded from either the external oblique or the rectus abdominis. Similarly, inspiratory elastic loading evoked transversus expiratory activity in all subjects but external oblique activity in only one subject and rectus abdominis activity in only two subjects. We thus conclude that in humans 1) the transversus abdominis is recruited preferentially to the superficial muscle layer of the abdominal wall during breathing and 2) the threshold for abdominal muscle recruitment during expiration is substantially lower than conventionally thought.  相似文献   

15.
Abdominal muscle activity was investigated during resting tidal breathing and speech production in upright and supine body positions in five male and five female young adult subjects. Results showed that patterns of abdominal electromyographic (EMG) activity were highly dependent on body position. Data for resting tidal breathing resembled those of previous investigations and revealed one sex-related finding. Data for speech production indicated that the lateral region of the abdomen was highly active in the upright position and occasionally active in the supine position. In the upright position, lateral EMG levels during speech production were characterized by generally higher levels in the lower than upper lateral sites and were almost always higher than during resting tidal breathing. In the supine position, EMG levels during speech production occasionally exceeded those associated with resting tidal breathing but were substantially lower than those associated with upright speech production. Abdominal EMG activity was most prevalent during loud speech production and during speech produced at low lung volumes. Findings are discussed in relation to current knowledge of respiratory mechanics and neural control.  相似文献   

16.
It is established that during tidal breathing the rib cage expands more than the abdomen in the upright posture, whereas the reverse is usually true in the supine posture. To explore the reasons for this, we studied nine normal subjects in the supine, standing, and sitting postures, measuring thoracoabdominal movement with magnetometers and respiratory muscle activity via integrated electromyograms. In eight of the subjects, gastric and esophageal pressures and diaphragmatic electromyograms via esophageal electrodes were also measured. In the upright postures, there was generally more phasic and tonic activity in the scalene, sternocleidomastoid, and parasternal intercostal muscles. The diaphragm showed more phasic (but not more tonic) activity in the upright postures, and the abdominal oblique muscle showed more tonic (but not phasic) activity in the standing posture. Relative to the esophageal pressure change with inspiration, the inspiratory gastric pressure change was greater in the upright than in the supine posture. We conclude that the increased rib cage motion characteristic of the upright posture owes to a combination of increased activation of rib cage inspiratory muscles plus greater activation of the diaphragm that, together with a stiffened abdomen, acts to move the rib cage more effectively.  相似文献   

17.
In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.  相似文献   

18.
Abdominal muscle use during breathing in unanesthetized dogs   总被引:2,自引:0,他引:2  
The pattern of abdominal muscle use during breathing in unanesthetized dogs is unknown. Therefore, we have recorded the electromyograms of the rectus abdominis, external oblique, and transversus abdominis in eight conscious animals breathing quietly in the sitting, standing, and prone postures. During quiet breathing in the sitting posture, all animals invariably had a large amount of phasic expiratory activity in the transversus abdominis. In contrast, only four animals showed some expiratory activity in the external oblique, and only one animal had expiratory activity in the rectus abdominis. A similar pattern was observed when the animals were standing or lying prone, although the amount of expiratory activity was less in this posture. Bilateral cervical vagotomy in four animals did not affect the degree of transversus abdominis expiratory activation or the influence of posture. We conclude that in conscious dogs 1) the abdominal muscles play an important role during breathing and make spontaneous quiet expiration a very active process, 2) the transversus abdominis is the primary respiratory muscle of the abdomen, and 3) unlike in anesthetized animals, extrapulmonary receptors play a major role in promoting abdominal expiratory contraction.  相似文献   

19.
Single motor unit (SMU) analysis provides a means to examine the motor control of a muscle. SMUs in the genioglossus show considerable complexity, with several different firing patterns. Two of the primary stimuli that contribute to genioglossal activation are carbon dioxide (CO(2)) and negative pressure, which act through chemoreceptor and mechanoreceptor activation, respectively. We sought to determine how these stimuli affect the behavior of genioglossus SMUs. We quantified genioglossus SMU discharge activity during periods of quiet breathing, elevated CO(2) (facilitation), and continuous positive airway pressure (CPAP) administration (inhibition). CPAP was applied in 2-cmH(2)O increments until 10 cmH(2)O during hypercapnia. Five hundred ninety-one periods (each ~ 3 breaths) of genioglossus SMU data were recorded using wire electrodes(n = 96 units) from 15 awake, supine subjects. Overall hypercapnic stimulation increased the discharge rate of genioglossus units (20.9 ± 1.0 vs. 22.7 ± 0.9 Hz). Inspiratory units were activated ~ 13% earlier in the inspiratory cycle, and the units fired for a longer duration (80.6 ± 5.1 vs. 105.3 ± 4.2% inspiratory time; P < 0.05). Compared with baseline, an additional 32% of distinguishable SMUs within the selective electrode recording area were recruited with hypercapnia. CPAP led to progressive SMU inhibition; at ~ 6 cmH(2)O, there were similar numbers of SMUs active compared with baseline, with peak frequencies of inspiratory units close to baseline, despite elevated CO(2) levels. At 10 cmH(2)O, the number of units was 36% less than baseline. Genioglossus inspiratory phasic SMUs respond to hypercapnic stimulation with changes in recruitment and rate coding. The SMUs respond to CPAP with derecruitment as a homogeneous population, and inspiratory phasic units show slower discharge rates. Understanding upper airway muscle recruitment/derecruitment may yield therapeutic targets for maintenance of pharyngeal patency.  相似文献   

20.
Regulation of end-expiratory lung volume during sleep in premature infants   总被引:1,自引:0,他引:1  
To investigate the regulation of end-expiratory lung volume (EEV) in premature infants, we recorded airflow, tidal volume, diaphragm electromyogram (EMG), and chest wall displacement during sleep. In quiet sleep, EEV during breathing was 10.8 +/- 3.6 (SD) ml greater than the minimum volume reached during unobstructed apneas. In active sleep, no decrease in EEV was observed during 28 of 35 unobstructed apneas. Breaths during quiet sleep had a variable extent of expiratory airflow retardation (braking), and inspiratory interruption occurred at substantial expiratory flow rates. During active sleep, the expiratory flow-volume curve was nearly linear, proceeding nearly to the volume axis at zero flow, and diaphragm EMG activity terminated near the peak of mechanical inspiration. Expiratory duration (TE) and inspiratory duration (TI) were significantly shortened in quiet sleep vs. active sleep although tidal volume was not significantly different. In quiet sleep, diaphragmatic braking activity and shortened TE combined to maintain EEV during breathing substantially above relaxation volume. In active sleep, reduced expiratory braking and prolongation of TE resulted in an EEV that was close to relaxation volume. We conclude that breathing strategy to regulate EEV in premature infants appears to be strongly influenced by sleep state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号