首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The G(i)-coupled somatostatin 2A receptor (sst2A) mediates many of the neuromodulatory and neuroendocrine actions of somatostatin (SS) and is targeted by the SS analogs used to treat neuroendocrine tumors. As for other G protein-coupled receptors, agonists stimulate sst2A receptor phosphorylation on multiple residues, and phosphorylation at different sites has distinct effects on receptor internalization and uncoupling. To elucidate the spatial and temporal regulation of sst2A receptor phosphorylation, we examined agonist-stimulated phosphorylation of multiple receptor GPCR kinase sites using phospho-site-specific antibodies. SS increased receptor phosphorylation sequentially, first on Ser-341/343 and then on Thr-353/354, followed by receptor internalization. Reversal of receptor phosphorylation was determined by the duration of prior agonist exposure. In acutely stimulated cells, in which most receptors remained on the cell surface, dephosphorylation occurred only on Thr-353/354. In contrast, both Ser-341/343 and Thr-353/354 were rapidly dephosphorylated when cells were stimulated long enough to allow receptor internalization before agonist removal. Consistent with these observations, dephosphorylation of Thr-353/354 was not affected by either hypertonic sucrose or dynasore, which prevent receptor internalization, whereas dephosphorylation of Ser-341/343 was completely blocked. An okadaic acid- and fostriecin-sensitive phosphatase catalyzed the dephosphorylation of Thr-353/354 both intracellularly and at the cell surface. In contrast, dephosphorylation of Ser-341/343 was insensitive to these inhibitors. Our results show that the phosphorylation and dephosphorylation of neighboring GPCR kinase sites in the sst2A receptor are subject to differential spatial and temporal regulation. Thus, the pattern of receptor phosphorylation is determined by the duration of agonist stimulation and compartment-specific enzymatic activity.  相似文献   

2.
The newly developed multireceptor somatostatin analogs pasireotide (SOM230), octreotide and somatoprim (DG3173) have primarily been characterized according to their binding profiles. However, their ability to activate individual somatostatin receptor subtypes (sst) has not been directly assessed so far. Here, we transplanted the carboxyl-terminal phosphorylation motif of the sst(2) receptor to other somatostatin receptors and assessed receptor activation using a set of three phosphosite-specific antibodies. Our comparative analysis revealed unexpected efficacy profiles for pasireotide, octreotide and somatoprim. Pasireotide was able to activate sst(3) and sst(5) receptors but was only a partial agonist at the sst(2) receptor. Octreotide exhibited potent agonistic properties at the sst(2) receptor but produced very little sst(5) receptor activation. Like octreotide, somatoprim was a full agonist at the sst(2) receptor. Unlike octreotide, somatoprim was also a potent agonist at the sst(5) receptor. Together, we propose the application of a phosphorylation probe for direct assessment of G protein-coupled receptor activation and demonstrate its utility in the pharmacological characterization of novel somatostatin analogs.  相似文献   

3.
We recently demonstrated the expression of somatostatin (SS) and SS receptor (SSR) subtype 1 (sst1), sst2A, and sst3 in normal human thymic tissue and of sst1 and sst2A on isolated thymic epithelial cells (TEC). We also found an inhibitory effect of SS and octreotide on TEC proliferation. In the present study, we further investigated the presence and function of SSR in freshly purified human thymocytes at various stages of development. Thymocytes represent a heterogeneous population of lymphoid cells displaying different levels of maturation and characterized by specific cell surface markers. In this study, we first demonstrated specific high-affinity 125I-Tyr(11)-labeled SS-14 binding on thymocyte membrane homogenates. Subsequently, by RT-PCR, sst2A and sst3 mRNA expression was detected in the whole thymocyte population. After separation of thymocytes into subpopulations, we found by quantitative RT-PCR that sst2A and sst3 are differentially expressed in intermediate/mature and immature thymocytes. The expression of sst3 mRNA was higher in the intermediate/mature CD3+ fraction compared with the immature CD2+CD3- one, whereas sst2A mRNA was less abundant in the intermediate/mature CD3+ thymocytes. In 7-day-cultured thymocytes, SSR subtype mRNA expression was lost. SS-14 significantly inhibited [3H]thymidine incorporation in all thymocyte cultures, indicating the presence of functional receptors. Conversely, octreotide significantly inhibited [3H]thymidine incorporation only in the cultures of immature CD2+CD3- thymocytes. Subtype sst3 is expressed mainly on the intermediate/mature thymocyte fraction, and most of these cells generally die by apoptosis. Because SS-14, but not octreotide, induced a significant increase in the percentage of apoptotic thymocytes, it might be that sst3 is involved in this process. Moreover, sst3 has recently been demonstrated on peripheral human T lymphocytes, which derive directly from mature thymocytes, and SS analogs may induce apoptosis in these cells. Interestingly, CD14+ thymic cells, which are cells belonging to the monocyte-macrophage lineage, selectively expressed sst2A mRNA. Finally, SSR expression in human thymocytes seems to follow a developmental pathway. The heterogeneous expression of SSR within the human thymus on specific cell subsets and the endogenous production of SS as well as SS-like peptides emphasize their role in the bidirectional interactions between the main cell components of the thymus involved in intrathymic T cell maturation.  相似文献   

4.
The somatostatin receptor subtype 2A (sst2A) mediates many of somatostatin's neuroendocrine actions and is the primary therapeutic target for the stable somatostatin analogs used to inhibit hormone secretion by pituitary and gastroenteropancreatic tumors. Two new multireceptor targeting somatostatin analogs currently under clinical investigation, the multisomatostatin receptor agonist cyclo-[diaminoethylcarbamoyl-HydroxyPro-Phenylglycine-D-Trp-Lys-(4-O-benzyl)Tyr-Phe] (SOM230) (Pasireotide) and pan-somatostatin receptor agonist Tyr-cyclo-[D-diaminobutyric acid-Arg-Phe-Phe-D-Trp-Lys-Thr-Phe] (KE108), behave as functionally selective ligands at the sst2A receptor, mimicking some of somatostatin's actions but antagonizing others. Further, SOM230 and KE108 are less able to induce receptor internalization than somatostatin, indicating that they exhibit functional selectivity for receptor regulation as well as signaling. Here, we identify agonist-specific differences in the molecular events regulating sst2A receptor endocytosis. SOM230 and KE108 were less potent and less effective than somatostatin at stimulating sst2A receptor phosphorylation at two pairs of residues, Ser341/343 and Thr353/354. Only the pattern of Thr353/354 phosphorylation correlated with receptor internalization, consistent with the known importance of Thr phosphorylation for sst2A receptor endocytosis. As expected, arrestin recruitment to membrane receptors was reduced with SOM230 and KE108. In addition, both receptor dephosphorylation and receptor recycling occurred more rapidly with SOM230 and KE108 than with somatostatin. Surprisingly, however, SOM230 and KE108 also altered sst2A internalization in a phosphorylation-independent manner, because these analogs were less effective than somatostatin at stimulating the endocytosis of a phosphorylation-negative receptor mutant. These results show that the decreased receptor internalization produced by SOM230 and KE108 compared with somatostatin result from phosphorylation-independent effects as well as reduced site-specific receptor phosphorylation and receptor-arrestin association.  相似文献   

5.
In past reports we illustrated the importance of Y131, Y322, and T137 within the intracellular (IC) face of the rat bradykinin B2 receptor (rBKB2R) for signal transduction and receptor maintenance (Prado et al. [1997] J. Biol. Chem. 272:14638-14642; Prado et al. [1998] J. Biol. Chem. 273:33548-33555). In this report, we mutate the remaining hydroxyl possessing residues located within the rBKB2R IC region. Exchange of S139A (IC2) or T239V (IC3) did not affect BK activated phosphatidylinositol (PI) turnover or receptor internalization. Chimeric exchange of the last 34 amino acids of BKB2R C-terminus with the corresponding 34 amino acids of the rat angiotensin II AT1a receptor (rAT1aR), both containing an S/T cluster, resulted in a mutant with normal endocytosis and BK activated PI turnover. A more selective chimera of these S/T clusters, with an exchange of BKB2R (333-351) with a rAT1aR fragment (326-342), resulted in a receptor with a retarded internalization but a normal BK activated PI turnover. Subsequent mutation of rBKB2R T344V showed little change in receptor uptake but a pronounced loss of BK activated PI turnover. The mutation of S335A, S341A, S348A, and S350A resulted in very poor receptor internalization and loss of activated PI turnover. Closer examination of this serine cluster illustrated that the replacement of S348A led to poor internalization; whereas the retention of S348 and mutation of S341A resulted in a receptor with a much greater internalization than WT. These and other results suggest that the presence of S348 promotes internalization while the presence of S341 dampens it. Conversely, S341 and S350 proved important for receptor signaling. In sum, our results illustrate that the distal C-terminus including its S/T cluster is important for both rBKB2R internalization and signal transduction. Individual S/T residues within this cluster appear involved in either signal transmission or receptor uptake capacity. However, replacement of the entire distal tail region with the corresponding rAT1aR sequence, also containing an S/T cluster, enables the BKB2R/AT1aR chimera to act in a very similar manner to wild type rBKB2R.  相似文献   

6.
Heterodimerization has been shown to modulate the ligand binding, signaling, and trafficking properties of G protein-coupled receptors. However, to what extent heterodimerization may alter agonist-induced phosphorylation and desensitization of these receptors has not been documented. We have recently shown that heterodimerization of sst(2A) and sst(3) somatostatin receptors results in inactivation of sst(3) receptor function (Pfeiffer, M., Koch, T., Schr?der, H., Klutzny, M., Kirscht, S., Kreienkamp, H. J., H?llt, V., and Schulz, S. (2001) J. Biol. Chem. 276, 14027-14036). Here we examine dimerization of the sst(2A) somatostatin receptor and the mu-opioid receptor, members of closely related G protein-coupled receptor families. In coimmunoprecipitation studies using differentially epitope-tagged receptors, we provide direct evidence for heterodimerization of sst(2A) and MOR1 in human embryonic kidney 293 cells. Unlike heteromeric assembly of sst(2A) and sst(3), sst(2A)-MOR1 heterodimerization did not substantially alter the ligand binding or coupling properties of these receptors. However, exposure of the sst(2A)-MOR1 heterodimer to the sst(2A)-selective ligand L-779,976 induced phosphorylation, internalization, and desensitization of sst(2A) as well as MOR1. Similarly, exposure of the sst(2A)-MOR1 heterodimer to the mu-selective ligand [d-Ala(2),Me-Phe(4),Gly(5)-ol]enkephalin induced phosphorylation and desensitization of both MOR1 and sst(2A) but not internalization of sst(2A). Cross-phosphorylation and cross-desensitization of the sst(2A)-MOR1 heterodimer were selective; they were neither observed with the sst(2A)-sst(3) heterodimer nor with the endogenously expressed lysophosphatidic acid receptor. Heterodimerization may thus represent a novel regulatory mechanism that could either restrict or enhance phosphorylation and desensitization of G protein-coupled receptors.  相似文献   

7.
The immunohistochemical localization of the somatostatin receptor subtype sst2A was investigated in the rat adrenal gland using SS-800 polyclonal antibody. The sst2A immunopositivity was found in all adrenocortical zones and in adrenal medulla, the reaction being slightly more intense in zona glomerulosa and medulla. The administration of the potent agonist of sst2 receptors - octreotide - resulted in the enhancement of the immunopositivity in zona glomerulosa and medulla, whereas chronic exposure of the rats to diethylstilbestrol led to enhancement of the immunopositivity in zona glomerulosa and in the external part of zona fasciculata.  相似文献   

8.
We previously demonstrated that phosphorylation of somatostatin receptor 2A (sst2A) is rapidly increased in transfected cells both by agonist and by the protein kinase C (PKC) activator phorbol myristate acetate (PMA). Here, we investigate whether PKC-mediated receptor phosphorylation is involved in the homologous or heterologous regulation of endogenous sst2 receptors in AR42J pancreatic acinar cells upon stimulation by agonist or by cholecystokinin (CCK) or bombesin (BBS). Somatostatin, PMA, CCK, and BBS all increased sst2A receptor phosphorylation 5- to 10-fold within minutes. Somatostatin binding also caused rapid internalization of the ligand-receptor complex, and PMA, CCK, and BBS all stimulated this internalization further. Additionally, sst2 receptor-mediated inhibition of adenylyl cyclase was desensitized by all treatments. Somatostatin, as well as peptidic (SMS201-995) and nonpeptidic (L-779,976) sst2 receptor agonists increased the EC(50) for somatostatin inhibition 20-fold. In contrast, pretreatment with BBS, CCK, or PMA caused a modest 2-fold increase in the EC(50) for cyclase inhibition. Whereas the PKC inhibitor GF109203X abolished sst2A receptor phosphorylation by CCK, BBS, and PMA, it did not alter the effect of somatostatin, demonstrating that these reactions were catalyzed by different kinases. Consistent with a functional role for PKC-mediated receptor phosphorylation, GF109203X prevented PMA stimulation of sst2 receptor internalization. Surprisingly, however, GF109203X did not inhibit BBS and CCK stimulation of sst2A receptor endocytosis. These results demonstrate that homologous and heterologous hormones induce sst2A receptor phosphorylation by PKC-independent and -dependent mechanisms, respectively, and produce distinct effects on receptor signaling and internalization. In addition, the heterologous hormones also modulate sst2 receptor internalization by a novel mechanism that is independent of receptor phosphorylation.  相似文献   

9.
The sst2A receptor is expressed in the endocrine, gastrointestinal, and neuronal systems as well as in many hormone-sensitive tumors. This receptor is rapidly internalized and phosphorylated in growth hormone-R2 pituitary cells following somatostatin binding (Hipkin, R. W., Friedman, J., Clark, R. B., Eppler, C. M., and Schonbrunn, A. (1997) J. Biol. Chem. 272, 13869-13876). The protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), also stimulates sst2A phosphorylation. Here we examine the mechanisms and consequences of PMA and agonist-induced sst2A phosphorylation. Like somatostatin, both PMA and bombesin increased sst2A receptor phosphorylation within 2 min. The PKC inhibitor GF109203X blocked PMA- and bombesin- stimulated sst2A phosphorylation, whereas stimulation by the somatostatin analog SMS 201-995 was unaffected. Agonist and PMA each stimulated phosphorylation in two receptor domains, the third intracellular loop and the C-terminal tail. Functionally, PMA dramatically increased the internalization of the sst2A receptor-ligand complex. This PMA stimulation was blocked by GF109203X, whereas basal internalization was unaffected. However, neither basal nor PMA-stimulated internalization was altered by pertussis toxin, whereas both were blocked by hypertonic sucrose. Therefore PKC activation and agonist binding stimulate sst2A phosphorylation by distinct mechanisms, and PKC potentiates internalization of the sst2A receptor via clathrin-coated pits. Thus, hormonal stimulation of PKC-coupled receptors may provide a mechanism for regulating the inhibitory actions of somatostatin in target tissue.  相似文献   

10.
The effects of native somatostatin-14 (SS-14) and of its two analogues, octreotide and CH-275, on the activity of tyrosine kinases (TK) in two rodent tumors (rat pituitary tumor and murine colonic cancer) were studied in vitro. The activity of TK was measured in tissue homogenates using gamma[(32)P]ATP as the donor of the phosphoryl group and poly(Glu(80), Tyr(20)) as a substrate. It was found that native SS-14 inhibited TK activity in both investigated tumors. Octreotide, which acts preferentially via somatostatin receptor subtype 2 (SSTR2), was very effective in inhibiting TK activity in the rat pituitary tumor, but it is a rather weak inhibitor of TK activity in murine colonic cancer. CH-275, a selective ligand of the SSTR1 subtype of SS receptors, suppressed TK activity in the pituitary tumor but was ineffective in the colonic cancer. It is hypothesized that the effect of neuropeptide somatostatin (SS-14) on murine colonic cancer is exerted via the subtype of receptor which does not interact with CH-275 and has no or low affinity for octreotide (SSTR 4, 3 or 5?).  相似文献   

11.
The second cytoplasmic loop (IC2) of the bradykinin B2 receptor plays a vital role in its dynamic life cycle including the activation, internalization, desensitization, and resensitization of this receptor. Here, we probe the structure and function of the IC2, with particular emphasis on threonine-137, which is crucial for signal transduction and internalization. Mutation of this threonine to proline (T137P) produces wild type (WT) signaling and complete inhibition of internalization. Incorporation of aspartate (T137D) leads to a marked reduction in receptor signaling but with WT receptor uptake. The T137D mutation coupled with serine to alanine substitution of S335 and S341 within the distal C-terminus recovers signaling, leading to an actually enhanced arachidonic acid release and phosphoinositide turnover compared to WT bradykinin B2 receptor (BKB2R). To provide a structural basis for the actions of this mutant, the conformational features of IC2 (both WT and mutant) were investigated by high-resolution NMR. The NMR analysis illustrated two prominent alpha-helices at the N- (L123-M138) and C-termini (A149-I156) of the IC2 receptor domain. Incorporating these structural characteristics into a model of BKB2R, we determined that the entire N-terminal helix of IC2 is incorporated as TM3, placing Y131 1.5 helical turns into TM3 and T137 at the membrane surface. The NMR data indicated no structural changes upon substitution of T137D. These results suggest that the altered signaling of the T137D mutant can be attributed to the introduction of a negative charge, indicating that phosphorylation of this residue takes place and participates in the life cycle of this receptor. Additionally, the return to WT signal capacity of the mutation T137D/S335A/S341A, to overcome the deleterious T137D substitution points to a functional interaction between the IC2 and the C-terminus.  相似文献   

12.
The sst1 somatostatin (SRIF) receptor subtype is widely expressed in the endocrine, gastrointestinal, and neuronal systems as well as in hormone-sensitive tumors, yet little is known about its regulation. Here we investigated the desensitization, internalization, and phosphorylation of sst1 expressed in CHO-K1 cells. Treatment of cells with 100 nm SRIF for 30 min reduced maximal SRIF inhibition of adenylyl cyclase from 40 to 10%. This desensitization was rapid (t(12) < 2 min) and dependent on agonist concentration (EC(50) = 2 nm). However, internalization of receptor-bound ligand occurred slowly (t(12) > 180 min). Incubation of cells with SRIF also caused a rapid (t(12) < 2 min) increase in sst1 receptor phosphorylation in a dose-dependent manner (EC(50) = 1.3 nm), as determined in a mobility shift phosphorylation assay. Receptor phosphorylation was not affected by pertussis toxin, indicating a requirement for receptor occupancy rather than signaling. The protein kinase C activator, phorbol 12-myristate 13-acetate also stimulated sst1 receptor phosphorylation whereas forskolin did not. Both agonist- and phorbol 12-myristate 13-acetate-stimulated receptor phosphorylation occurred mainly on serine. These studies are the first to demonstrate phosphorylation of the sst1 receptor and suggest that phosphorylation mediated uncoupling, rather than sequestration, leads to its desensitization.  相似文献   

13.
Ferguson G  Watterson KR  Palmer TM 《Biochemistry》2002,41(50):14748-14761
In this study, we have characterized the differential effects on inhibitory adenosine receptor (AR) trafficking of disrupting predicted sites for palmitoylation and phosphorylation within each receptor's carboxyl terminus. While a Cys(302,305)Ala-mutated rat A(3)AR mutant internalizes significantly faster than the wild-type (WT) receptor in response to agonist exposure, analogous mutation of the human A(1)AR (Cys(309)Ala) had no effect on receptor internalization. Moreover, unlike the WT A(3)AR, the entire pool of internalized mutant A(3)AR is able to recycle back to the plasma membrane following agonist removal. These properties do not reflect utilization of an alternative trafficking pathway, as internalized WT and mutant A(3)ARs both accumulate into transferrin receptor-positive endosomal compartments. However, receptor accumulation into endosomes is dependent upon prior G-protein-coupled receptor kinase (GRK)-mediated phosphorylation of the receptor's carboxyl terminus, as replacement of the carboxyl-terminal domain of the human A(1)AR with the 14 GRK-phosphorylated amino acids of the rat A(3)AR confers rapid agonist-mediated endosomal accumulation of the resulting chimeric A(1)CT3AR. Sensitivity to GRK-mediated phosphorylation also dictates the distinct redistribution of arrestin3 observed upon agonist exposure. Thus, while the nonphosphorylated A(1)AR redistributes arrestin3 from the cytoplasm to punctate clusters at the plasma membrane, GRK-phosphorylated WT and Cys(302,305)Ala-mutated A(3)ARs, as well as the A(1)CT3AR chimera, each induce the redistribution of arrestin3 into punctate accumulations both at the plasma membrane and within the cytoplasm. Neither the human A(1)AR nor the rat A(3)AR colocalized with arrestin3 under basal or agonist-stimulated conditions. Together, these results demonstrate that inhibitory AR-mediated changes in arrestin3 distribution are subtype-specific, with specificity correlating with the sensitivity of the receptor's carboxyl-terminal domain to GRK phosphorylation. In the case of the rat A(3)AR, sensitivity to GRK-mediated internalization appears to be regulated in part by the integrity of putative palmitate attachment sites upstream of its GRK phosphoacceptor sites.  相似文献   

14.
The purpose of the current study is to investigate the effect of opioid-independent, heterologous activation of protein kinase C (PKC) on the responsiveness of opioid receptor and the underlying molecular mechanisms. Our result showed that removing the C terminus of delta opioid receptor (DOR) containing six Ser/Thr residues abolished both DPDPE- and phorbol 12-myristate 13-acetate (PMA)-induced DOR phosphorylation. The phosphorylation levels of DOR mutants T352A, T353A, and T358A/T361A/S363S were comparable to that of the wild-type DOR, whereas S344G substitution blocked PMA-induced receptor phosphorylation, indicating that PKC-mediated phosphorylation occurs at Ser-344. PKC-mediated Ser-344 phosphorylation was also induced by activation of G(q)-coupled alpha(1A)-adrenergic receptor or increase in intracellular Ca(2+) concentration. Activation of PKC by PMA, alpha(1A)-adrenergic receptor agonist, and ionomycin resulted in DOR internalization that required phosphorylation of Ser-344. Expression of dominant negative beta-arrestin and hypertonic sucrose treatment blocked PMA-induced DOR internalization, suggesting that PKC mediates DOR internalization via a beta-arrestin- and clathrin-dependent mechanism. Further study demonstrated that agonist-dependent G protein-coupled receptor kinase (GRK) phosphorylation sites in DOR are not targets of PKC. Agonist-dependent, GRK-mediated receptor phosphorylation and agonist-independent, PKC-mediated DOR phosphorylation were additive, but agonist-induced receptor phosphorylation could inhibit PKC-catalyzed heterologous DOR phosphorylation and subsequent internalization. These data demonstrate that the responsiveness of opioid receptor is regulated by both PKC and GRK through agonist-dependent and agonist-independent mechanisms and PKC-mediated receptor phosphorylation is an important molecular mechanism of heterologous regulation of opioid receptor functions.  相似文献   

15.
16.
17.
G-protein receptor kinase and beta-arrestin mediated desensitization of the rat kappa-opioid receptor (KOR) was previously shown using Xenopus oocyte expression to require serine 369 within the C terminus of KOR. To define the effects of phosphorylation of this residue in desensitization and internalization processes in mammalian expression systems, wild-type KOR-green fluorescent protein (KOR-GFP) and KOR(S369A)-GFP were stably expressed in AtT-20 and HEK293 cells. Using whole-cell patch clamp recording in transfected AtT-20 cells, agonist activation of either kappa receptor form produced equivalent activation of the intrinsic G-protein-gated inwardly rectifying potassium channel. Incubation for 60 min with the kappa agonist U50,488 (100 nm) desensitized the response in cells expressing wild-type KOR-GFP by 86% but had no effect on KOR(S369A)-GFP-expressing cells. Phosphorylation of serine 369 was detected using a phosphospecific antibody (KOR-P) able to distinguish the phosphorylated form of the receptor. The agonist-induced increase in KOR-P labeling was dose-dependent, blocked by co-treatment with the kappa antagonist norbinaltorphimine, and prevented by co-expression of the dominant negative form of the G-protein receptor kinase, GRK2(K220R). In contrast, agonist-induced increase in KOR-P labeling was not evident in KOR(S369A) expressing cells. Prolonged activation resulted in receptor internalization that was also blocked by KOR(S369A) substitution, but interestingly, KOR-P labeling was evident at lower agonist concentrations than required to induce internalization. Following the removal of agonist, receptor dephosphorylation detected by loss of KOR-P labeling was complete within 60 min, could be blocked by okadaic acid, and was not blocked by sucrose inhibition of receptor internalization. These results demonstrate that GRK-mediated phosphorylation of serine 369 mediates rat KOR desensitization and internalization.  相似文献   

18.
The tissue-selective binding of the two principal bioactive forms of somatostatin, somatostatin-14 (SS-14) and somatostatin-28 (SS-28), their ability to modulate cAMP-dependent and -independent regulation of post-receptor events to different degrees and the documentation of specific labelling of SS receptor subtypes with SS-28 but not SS-14 in discrete regions of rat brain suggest the existence of distinct SS-14 and SS-28 binding sites. Receptor binding of SS-14 ligands has been shown to be modulated by nucleotides and ions, but the effect of these agents on SS-28 binding has not been studied. In the present study we investigated the effects of adenine and guanine nucleotides as well as monovalent and divalent cations on rat brain SS receptors quantitated with radioiodinated analogs of SS-14 ([125I-Tyr11]SS14, referred to in this paper as SS-14) and SS-28 ([Leu8, D-Trp22, 125I-Tyr25] SS-28, referred to as LTT* SS-28) in order to determine if distinct receptor sites for SS-14 and SS-28 could be distinguished on the basis of their modulation by nucleotides and ions. GTP as well as ATP exerted a dose-dependent inhibition (over a concentration range of 10(-7)-10(-3) M) of the binding of the two radioligands. The nucleotide inhibition of binding resulted in a decrease the Bmax of the SS receptors, the binding affinity remaining unaltered. GTP (10(-4) M) decreased the Bmax of LTT* SS-28 binding sites to a greater extent than ATP (145 +/- 10 and 228 +/- 16 respectively, compared to control value of 320 +/- 20 pmol mg-1). Under identical conditions GTP was less effective than ATP in reducing the number of T* SS-14 binding sites (Bmax = 227 +/- 8 and 182 +/- 15, respectively, compared to 340 +/- 15 pmol mg-1 in the absence of nucleotides). Monovalent cations inhibited the binding of both radioligands, Li+ and Na+ inhibited the binding of T* SS-14 to a greater extent than K+. The effect of divalent cations on the other hand was varied. At low concentration (2 mM) Mg2+, Ba2+, Mn2+, Ca2+ and Co2+ augmented the binding of both T* SS-14 and LTT* SS-28, while higher than 4 mM Co2+ inhibited binding of both ligands. LTT* SS-28 binding was reduced in the presence of high concentrations of Ba2+ and Mn2+ also. Interestingly Ca2+ at higher than 10 mM preferentially inhibited LTT* SS-28 binding and increased the affinity of SS-14 but not SS-28 for LTT* SS-28 binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Recently, we have demonstrated the phosphorylation- and lipid raft-mediated internalization of the native norepinephrine transporter (NET) following protein kinase C (PKC) activation (Jayanthi, L. D., Samuvel, D. J., and Ramamoorthy, S. (2004) J. Biol. Chem. 279, 19315-19326). Here we tested an hypothesis that PKC-mediated phosphorylation of NET is required for transporter internalization. Phosphoamino acid analysis of 32P-labeled native NETs from rat placental trophoblasts and heterologously expressed wild type human NET (WT-hNET) from human placental trophoblast cells revealed that the phorbol ester (beta-PMA)-induced phosphorylation of NET occurs on serine and threonine residues. Beta-PMA treatment inhibited NE transport, reduced plasma membrane hNET levels, and stimulated hNET phosphorylation in human placental trophoblast cells expressing the WT-hNET. Substance P-mediated activation of the G alpha(q)-coupled human neurokinin 1 (hNK-1) receptor coexpressed with the WT-hNET produced effects similar to beta-PMA via PKC stimulation. In striking contrast, an hNET double mutant harboring T258A and S259A failed to show NE uptake inhibition and plasma membrane redistribution by beta-PMA or SP. Most interestingly, the plasma membrane insertion of the WT-hNET and hNET double mutant were not affected by beta-PMA. Although the WT-hNET showed increased endocytosis and redistribution from caveolin-rich plasma membrane domains following beta-PMA treatment, the hNET double mutant was completely resistant to these PKC-mediated effects. In addition, the PKC-induced phosphorylation of hNET double mutant was significantly reduced. In the absence of T258A and S259A mutations, alanine substitution of all other potential phosphosites within the hNET did not block PKC-induced phosphorylation and down-regulation. These results suggest that Thr-258 and Ser-259 serve as a PKC-specific phospho-acceptor site and that phosphorylation of this motif is linked to PKC-induced NET internalization.  相似文献   

20.
Although radiolabeled somatostatin analogs have become highly prevalent in the diagnosis and treatment of somatostatin receptor subtype (sst)-positive tumors, there are relatively few options with respect to sst-positive tumor cell lines and animal models. It would be highly beneficial, particularly for therapeutic purposes, to have several clones of one human sst2-positive cell line that express a range of sst2 concentrations for evaluating the dose response and intracellular processing of radiolabeled somatostatin analogs. The human non-small cell lung cancer line A-427 was stably transfected with a hemagglutinin-tagged human sst2. Expression of the receptor was evaluated in vitro using flow cytometry, saturation binding analysis, internalization assays, and quantitative polymerase chain reaction. The receptor expression was also validated in an in vivo mouse model in biodistribution and micro-positron emission tomography (microPET) studies using the somatostatin analog octreotide (OC), which was linked to the (64)Cu chelator 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA), or (64)Cu-TETA-OC. Stable clones were isolated, and four clones (2, 4, 5, and 7) were chosen for further examination. In vitro assays showed that clone 4 had no expression of sst2, whereas the others had various levels in the order of 7 > 2 > 5. Biodistribution studies with (64)Cu-TETA-OC showed the same rank order, with tumor uptake of the clones ranging from 0.8 to 6.5% injected dose/g. These studies showed that there was a strong correlation among the in vitro assays and between the in vitro assays and the biodistribution. MicroPET confirmed significant uptake of (64)Cu-TETA-OC in clone 7 and background uptake in clone 4. These studies show that clones of a human cell line can be produced expressing various levels of sst2 that should be useful for the future evaluation of radiolabeled somatostatin analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号