首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Intrachromosomal segmental duplications provide the substrate for non-allelic homologous recombination, facilitating extensive copy number variation in the human genome. Many multi-copy gene families are embedded within genomic regions with high levels of sequence identity (>95%) and therefore pose considerable analytical challenges. In some cases, the complexity involved in analyzing such regions is largely underestimated. Rapid, cost effective analysis of multi-copy gene regions have typically implemented quantitative approaches, however quantitative data are not an absolute means of certainty. Therefore any technique prone to degrees of measurement error can produce ambiguous results that may lead to spurious associations with complex disease.

Results

In this study we have focused on testing the accuracy and reproducibility of quantitative analysis techniques. With reference to the C-C Chemokine Ligand-3-like-1 (CCL3L1) gene, we performed analysis using real-time Quantitative PCR (QPCR), Multiplex Ligation-dependent Probe Amplification (MLPA) and Paralogue Ratio Test (PRT). After controlling for potential outside variables on assay performance, including DNA concentration, quality, preparation and storage conditions, we find that real-time QPCR produces data that does not cluster tightly around copy number integer values, with variation substantially greater than that of the MLPA or PRT systems. We find that the method of rounding real-time QPCR measurements can potentially lead to mis-scoring of copy number genotypes and suggest caution should be exercised in interpreting QPCR data.

Conclusions

We conclude that real-time QPCR is inherently prone to measurement error, even under conditions that would seem favorable for association studies. Our results indicate that potential variability in the physicochemical properties of the DNA samples cannot solely explain the poor performance exhibited by the real-time QPCR systems. We recommend that more robust approaches such as PRT or MLPA should be used to genotype multi-allelic copy number variation in disease association studies and suggest several approaches which can be implemented to ensure the quality of the copy number typing using quantitative methods.  相似文献   

2.

Background

The ability to accurately detect DNA copy number variation in both a sensitive and quantitative manner is important in many research areas. However, genome-wide DNA copy number analyses are complicated by variations in detection signal.

Results

While GC content has been used to correct for this, here we show that coverage biases are tissue-specific and independent of the detection method as demonstrated by next-generation sequencing and array CGH. Moreover, we show that DNA isolation stringency affects the degree of equimolar coverage and that the observed biases coincide with chromatin characteristics like gene expression, genomic isochores, and replication timing.

Conclusion

These results indicate that chromatin organization is a main determinant for differential DNA retrieval. These findings are highly relevant for germline and somatic DNA copy number variation analyses.  相似文献   

3.

Introduction

Human beta-defensins are key components of human innate immunity to a variety of pathogens, including Staphylococcus aureus. The aim of the present study was to investigate a potential association between gene variations in DEFB1 and DEFB103/DEFB4 and the development of S. aureus bacteremia (SAB) employing a case-control design.

Methods

Cases were unique patients with documented SAB, identified with the National S. aureus Bacteremia Register, a comprehensive dataset of all episodes of community associated-SABs (CA-SAB) occurring in children (≤20 yrs) in Denmark from 1990 to 2006. Controls were age-matched healthy individuals with no history of SAB. DNA obtained from cases and controls using the Danish Newborn Screening Biobank were genotyped for functional polymorphisms of DEFB1 by Sanger sequencing and copy number variation of the DEFB103 and DEFB4 genes using Pyrosequencing-based Paralogue Ratio Test (P-PRT).

Results

193 ethnic Danish SAB cases with 382 age-matched controls were used for this study. S. aureus isolates represented a variety of bacterial (i.e., different spa types) types similar to SAB isolates in general. DEFB1 minor allele frequencies of rs11362 (cases vs. controls 0.47/0.44), rs1800972 (0.21/0.24), and rs1799946 (0.32/0.33) were not significantly different in cases compared with controls. Also, DEFB4/DEFB103 gene copy numbers (means 4.83/4.92) were not significantly different in cases compared with controls.

Conclusions

Using a large, unique cohort of pediatric CA-SAB, we found no significant association between DEFB1 genetic variation or DEFB4/DEFB103 gene copy number and susceptibility for SAB.  相似文献   

4.
Demonstrating an association between a polymorphism and a disease phenotype through case-control studies requires reliable large-scale genotyping, but accurate measurement of copy number variation has proven to be technically challenging. Here we build on our previous experience with Paralogue Ratio Tests (PRT) to develop PRT copy number determination at the CCL3L1/CCL4L1 copy number variant. A multiplex PRT assay based on four independent comparative PCRs results in a convenient, accurate and robust method of multiallelic copy number measurement suitable for use in large-scale case-control studies, which can unambiguously assign virtually all samples tested to discrete copy number classes.  相似文献   

5.

Background

Deviations in the amount of genomic content that arise during tumorigenesis, called copy number alterations, are structural rearrangements that can critically affect gene expression patterns. Additionally, copy number alteration profiles allow insight into cancer discrimination, progression and complexity. On data obtained from high-throughput sequencing, improving quality through GC bias correction and keeping false positives to a minimum help build reliable copy number alteration profiles.

Results

We introduce seqCNA, a parallelized R package for an integral copy number analysis of high-throughput sequencing cancer data. The package includes novel methodology on (i) filtering, reducing false positives, and (ii) GC content correction, improving copy number profile quality, especially under great read coverage and high correlation between GC content and copy number. Adequate analysis steps are automatically chosen based on availability of paired-end mapping, matched normal samples and genome annotation.

Conclusions

seqCNA, available through Bioconductor, provides accurate copy number predictions in tumoural data, thanks to the extensive filtering and better GC bias correction, while providing an integrated and parallelized workflow.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-178) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Heavy-ion therapy has an advantage over conventional radiotherapy due to its superb biological effectiveness and dose conformity in cancer therapy. It could be a potential alternate approach for hydatid cyst treatment. However, there is no information currently available on the cellular and molecular basis for heavy-ion irradiation induced cell death in cystic echinococcosis.

Methododology/Principal Findings

LD50 was scored by protoscolex death. Cellular and ultrastructural changes within the parasite were studied by light and electron microscopy, mitochondrial DNA (mtDNA) damage and copy number were measured by QPCR, and apoptosis was determined by caspase 3 expression and caspase 3 activity. Ionizing radiation induced sparse cytoplasm, disorganized and clumped organelles, large vacuoles and devoid of villi. The initial mtDNA damage caused by ionizing radiation increased in a dose-dependent manner. The kinetic of DNA repair was slower after carbon-ion radiation than that after X-rays radiation. High dose carbon-ion radiation caused irreversible mtDNA degradation. Cysts apoptosis was pronounced after radiation. Carbon-ion radiation was more effective to suppress hydatid cysts than X-rays.

Conclusions

These studies provide a framework to the evaluation of attenuation effect of heavy-ion radiation on cystic echinococcosis in vitro. Carbon-ion radiation is more effective to suppress E. multilocularis than X-rays.  相似文献   

7.

Background

The role of epidermal growth factor (EGF) and its receptor (EGFR) in the pathogenesis and progression of various malignant tumors has long been known, but there is still disagreement concerning prognostic significance of EGFR expression in clear cell renal cell carcinoma (CCRCC). The present study was designed to analyze more objectively the protein EGFR expression in CCRCC and to compare its value with EGFR gene copy number changes and clinicopathologic characteristics including patient survival.

Methods

The protein EGFR expression was analyzed immunohistochemically on 94 CCRCC, and gene copy number alterations of EGFR by FISH analysis on 41 CCRCC selected according to distinct membrane EGFR staining.

Results

Membrane EGFR expression in tumor cells was heterogeneous with respect to the proportion of positive cells and staining intensity. FISH analysis did not reveal EGFR gene amplification, while polysomy of chromosome 7 found in 41% was associated with higher EGFR membrane expression. Moreover, EGFR overexpression was associated with a higher nuclear grade, larger tumor size and shorter patient''s survival, while there was no connection with pathological stage.

Conclusion

In conclusion, the protein expression of EGFR had an impact on prognosis in patients with CCRCC, while an increased copy number of chromosome 7 could be the possible reason for EGFR protein overexpression in the absence of gene amplification.  相似文献   

8.

Background

Gastric cancer is common cancer. Discovering novel genetic biomarkers might help to identify high-risk individuals. Copy number variation (CNV) has recently been shown to influence risk for several cancers. The aim of the present study was sought to test the association between copy number at a variant region and GC.

Methods

A total of 110 gastric cancer patients and 325 healthy volunteers were enrolled in this study. We searched for a CNV and found a CNV (Variation 7468) containing part of the APC gene, the SRP19 gene and the REEP5 gene. We chose four probes targeting at APC-intron8, APC-exon9, SRP19 and REEP5 to interrogate this CNV. Specific Taqman probes labeled by different reporter fluorophores were used in a real-time PCR platform to obtain copy number. Both the original non-integer data and transformed integer data on copy number were used for analyses.

Results

Gastric caner patients had a lower non-integer copy number than controls for the APC-exon9 probe (Adjusted p = 0.026) and SRP19 probe (Adjusted p = 0.002). The analysis of integer copy number yielded a similar pattern although less significant (Adjusted p = 0.07 for APC-exon9 probe and Adjusted p = 0.02 for SRP19 probe).

Conclusions

Losses of a CNV at 5q22, especially in the DNA region surrounding APC-exon 9, may be associated with a higher risk of gastric cancer.  相似文献   

9.
Fan B  Dachrut S  Coral H  Yuen ST  Chu KM  Law S  Zhang L  Ji J  Leung SY  Chen X 《PloS one》2012,7(4):e29824

Background

Genomic instability with frequent DNA copy number alterations is one of the key hallmarks of carcinogenesis. The chromosomal regions with frequent DNA copy number gain and loss in human gastric cancer are still poorly defined. It remains unknown how the DNA copy number variations contributes to the changes of gene expression profiles, especially on the global level.

Principal Findings

We analyzed DNA copy number alterations in 64 human gastric cancer samples and 8 gastric cancer cell lines using bacterial artificial chromosome (BAC) arrays based comparative genomic hybridization (aCGH). Statistical analysis was applied to correlate previously published gene expression data obtained from cDNA microarrays with corresponding DNA copy number variation data to identify candidate oncogenes and tumor suppressor genes. We found that gastric cancer samples showed recurrent DNA copy number variations, including gains at 5p, 8q, 20p, 20q, and losses at 4q, 9p, 18q, 21q. The most frequent regions of amplification were 20q12 (7/72), 20q12–20q13.1 (12/72), 20q13.1–20q13.2 (11/72) and 20q13.2–20q13.3 (6/72). The most frequent deleted region was 9p21 (8/72). Correlating gene expression array data with aCGH identified 321 candidate oncogenes, which were overexpressed and showed frequent DNA copy number gains; and 12 candidate tumor suppressor genes which were down-regulated and showed frequent DNA copy number losses in human gastric cancers. Three networks of significantly expressed genes in gastric cancer samples were identified by ingenuity pathway analysis.

Conclusions

This study provides insight into DNA copy number variations and their contribution to altered gene expression profiles during human gastric cancer development. It provides novel candidate driver oncogenes or tumor suppressor genes for human gastric cancer, useful pathway maps for the future understanding of the molecular pathogenesis of this malignancy, and the construction of new therapeutic targets.  相似文献   

10.

Introduction

Although cetuximab and panitumumab show an increased efficacy for patients with KRAS-NRAS-BRAF and PI3KCA wild-type metastatic colorectal cancer, primary resistance occurs in a relevant subset of molecularly enriched populations.

Patients and Methods

We evaluated the outcome of 68 patients with advanced colorectal cancer and RAS, BRAF and PI3KCA status according to ALK gene status (disomic vs. gain of ALK gene copy number – defined as mean of 3 to 5 fusion signals in ≥10% of cells). All consecutive patients received cetuximab and irinotecan or panitumumab alone for chemorefractory disease.

Results

No ALK translocations or amplifications were detected. ALK gene copy number gain was found in 25 (37%) tumors. Response rate was significantly higher in patients with disomic ALK as compared to those with gain of gene copy number (70% vs. 32%; p = 0.0048). Similarly, progression-free survival was significantly different when comparing the two groups (6.7 vs. 5.3 months; p = 0.045). A trend was observed also for overall survival (18.5 vs. 15.6 months; p = 0.885).

Conclusion

Gain of ALK gene copy number might represent a negative prognostic factor in mCRC and may have a role in resistance to anti-EGFR therapy.  相似文献   

11.

Objective

To determine the pathogenesis of a patient born with congenital heart defects, who had appeared normal in prenatal screening.

Methods

In routine prenatal screening, G-banding was performed to analyse the karyotypes of the family and fluorescence in situ hybridization was used to investigate the 22q11.2 deletion in the fetus. After birth, the child was found to be suffering from heart defects by transthoracic echocardiography. In the following study, sequencing was used to search for potential mutations in pivotal genes. SNP-array was employed for fine mapping of the aberrant region and quantitative real-time PCR was used to confirm the results. Furthermore, other patients with a similar phenotype were screened for the same genetic variations. To compare with a control, these variations were also assessed in the general population.

Results

The child and his mother each had a region that was deleted in the beta-defensin repeats, which are usually duplicated in the general population. Besides, the child carried a SOX7-gene duplication. While this duplication was not detected in his mother, it was found in two other patients with cardiac defects who also had the similar deletion in the beta-defensin repeats.

Conclusion

The congenital heart defects of the child were probably caused by a SOX7-gene duplication, which may be a consequence of the partial haplotype of beta-defensin regions at 8p23.1. To our knowledge, this is the first congenital heart defect case found to have the haplotype of beta-defensin and the duplication of SOX7.  相似文献   

12.

Background

Major depressive disorder (MDD) is the leading cause of disability worldwide, and has significant genetic predisposition. Mitochondria may have a role in MDD and so mitochondrial DNA (mtDNA) has been suggested as a possible biomarker for this disease. We aimed to test whether the mtDNA copy number of peripheral blood leukocytes is related to MDD in young adults.

Methods

A case-control study was conducted with 210 MDD patients and 217 healthy controls (HC). The mtDNA copy number was measured by quantitative polymerase chain reaction (qPCR) method. Depression severity was assessed by the Hamilton-17 Depression Rating Scale (HDRS-17).

Results

We found no significant differences in mtDNA copy number between MDD patients and HC, though the power analysis showed that our sample size has enough power to detect the difference. There were also no significant correlations between mtDNA copy number and the clinical characteristics (such as age, age of onset, episodes, Hamilton Depression Rating Scale (HDRS) score and Global Assessment of Function Scale (GAF) score) in MDD patients.

Conclusion

Our study suggests that leukocyte mtDNA copy number is unlikely to contribute to MDD, but it doesn’t mean that we can exclude the possibility of involvement of mitochondria in the disease. Further studies are required to elucidate whether mtDNA can be a biomarker of MDD.  相似文献   

13.

Objectives

The role of heparanase (HPSE) gene in cancers including hepatocellular carcinoma (HCC) is currently controversial. This study was aimed at investigating the impact of genetic alteration and expression change of HPSE on the progression and prognosis of HCC.

Methods

The HPSE gene was studied in three different aspects: (1) loss of heterozygosity (LOH) by a custom SNP microarray and DNA copy number by real-time PCR; (2) mRNA level by qRT-PCR; and (3) protein expression by immunohistochemistry. The clinical significances of allele loss and expression change of HPSE were analyzed.

Results

Microarray analysis showed that the average LOH frequency for 10 SNPs located within HPSE gene was 31.6%, three of which were significantly correlated with tumor grade, serum HBV-DNA level, and AFP concentration. In agreement with SNP LOH data, DNA copy number loss of HPSE was observed in 38.74% (43/111) of HCC cases. HPSE mRNA level was notably reduced in 74.1% (83/112) of tumor tissues compared with non-tumor liver tissues, which was significantly associated with DNA copy number loss, increased tumor size, and post-operative metastasis. HPSE protein level was also remarkably reduced in 66.3% (53/80) of tumor tissues, which was correlated with tumor grade. Patients with lower expression level of HPSE mRNA or protein had a significantly lower survival rate than those with higher expression. Cox regression analysis suggested that HPSE protein was an independent predictor of overall survival in HCC patients.

Conclusions

The results in this study demonstrate that genetic alteration and reduction of HPSE expression are associated with tumor progression and poor prognosis of HCCs, suggesting that HPSE behaves like a tumor suppressor gene and is a potential prognostic marker for HCC patients.  相似文献   

14.

Background

To determine which changes in the host cell genome are crucial for cervical carcinogenesis, a longitudinal in vitro model system of HPV-transformed keratinocytes was profiled in a genome-wide manner. Four cell lines affected with either HPV16 or HPV18 were assayed at 8 sequential time points for gene expression (mRNA) and gene copy number (DNA) using high-resolution microarrays. Available methods for temporal differential expression analysis are not designed for integrative genomic studies.

Results

Here, we present a method that allows for the identification of differential gene expression associated with DNA copy number changes over time. The temporal variation in gene expression is described by a generalized linear mixed model employing low-rank thin-plate splines. Model parameters are estimated with an empirical Bayes procedure, which exploits integrated nested Laplace approximation for fast computation. Iteratively, posteriors of hyperparameters and model parameters are estimated. The empirical Bayes procedure shrinks multiple dispersion-related parameters. Shrinkage leads to more stable estimates of the model parameters, better control of false positives and improvement of reproducibility. In addition, to make estimates of the DNA copy number more stable, model parameters are also estimated in a multivariate way using triplets of features, imposing a spatial prior for the copy number effect.

Conclusion

With the proposed method for analysis of time-course multilevel molecular data, more profound insight may be gained through the identification of temporal differential expression induced by DNA copy number abnormalities. In particular, in the analysis of an integrative oncogenomics study with a time-course set-up our method finds genes previously reported to be involved in cervical carcinogenesis. Furthermore, the proposed method yields improvements in sensitivity, specificity and reproducibility compared to existing methods. Finally, the proposed method is able to handle count (RNAseq) data from time course experiments as is shown on a real data set.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-327) contains supplementary material, which is available to authorized users.  相似文献   

15.
Liu S  Yao L  Ding D  Zhu H 《PloS one》2010,5(12):e15778

Background

Although several studies have investigated whether CCL3L1 copy number variation (CNV) influences the risk of HIV-1 infection, there are still no clear conclusions. Therefore, we performed a meta-analysis using two models to generate a more robust estimate of the association between CCL3L1 CNV and susceptibility to HIV-1 infection.

Methods

We divided the cases and controls into two parts as individuals with CCL3L1 gene copy number (GCN) above the population specific median copy number (PMN) and individuals with CCL3L1 GCN below PMN, respectively. Odds ratios (ORs) with 95% confidence intervals (95% CIs) were given for the main analysis. We also conducted stratified analyses by ethnicity, age group and sample size. Relevant literatures were searched through PubMed and ISI Web of Knowledge up to March 2010.

Results

In total, 9 studies with 2434 cases and 4029 controls were included. ORs for the main analysis were 1.35 (95% CI, 1.02–1.78, model: GCN ≤ PMN Vs. GCN > PMN) and 1.70 (95% CI, 1.30–2.23, model: GCN < PMN Vs. GCN ≥ PMN), respectively. Either in stratified analysis, statistically significant results can be detected in some subgroups.

Conclusions

Our analyses indicate that CCL3L1 CNV is associated with susceptibility to HIV-1 infection. A lower copy number is associated with an increased risk of HIV-1 infection, while a higher copy number is associated with reduced risk for acquiring HIV-1.  相似文献   

16.

Purpose

To determine how a single nucleotide polymorphism (SNP)- and informatics-based non-invasive prenatal aneuploidy test performs in detecting trisomy 13.

Methods

Seventeen trisomy 13 and 51 age-matched euploid samples, randomly selected from a larger cohort, were analyzed. Cell-free DNA was isolated from maternal plasma, amplified in a single multiplex polymerase chain reaction assay that interrogated 19,488 SNPs covering chromosomes 13, 18, 21, X, and Y, and sequenced. Analysis and copy number identification involved a Bayesian-based maximum likelihood statistical method that generated chromosome- and sample-specific calculated accuracies.

Results

Of the samples that passed a stringent DNA quality threshold (94.1%), the algorithm correctly identified 15/15 trisomy 13 and 49/49 euploid samples, for 320/320 correct copy number calls.

Conclusions

This informatics- and SNP-based method accurately detects trisomy 13-affected fetuses non-invasively and with high calculated accuracy.  相似文献   

17.

Background and Aims

Most molecular phylogenetic studies of Orchidaceae have relied heavily on DNA sequences from the plastid genome. Nuclear and mitochondrial loci have only been superficially examined for their systematic value. Since 40% of the genera within Vanilloideae are achlorophyllous mycoheterotrophs, this is an ideal group of orchids in which to evaluate non-plastid gene sequences.

Methods

Phylogenetic reconstructions for Vanilloideae were produced using independent and combined data from the nuclear 18S, 5·8S and 26S rDNA genes and the mitochondrial atpA gene and nad1b-c intron.

Key Results

These new data indicate placements for genera such as Lecanorchis and Galeola, for which plastid gene sequences have been mostly unavailable. Nuclear and mitochondrial parsimony jackknife trees are congruent with each other and previously published trees based solely on plastid data. Because of high rates of sequence divergence among vanilloid orchids, even the short 5·8S rDNA gene provides impressive levels of resolution and support.

Conclusions

Orchid systematists are encouraged to sequence nuclear and mitochondrial gene regions along with the growing number of plastid loci available.Key words: 26S rDNA, 18S rDNA, 5·8S rDNA, atpA, nad1, orchids, plastid, Vanilla, vanilloid orchids, Vanilloideae  相似文献   

18.

Background

Repeated blocks of genome sequence have been shown to be associated with genetic diversity and disease risk in humans, and with phenotypic diversity in model organisms and domestic animals. Reliable tests are desirable to determine whether individuals are carriers of copy number variants associated with disease risk in humans and livestock, or associated with economically important traits in livestock. In some cases, copy number variants affect the phenotype through a dosage effect but in other cases, allele combinations have non-additive effects. In the latter cases, it has been difficult to develop tests because assays typically return an estimate of the sum of the copy number counts on the maternally and paternally inherited chromosome segments, and this sum does not uniquely determine the allele configuration. In this study, we show that there is an old solution to this new problem: segregation analysis, which has been used for many years to infer alleles in pedigreed populations.

Methods

Segregation analysis was used to estimate copy number alleles from assay data on simulated half-sib sheep populations. Copy number variation at the Agouti locus, known to be responsible for the recessive self-colour black phenotype, was used as a model for the simulation and an appropriate penetrance function was derived. The precision with which carriers and non-carriers of the undesirable single copy allele could be identified, was used to evaluate the method for various family sizes, assay strategies and assay accuracies.

Results

Using relationship data and segregation analysis, the probabilities of carrying the copy number alleles responsible for black or white fleece were estimated with much greater precision than by analyzing assay results for animals individually. The proportion of lambs correctly identified as non-carriers of the undesirable allele increased from 7% when the lambs were analysed alone to 80% when the lambs were analysed in half-sib families.

Conclusions

When a quantitative assay is used to estimate copy number alleles, segregation analysis of related individuals can greatly improve the precision of the estimates. Existing software for segregation analysis would require little if any change to accommodate the penetrance function for copy number assay data.  相似文献   

19.

Background

Accumulating evidence indicates aberrant DNA methylation is involved in gastric tumourigenesis, suggesting it may be a useful clinical biomarker for the disease. The aim of this study was to consolidate and summarize published data on the potential of methylation in gastric cancer (GC) risk prediction, prognostication and prediction of treatment response.

Methods

Relevant studies were identified from PubMed using a systematic search approach. Results were summarized by meta-analysis. Mantel-Haenszel odds ratios were computed for each methylation event assuming the random-effects model.

Results

A review of 589 retrieved publications identified 415 relevant articles, including 143 case-control studies on gene methylation of 142 individual genes in GC clinical samples. A total of 77 genes were significantly differentially methylated between tumour and normal gastric tissue from GC subjects, of which data on 62 was derived from single studies. Methylation of 15, 4 and 7 genes in normal gastric tissue, plasma and serum respectively was significantly different in frequency between GC and non-cancer subjects. A prognostic significance was reported for 18 genes and predictive significance was reported for p16 methylation, although many inconsistent findings were also observed. No bias due to assay, use of fixed tissue or CpG sites analysed was detected, however a slight bias towards publication of positive findings was observed.

Conclusions

DNA methylation is a promising biomarker for GC risk prediction and prognostication. Further focused validation of candidate methylation markers in independent cohorts is required to develop its clinical potential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号