首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To analyze the functional differences of the insulin receptor substrate (IRS) family, the N-terminal fragments containing the pleckstrin homology (PH) domains and the phosphotyrosine-binding (PTB) domains of IRS (IRS-N) proteins, as well as intact IRS molecules, were expressed in Cos-1 cells, and insulin-induced tyrosine phosphorylation and subcellular distribution of IRS proteins were analyzed. In contrast to the distinct affinities toward phosphoinositides, these IRS-N fragments non-selectively inhibited insulin-induced tyrosine phosphorylation of IRS-1, IRS-2 and IRS-3, among which IRS3-N was most effective. The mutations of IRS-1 disrupting all the phosphoinositide-binding sites in both the PH and PTB domains significantly but not completely suppressed tyrosine phosphorylation of IRS-1, which was further inhibited by coexpression of all the IRS-N proteins examined. In contrast, the N-terminal PH domain-interacting region (PHIP-N) of PH-interacting protein (PHIP) did not impair tyrosine phosphorylation of either IRS molecule. The analysis using confocal microscopy also demonstrated that all the IRS-N proteins, but not PHIP-N, suppressed targeting of IRS-1 to the plasma membrane in response to insulin. Moreover, the phosphoinositide affinity-disrupting mutations of IRS-1 significantly impaired but did not completely abrogate the insulin-induced translocation of IRS-1 to the plasma membrane, which was further suppressed by IRS1-N overexpression. These findings suggest that both insulin-induced tyrosine phosphorylation and the cell surface targeting of IRS proteins may be regulated in a similar manner through a target molecule common to the members of the IRS family, and distinct from phosphoinositides or PHIP.  相似文献   

2.
The IL-6 family of cytokines includes a variety of proteins that function not only within the immune system, but also in other organs, tissues, and types of cells, including neurons. The common evolutionary origin of the IL-6 family proteins determines similar mechanisms of reception and intracellular signaling, although their primary structures are highly variable, as well as their biological functions. We have demonstrated that the members of the IL-6 family have high evolutionary plasticity. This manifests in a high degree of population polymorphism for IL-6 family genes, as well as varying degrees of evolutionary conservation among members of the family. The degree of evolutionary conservation of IL-6 family proteins does not correlate with the mechanisms of interaction between these cytokines and their receptors.  相似文献   

3.
The insulin receptor (IR) recruits adaptor proteins, so-called insulin receptor substrates (IRS), to connect with downstream signalling pathways. A family of IRS proteins was defined based on three major common structural elements: Amino-terminal PH and PTB domains that mediate protein-lipid or protein-protein interactions, mostly carboxy-terminal multiple tyrosine residues that serve as binding sites for proteins that contain one or more SH2 domains and serine/threonine-rich regions which may be recognized by negative regulators of insulin action. The current model for the role of IRS proteins therefore combines an adaptor function with the integration of mostly negative input from other signal transduction cascades allowing for modulation of signalling amplitude. In this review we propose an extended version of the adaptor model that can explain how signalling specificity could be implemented at the level of IRS proteins.  相似文献   

4.
Plant Ash1 SET proteins are involved in H3K36 methylation, and play a key role in plant reproductive development. Genes encoding Ash1 SET proteins constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. To investigate the evolutionary history and functional differentiation of the Ash1 SET gene family, we made a comprehensive evolutionary analysis of this gene family from eleven major representatives of green plants. A novel deep sister relationship grouping previously resolved II-1 and II-2 orthologous groups was identified. The absence of AWS domain in the group II-2 suggests that the independent losses of AWS domain have occurred during evolution. A diversity of gene structures in plant Ash1 SET gene family have been presented since the divergence of Physcomitrella patens (moss) from the other land plants. A small proportion of codons in SET domain regions were detected to be under positive selection along the branches ancestral to land plant and angiosperms, which may have allowed changes of substrate specificity among different evolutionary groups while maintaining the primary function of SET domains. Our predictive subcellular localization and comparative anatomical meta-expression analyses can assort with the structural divergences of Ash1 SET proteins.  相似文献   

5.
Leptin is an adipokine that regulates food intake and energy expenditure by activating its hypothalamic leptin receptor (LR). Members of the insulin receptor substrate (IRS) family serve as adaptor proteins in the signaling pathways of several cytokines and hormones and a role for IRS2 in central leptin physiology is well established. Using mammalian protein-protein interaction trap (MAPPIT), a cytokine receptor-based two-hybrid method, in the N38 hypothalamic cell line, we here demonstrate that also IRS4 interacts with the LR. This recruitment is leptin dependent and requires phosphorylation of the Y1077 motif of the LR. Domain mapping of IRS4 revealed the critical role of the pleckstrin homology domain for full interaction. In line with its function as an adaptor protein, IRS4 interacted with the regulatory p85 subunit of the phosphatidylinositol 3-kinase, phospholipase Cgamma, and the suppressor of cytokine signaling (SOCS) family members SOCS2, SOCS6, and SOCS7 and thus can modulate LR signaling.  相似文献   

6.
The insulin receptor (IR) belongs to the receptor tyrosine kinase super family and plays an important role in glucose homeostasis. The receptor interacts with several large docking proteins that mediate signaling from the receptor, including the insulin receptor substrate (IRS) family and Src homology-2-containing proteins (Src). Here, we applied the bioluminescence resonance energy transfer 2 (BRET2) technique to study the IR signaling pathways. The interaction between the IR and the substrates IRS1, IRS4 and Shc was examined in response to ligands with different signaling properties. The association between IR and the interacting partners could successfully be monitored when co-expressing green fluorescent protein 2 (GFP2) tagged substrates with Renilla reniformis luciferase 8 (Rluc8) tagged IR. Through additional optimization steps, we developed a stable and flexible BRET2 assay for monitoring the interactions between the IR and its substrates. Furthermore, the insulin analogue X10 was characterized in the BRET2 assay and was found to be 10 times more potent with respect to IRS1, IRS4 and Shc recruitment compared to human insulin. This study demonstrates that the BRET2 technique can be applied to study IR signaling pathways, and that this assay can be used as a platform for screening and characterization of IR ligands.  相似文献   

7.
Signaling from the activated insulin receptor is initiated by its tyrosine phosphorylation of the insulin receptor substrates (IRSs). The IRSs then act as docking/effector proteins for various signaling proteins containing src homology 2 domains. Four members of the IRS family, designated IRS-1 through IRS-4, have been identified. Although these IRSs show considerable structural homology, the extent to which they overlap in functions has not been explored in detail. The 32D hematopoietic cell line, which contains no detectable amounts of any IRS, provides a system in which to determine whether an IRS supports cell proliferation. Previous studies have shown that introduction of IRS-1 or -2 into 32D cells overexpressing the insulin and IL-4 receptors (32D-R cells) enables the cells to undergo mitogenesis in response to insulin and IL-4. In the present study, we have examined IRS-4, a member of the IRS family that we recently discovered, in this system. Expression of IRS-4 in 32D-R cells permitted the cells to undergo mitogenesis and continuous proliferation in response to insulin and IL-4. Immunoblotting of phosphotyrosine proteins showed that insulin and IL-4 elicited the tyrosine phosphorylation of IRS-4 in these cells. Thus, IRS-4, like IRS-1 and -2, can function in the signal transduction pathways linking insulin and IL-4 receptors to cell proliferation.  相似文献   

8.
9.
Transport of solutes and polypeptides across membranes is an essential process for every cell. In the past, much focus has been placed on helical transporters. Recently, the beta-barrel-shaped transporters have also attracted some attention. The members of this family are found in the outer bacterial membrane and the outer membrane of endosymbiotically derived organelles. Here we analyze the features and the evolutionary development of a specified translocator family, namely the beta-barrel-shaped polypeptide-transporters. We identified sequence motifs, which characterize all transporters of this family, as well as motifs specific for a certain subgroup of proteins of this class. The general motifs are related to the structural composition of the pores. Further analysis revealed a defined distance of two motifs to the C-terminal portion of the proteins. Furthermore, the evolutionary relationship of the proteins and the motifs are discussed.  相似文献   

10.
Structural topologies of proteins play significant roles in analyzing their biological functions. Converting the amino acid data in a protein sequence into structural information to outline the function of a protein is a major challenge in post-genome research which can add an extra room in understanding the protein sequence–structure–function relationships. In this study, we performed a comprehensive bioinformatics analysis of structural topology of the IRS family members such as IRS-1, IRS-2, IRS-3, IRS-4, IRS-5 and IRS-6. Based on this assessment, we found that IRS-2 encloses the highest number of α helices, β sheets and β turns in the secondary structure topology compared to IRS-1 and IRS-6. IRS family members are rich in serine or leucine residues. Among the IRS family members, the highest percentage of serine and leucine was observed in IRS-1 (15 %) and IRS-5 (10 %), respectively. Notably, the highest number of disulphide bonds was observed in IRS-1 (10) which is responsible for structural stability of the protein. Hydrogen bond pattern in α helices and β sheet was recorded in IRS-1, IRS-2 and IRS-6. By conservation analysis, the longest protein IRS-3 was found to be highly conserved among the IRS family members. The cluster of sequence logo present in the N terminus of these cascades was noted, and highly conserved residues in N-terminal region help in the formation of the two highly conserved domains such as PH domain and PTB domain. Results generated from this analysis will be more beneficial to researchers in understanding more about insulin signalling mechanism(s) as well as insulin resistance pathway. We discuss here that bioinformatics tools utilized in this study can play a vital role in addressing the complexity of structural topology to understand structure–function relationships in insulin signalling cascades.  相似文献   

11.
Insulin receptor substrate (IRS) proteins comprise a family of adaptor molecules that integrate extracellular signals from insulin and other ligands to intracellular effectors such as phosphoinositide 3-kinase and mitogen-activated protein kinase. The predominant forms of IRS protein in humans, IRS1 and IRS2, are widely expressed. Despite structural similarities, IRS1 and IRS2 display distinct signalling modalities, and mice lacking these proteins present with distinct phenotypes. Transforming growth factor (TGF)-β1 is the primary cytokine shown to induce epithelial-mesenchymal transition. Recent data have demonstrated a role for IRS1 in TGF-β1-induced epithelial-mesenchymal transition in lung epithelial cells. In the present study, we report data showing that TGF-β1 signals via IRS2 in kidney epithelial cells. Small interfering RNA (siRNA)-mediated targeting of IRS2 increased E-cadherin expression, although it did not alter TGF-β1-mediated E-cadherin repression. Phosphorylation of the downstream target of IRS2/Akt signalling, FoxO3a, was induced on Ser253 and, to a lesser extent, on Thr32. Transfection of FoxO3aThr32Ala mutant for 24?h greatly reduced FoxO3a phosphorylation on Ser253 but over-expression of FoxO3a Ser253Ala did not effect Thr32 phosphorylation, suggesting that a distinct order of phosphorylation of FoxO3a is required for physiological function in cells. Transfection of FoxO3a Ser253Ala mutant partially inhibited TGF-β1-mediated E-cadherin repression at 24?h. Taken together, these data highlight novel roles for IRS2 and FoxO3a in the regulation of kidney epithelial cells by E-cadherin.  相似文献   

12.
For efficient removal of intra- and/or extracellular hydrogen peroxide by dismutation to harmless dioxygen and water (2H(2)O(2) → O(2) + 2H(2)O), nature designed three metalloenzyme families that differ in oligomeric organization, monomer architecture as well as active site geometry and catalytic residues. Here we report on the updated reconstruction of the molecular phylogeny of these three gene families. Ubiquitous typical (monofunctional) heme catalases are found in all domains of life showing a high structural conservation. Their evolution was directed from large subunit towards small subunit proteins and further to fused proteins where the catalase fold was retained but lost its original functionality. Bifunctional catalase-peroxidases were at the origin of one of the two main heme peroxidase superfamilies (i.e. peroxidase-catalase superfamily) and constitute a protein family predominantly present among eubacteria and archaea, but two evolutionary branches are also found in the eukaryotic world. Non-heme manganese catalases are a relatively small protein family with very old roots only present among bacteria and archaea. Phylogenetic analyses of the three protein families reveal features typical (i) for the evolution of whole genomes as well as (ii) for specific evolutionary events including horizontal gene transfer, paralog formation and gene fusion. As catalases have reached a striking diversity among prokaryotic and eukaryotic pathogens, understanding their phylogenetic and molecular relationship and function will contribute to drug design for prevention of diseases of humans, animals and plants.  相似文献   

13.
The presence of an α-crystallin domain documents the evolutionary relatedness of the ubiquitous family of small heat shock proteins. Sequence and three-dimensional structure provide no evidence for the presence of such a domain in HSPC034, recently proposed as the 11th member of the human HSPB family. Also, phylogenetic analyses detect no relationship between HSPC034 and the human HSPB1–10 sequences. Arguments are provided as to why inclusion in the HSPB family of proteins like HSPC034, which resemble small heat shock proteins in being heat-inducible and having chaperone-like properties and a low monomeric mass, but are evolutionarily unrelated, is misleading and confusing.  相似文献   

14.
The Insulin Receptor Substrate (IRS) proteins are cytoplasmic adaptor proteins that function as essential signaling intermediates downstream of activated cell surface receptors, many of which have been implicated in cancer. The IRS proteins do not contain any intrinsic kinase activity, but rather serve as scaffolds to organize signaling complexes and initiate intracellular signaling pathways. As common intermediates of multiple receptors that can influence tumor progression, the IRS proteins are positioned to play a pivotal role in regulating the response of tumor cells to many different microenvironmental stimuli. Limited studies on IRS expression in human tumors and studies on IRS function in human tumor cell lines and in mouse models have provided clues to the potential function of these adaptor proteins in human cancer. A general theme arises from these studies; IRS-1 and IRS-4 are most often associated with tumor growth and proliferation and IRS-2 is most often associated with tumor motility and invasion. In this review, we discuss the mechanisms by which IRS expression and function are regulated and how the IRS proteins contribute to tumor initiation and progression.  相似文献   

15.
Ascorbate peroxidase (APx) is a class I peroxidase that catalyzes the conversion of H2O2 to H2O and O2 using ascorbate as the specific electron donor. This enzyme has a key function in scavenging reactive oxygen species (ROS) and the protection against toxic effects of ROS in higher plants, algae, and Euglena. Here we report the identification of an APx multigene family in rice and propose a molecular evolutionary relationship between the diverse APx isoforms. In rice, the APx gene family has eight members, which encode two cytosolic, two putative peroxisomal, and four chloroplastic isoforms, respectively. Phylogenetic analyses were conducted using all APx protein sequences available in the NCBI databases. The results indicate that the different APx isoforms arose by a complex evolutionary process involving several gene duplications. The structural organization of APx genes also reflects this process and provides evidence for a close relationship among proteins located in the same subcellular compartment. A molecular evolutionary pathway, in which cytosolic and peroxisomal isoforms diverged early from chloroplastic ones, is proposed.Reviewing Editor: Dr. Niles Lehman  相似文献   

16.
Bartke A 《Aging cell》2008,7(3):285-290
Growth hormone deficiency or resistance resulting from spontaneous or experimentally produced mutations in laboratory mice delay aging and increase lifespan. Alterations in insulin-like growth factor-1 (IGF-1) and insulin signaling emerged as likely mechanisms linking growth hormone and aging, and increased longevity was reported in mice with selective deletion of IGF-1 receptor in all tissues or insulin receptor in fat. Recent studies in mice with reduced IGF-1 levels or deletion of pregnancy-associated plasma protein-A, a protease that cleaves one of the IGF-1 binding proteins, strongly support the role of IGF-1 in the control of longevity. Reports of increased lifespan in mice with deletion of insulin receptor substrate (IRS) 1, reduced expression of IRS2, or selective deletion of IRS2 in the brain specifically implicate the IRS-PI3K-Akt-Foxo signaling pathway (which is shared by IGF-1 and insulin) in the control of aging. These important novel findings also strengthen the evidence for evolutionary conservation of mechanisms regulating lifespan in worms, insects and mammals.  相似文献   

17.
植物非特异性脂质转移蛋白(non-specific lipid transfer proteins,nsLTP)是一类多基因家族编码碱性蛋白,负责脂肪酸体外结和与膜之间的磷脂转移,在植物生长发育和逆境胁迫响应中扮演着重要角色。目前为止,尚无模式植物毛果杨(Populus trichocarpansLTP家族的研究报导。本研究从全基因组水平对PtrnsLTP家族成员的基因数量、亲缘关系、基因结构、编码蛋白保守基序等特性进行了分析,结果表明:PtrnsLTP家族共由39个基因组成,进化成5个亚家族,其中A亚族含有6个基因、B亚族含有2个、C亚族含有13个、D亚族含有3个、E亚族含有15个。PtrnsLTP家族包含7对旁系同源基因,其中1对大于1,6对Ka/Ks均远小于1,且这6对基因均处于同一个大的进化分支上,进化压力的不同导致基因间的功能出现了分化,编码蛋白均含有Motif 1和 Motif 2保守基序。利用qRT-PCR技术并结合杨树转录组数据对PtrnsLTP的组织表达与盐胁迫响应特性研究发现:各家族成员在毛果杨根、茎和叶中均有表达且经qRT-PCR技术验证后与网站预测结果基本吻合,有11、15和13个成员分别在根、茎和叶中有较高的表达,表明该基因家族参与了杨树不同组织的生长发育;NaCl胁迫下,该家族39个基因中分别有26个成员在根部、14个成员在叶部表达量随着胁迫时间的增加而升高,而32个基因在茎部表现为先升高后降低的趋势。本研究结果对于PtrnsLTP家族基因生物学功能的鉴定与盐胁迫响应基因资源的工作有着积极的推动作用。  相似文献   

18.
The insulin receptor is a transmembrane tyrosine kinase that is essential for mediating multiple intracellular signalling cascades that lead ultimately to the biological actions of insulin Tyrosine phosphorylation o f the cytosolic proteins insulin receptor substrate 1 and 2 (IRS1 and IRS2) produces protein 'scaffolding' for the assembly of effector proteins containing Src homology 2 (SH2) domains, thereby generating multisubunit signalling complexes. Although IRS1 was originally isolated as a specific insulin receptor substrate, both IRS1 and IRS2 appear to play a broader role, functioning also as proximal substrates in growth hormone and cytokine receptor signalling. Current data establish IRS1 and IRS2 as critical effectors integrating various cell-type-specific signals into distinct, but overlapping, biological responses.  相似文献   

19.
A phylogenomic study of the MutS family of proteins.   总被引:23,自引:4,他引:19       下载免费PDF全文
The MutS protein of Escherichia coli plays a key role in the recognition and repair of errors made during the replication of DNA. Homologs of MutS have been found in many species including eukaryotes, Archaea and other bacteria, and together these proteins have been grouped into the MutS family. Although many of these proteins have similar activities to the E.coli MutS, there is significant diversity of function among the MutS family members. This diversity is even seen within species; many species encode multiple MutS homologs with distinct functions. To better characterize the MutS protein family, I have used a combination of phylogenetic reconstructions and analysis of complete genome sequences. This phylogenomic analysis is used to infer the evolutionary relationships among the MutS family members and to divide the family into subfamilies of orthologs. Analysis of the distribution of these orthologs in particular species and examination of the relationships within and between subfamilies is used to identify likely evolutionary events (e.g. gene duplications, lateral transfer and gene loss) in the history of the MutS family. In particular, evidence is presented that a gene duplication early in the evolution of life resulted in two main MutS lineages, one including proteins known to function in mismatch repair and the other including proteins known to function in chromosome segregation and crossing-over. The inferred evolutionary history of the MutS family is used to make predictions about some of the uncharacterized genes and species included in the analysis. For example, since function is generally conserved within subfamilies and lineages, it is proposed that the function of uncharacterized proteins can be predicted by their position in the MutS family tree. The uses of phylogenomic approaches to the study of genes and genomes are discussed.  相似文献   

20.
昆虫卵黄蛋白分子进化的研究进展   总被引:5,自引:1,他引:4  
董胜张  叶恭银  刘朝良 《昆虫学报》2008,51(11):1196-1209
卵黄原蛋白(Vg)、卵黄多肽(YP)和小卵黄蛋白(minor YP)是昆虫三类主要的卵黄蛋白,它们之间的同源性一直是研究的重点。本文根据已经解析的Vg,YP和minor YP的氨基酸序列,采用序列比对和系统树分析的方法,并结合国内外对三者同源性研究的基础,对其进化关系进行了分析。结果表明,Vg,YP和minor YP是三类具有不同进化祖先的卵黄蛋白,它们的氨基酸序列相似性较低。Vg在系统进化过程中最为保守,与人类的血清载脂蛋白B(ApoB)具有较高的同源性;YP与脊椎动物的肝脂酶和胰脂酶具有较高的同源性;而minor YP与脊椎动物胃脂肪酶和舌脂肪酶具有较高的同源性。同时,对三者的分子特性做了简单的介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号