首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
DNA replication is precisely regulated in time and space, thereby safeguarding genomic integrity. In eukaryotes, replication initiates from multiple sites along the genome, termed origins of replication, and propagates bidirectionally. Dynamic origin bound complexes dictate where and when replication should initiate. During late mitosis and G1 phase, putative origins are recognized and become "licensed" through the assembly of pre-replicative complexes (pre-RCs) that include the MCM2-7 helicases. Subsequently, at the G1/S phase transition, a fraction of pre-RCs are activated giving rise to the establishment of replication forks. Origin location is influenced by chromatin and nuclear organization and origin selection exhibits stochastic features. The regulatory mechanisms that govern these cell cycle events rely on the periodic fluctuation of cyclin dependent kinase (CDK) activity through the cell cycle.  相似文献   

4.
The rapid disappearance of tropical forests, the potential impacts of climate change, and the increasing threats of bushmeat hunting to wildlife, makes it imperative that we understand wildlife population dynamics. With long-lived animals this requires extensive, long-term data, but such data is often lacking. Here we present longitudinal data documenting changes in primate abundance over 45 years at eight sites in Kibale National Park, Uganda. Complex patterns of change in primate abundance were dependent on site, sampling year, and species, but all species, except blue monkeys, colonized regenerating forest, indicating that park-wide populations are increasing. At two paired sites, we found that while the primate populations in the regenerating forests had increased from nothing to a substantial size, there was little evidence of a decline in the source populations in old-growth forest, with the possible exception of mangabeys at one of the paired sites. Censuses conducted in logged forest since 1970 demonstrated that for all species, except black-and-white colobus, the encounter rate was higher in the old-growth and lightly-logged forest than in heavily-logged forest. Black-and-white colobus generally showed the opposite trend and were most common in the heavily-logged forest in all but the first year of monitoring after logging, when they were most common in the lightly-logged forest. Overall, except for blue monkey populations which are declining, primate populations in Kibale National Park are growing; in fact the endangered red colobus populations have an annual growth rate of 3%. These finding present a positive conservation message and indicate that the Uganda Wildlife Authority is being effective in managing its biodiversity; however, with constant poaching pressure and changes such as the exponential growth of elephant populations that could cause forest degradation, continued monitoring and modification of conservation plans are needed.  相似文献   

5.
Evolutionary ecologists are increasingly combining phylogenetic data with distributional and ecological data to assess how and why communities of species differ from random expectations for evolutionary and ecological relatedness. Of particular interest have been the roles of environmental filtering and competitive interactions, or alternatively neutral effects, in dictating community composition. Our goal is to place current research within a dynamic framework, specifically using recent phylogenetic studies from insular environments to provide an explicit spatial and temporal context. We compare communities over a range of evolutionary, ecological and geographic scales that differ in the extent to which speciation and adaptation contribute to community assembly and structure. This perspective allows insights into the processes that can generate community structure, as well as the evolutionary dynamics of community assembly.  相似文献   

6.
Many plant species exhibit variable and synchronized reproduction, or masting, but less is known of the spatial scale of synchrony, effects of climate, or differences between patterns of pollen and seed production. We monitored pollen and seed cone production for seven Pinus ponderosa populations (607 trees) separated by up to 28?km and 1,350?m in elevation in Boulder County, Colorado, USA for periods of 4?C31?years for a mean per site of 8.7?years for pollen and 12.1 for seed cone production. We also analyzed climate data and a published dataset on 21?years of seed production for an eighth population (Manitou) 100?km away. Individual trees showed high inter-annual variation in reproduction. Synchrony was high within populations, but quickly became asynchronous among populations with a combination of increasing distance and elevational difference. Inter-annual variation in temperature and precipitation had differing influences on seed production for Boulder County and Manitou. We speculate that geographically variable effects of climate on reproduction arise from environmental heterogeneity and population genetic differentiation, which in turn result in localized synchrony. Although individual pines produce pollen and seed, only one-third of the covariation within trees was shared. As compared to seed cones, pollen had lower inter-annual variation at the level of the individual tree and was more synchronous. However, pollen and seed production were similar with respect to inter-annual variation at the population level, spatial scales of synchrony and associations with climate. Our results show that strong masting can occur at a localized scale, and that reproductive patterns can differ between pollen and seed cone production in a hermaphroditic plant.  相似文献   

7.
The rate of increase in species number with sampled area is one issue of major interest in ecology. Species number increases with sampled time as well, though this kind of analysis is much rarer in literature. Species-area and species-time relationships have been recently integrated in a single model, which allows studying how time and area interact with each other in determining the cumulative increase in species richness. Here we studied species-area, species-time, and species-time-area relationships in Plio-Holocene large mammals of Western Eurasia, by using an extensive database including 184 species distributed in 685 fossil sites. We found that the increase of species number with time is much higher than with area. When sampling inequality of fossil localities in time and space is accounted for, time and area interact with each other in a negative, though non-linear fashion. The intense climatic changes that characterized the Plio-Holocene period apparently affected both species-area and species-time relationships in large mammals, by increasing the slope of the former during the Pliocene and middle Pleistocene, and of the latter during younger, climatically harsher, late Pleistocene times. This study emphasizes the importance of accounting for time and space in tracing paleodiversity curves.  相似文献   

8.
As the number of studies estimating selection on multiple traits has increased in recent years, fitness surfaces have become a fundamental tool for understanding multivariate selection and evolution. However, rigorous statistical comparisons of multivariate selection surfaces over time or space have been limited to parametric analyses of selection coefficients estimated using a quadratic regression model. Although parametric comparisons are useful when selection is approximately linear or quadratic in nature, they are limited when confronting the complex nature of rugged fitness surfaces. Here, I present a novel solution to comparing nonparametric fitness surfaces over time or space. Using a Tucker3 tensor decomposition, which is essentially a higher order principal components analysis, I show how major features of fitness surfaces can be compared statistically. Combined with a bootstrap algorithm, I develop three statistical tests that identify (1) differences in the shape of nonparametric fitness surfaces, (2) differences in the contribution of each surface to variation in fitness across time or space, and (3) specific areas of the surfaces (trait combinations) that vary significantly over time or space. I illustrate the tensor decomposition and statistical analyses using idealized fitness surfaces.  相似文献   

9.
10.
11.
Arsenic uptake and toxicity in plants: integrating mycorrhizal influences   总被引:2,自引:0,他引:2  
Arsenic (As) contamination of soil and water is a global problem that impacts on many areas of biology. This review firstly covers aspects of soil chemistry and soil-plant interactions relevant to the ways plants take up As (particularly arsenate (As(V)) from aerobic soils, with especial attention to As-phosphorus (P) interactions. It then assesses the extent to which studies of plant As tolerance based on short-term uptake of As(V) from nutrient solutions can be extrapolated to longer-term growth in contaminated soil. Mycorrhizal symbioses are then highlighted, because they are formed by ~?90% of higher plants, often with increased uptake of phosphate (Pi) compared with non-mycorrhizal (NM) counterparts. It is therefore likely that mycorrhizas influence As(V) uptake. Published work shows that arbuscular mycorrhizal (AM) plants (the most common mycorrhizal type) have higher P/As ratios than NM plants, and this would be expected to affect sensitivity to soil As. We discuss ways in which higher P/As selectivity might result from differential operation of P and As uptake pathways in AM compared with NM plants, taking into account new understanding of P uptake mechanisms. We also give suggestions for future research required to increase understanding of mechanisms of As(V) uptake, and its interactions with plant P.  相似文献   

12.
Aquatic hyphomycete fungi are fundamental mediators of energy flow and nutrient spiraling in rivers. These microscopic fungi are primarily dispersed in river currents, undergo substantial annual fluctuations in abundance, and reproduce either predominantly or exclusively asexually. These aspects of aquatic hyphomycete biology are expected to influence levels and distributions of genetic diversity over both spatial and temporal scales. In this study, we investigated the spatiotemporal distribution of genotypic diversity in the representative aquatic hyphomycete Tetracladium marchalianum. We sampled populations of this fungus from seven sites, three sites each in two rivers in Illinois, USA, and one site in a Wisconsin river, USA, and repeatedly sampled one population over two years to track population genetic parameters through two seasonal cycles. The resulting fungal isolates (N = 391) were genotyped at eight polymorphic microsatellite loci. In spite of seasonal reductions in the abundance of this species, genotypic diversity was consistently very high and allele frequencies remarkably stable over time. Likewise, genotypic diversity was very high at all sites. Genetic differentiation was only observed between the most distant rivers (∼450 km). Clear evidence that T. marchalianum reproduces sexually in nature was not observed. Additionally, we used phylogenetic analysis of partial β-tubulin gene sequences to confirm that the fungal isolates studied here represent a single species. These results suggest that populations of T. marchalianum may be very large and highly connected at local scales. We speculate that large population sizes and colonization of alternate substrates in both terrestrial and aquatic environments may effectively buffer the aquatic populations from in-stream population fluctuations and facilitate stability in allele frequencies over time. These data also suggest that overland dispersal is more important for structuring populations of T. marchalianum over geographic scales than expected.  相似文献   

13.
A model (GEOCARB) of the long-term, or multimillion year, carbon cycle has been constructed which includes quantitative treatment of (1) uptake of atmospheric CO2 by the weathering of silicate and carbonate rocks on the continents, and the deposition of carbonate minerals and organic matter in oceanic sediments; and (2) the release of CO2 to the atmosphere via the weathering of kerogen in sedimentary rocks and degassing resulting from the volcanic-metamorphic-diagenetic breakdown of carbonates and organic matter at depth. Sensitivity analysis indicates that an important factor affecting CO2 was the rise of vascular plants in the Palaeozoic. A large Devonian drop in CO2 was brought about primarily by the acceleration of weathering of silicate rock by the development of deeply rooted plants in well-drained upland soils. The quantitative effect of this accelerated weathering has been crudely estimated by present-day field studies where all factors affecting weathering, other than the presence or absence of vascular plants, have been held relatively constant. An important additional factor, bringing about a further CO2 drop into the Carboniferous and Permian, was enhanced burial of organic matter in sediments, due probably to the production of microbially resistant plant remains (e.g. lignin). Phanerozoic palaeolevels of atmospheric CO2 calculated from the GEOCARB model generally agree with independent estimates based on measurements of the carbon isotopic composition of palaeosols and the stomatal index for fossil plants. Correlation of CO2 levels with estimates of palaeoclimate suggests that the atmospheric greenhouse effect has been a major factor in controlling global climate over the past 600 million years.  相似文献   

14.
Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.  相似文献   

15.
Accurate species delimitation is critical for biodiversity studies. However, species complexes characterized by introgression, high levels of population structure and subtle phenotypic differentiation can be challenging to delimit. Here, we report on a molecular systematic investigation of the woodland salamanders Plethodon wehrlei and Plethodon punctatus, which traditionally have been placed in the Plethodon wehrlei species group. To quantify patterns of genetic variation, we collected genetic samples from throughout the range of both species, including 22 individuals from nine populations of P. punctatus, and 60 individuals from 26 populations of P. wehrlei. From these samples, we sequenced three mtDNA loci (5596 base pairs) and five nuclear loci (3377 base pairs). We inferred time‐calibrated gene trees and species trees using BEAST 2.4.6, and we delimited putative species using a Bayesian implementation of the general mixed Yule‐coalescent model (bGMYC) and STRUCTURE. Finally, we validated putative species using the multispecies coalescent as implemented in Bayesian Phylogenetics and Phylogeography (BPP). We found substantial phylogeographic diversity in P. wehrlei, including multiple geographically cohesive clades and an inferred mitochondrial common ancestor at 11.5 myr (95% HPD: 9.6–13.6 myr) that separated populations formerly assigned to P. dixi from all other populations. We also found that P. punctatus is deeply nested within P. wehrlei, rendering the latter paraphyletic. After discussing the challenges faced by modern species delimitation methods, we recommend retaining P. punctatus because it is ecologically and phenotypically distinct. We further recommend that P. dixi be recognized as a valid species.  相似文献   

16.
17.
18.
Population genetic structure and subdivision are key factors affecting the evolution of organisms. In this study, we analysed and compared the population genetic structure of the malaria parasite Plasmodium falciparum and its mosquito vector Anopheles gambiae over space and time in the Nianza Province, near Victoria Lake in Kenya. The parasites were collected from mosquitoes caught in six villages separated by up to 68 km in 2002 and 2003. A total of 545 oocysts were dissected from 122 infected mosquitoes and genotyped at seven microsatellite markers. Five hundred and forty-seven mosquitoes, both infected and uninfected, were genotyped at eight microsatellites. For the parasite and the vector, the analysis revealed no (or very little) genetic differentiation among villages. This may be explained by high local population sizes for the parasite and the mosquito. The small level of genetic differentiation observed between populations may explain the speed at which antimalarial drug resistance and insecticide resistance spread into the African continent.  相似文献   

19.
Plastid division is executed by the coordinated action of at least two molecular machineries--an internal machinery situated on the stromal side of the inner envelope membrane that was contributed by the cyanobacterial endosymbiont from which plastids evolved, and an external machinery situated on the cytosolic side of the outer envelope membrane that was contributed by the host. Here we review progress in defining the components of the plastid division complex and understanding the mechanisms of envelope constriction and division-site placement in plants. We also highlight recent work identifying the first molecular linkage between the internal and external division machineries, shedding light on how their mid-plastid positioning is coordinated across the envelope membranes. Little is known about the mechanisms that regulate plastid division in plant cells, but recent studies have begun to hint at potential mechanisms.  相似文献   

20.
Wang J  Whitlock MC 《Genetics》2003,163(1):429-446
In the past, moment and likelihood methods have been developed to estimate the effective population size (N(e)) on the basis of the observed changes of marker allele frequencies over time, and these have been applied to a large variety of species and populations. Such methods invariably make the critical assumption of a single isolated population receiving no immigrants over the study interval. For most populations in the real world, however, migration is not negligible and can substantially bias estimates of N(e) if it is not accounted for. Here we extend previous moment and maximum-likelihood methods to allow the joint estimation of N(e) and migration rate (m) using genetic samples over space and time. It is shown that, compared to genetic drift acting alone, migration results in changes in allele frequency that are greater in the short term and smaller in the long term, leading to under- and overestimation of N(e), respectively, if it is ignored. Extensive simulations are run to evaluate the newly developed moment and likelihood methods, which yield generally satisfactory estimates of both N(e) and m for populations with widely different effective sizes and migration rates and patterns, given a reasonably large sample size and number of markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号