首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bowen ME  Henke K  Siegfried KR  Warman ML  Harris MP 《Genetics》2012,190(3):1017-1024
The generation and analysis of mutants in zebrafish has been instrumental in defining the genetic regulation of vertebrate development, physiology, and disease. However, identifying the genetic changes that underlie mutant phenotypes remains a significant bottleneck in the analysis of mutants. Whole-genome sequencing has recently emerged as a fast and efficient approach for identifying mutations in nonvertebrate model organisms. However, this approach has not been applied to zebrafish due to the complicating factors of having a large genome and lack of fully inbred lines. Here we provide a method for efficiently mapping and detecting mutations in zebrafish using these new parallel sequencing technologies. This method utilizes an extensive reference SNP database to define regions of homozygosity-by-descent by low coverage, whole-genome sequencing of pooled DNA from only a limited number of mutant F(2) fish. With this approach we mapped each of the five different zebrafish mutants we sequenced and identified likely causative nonsense mutations in two and candidate mutations in the remainder. Furthermore, we provide evidence that one of the identified mutations, a nonsense mutation in bmp1a, underlies the welded mutant phenotype.  相似文献   

2.
Bowman SM  Piwowar A  Ciocca M  Free SJ 《Mycologia》2005,97(4):872-879
Two Neurospora mutants with a phenotype that includes a tight colonial growth pattern, an inability to form conidia and an inability to form protoperithecia have been isolated and characterized. The relevant mutations were mapped to the same locus on the sequenced Neurospora genome. The mutations responsible for the mutant phenotype then were identified by examining likely candidate genes from the mutant genomes at the mapped locus with PCR amplification and a sequencing assay. The results demonstrate that a map and sequence strategy is a feasible way to identify mutant genes in Neurospora. The gene responsible for the phenotype is a putative alpha-1,2-mannosyltransferase gene. The mutant cell wall has an altered composition demonstrating that the gene functions in cell wall biosynthesis. The results demonstrate that the mnt-1 gene is required for normal cell wall biosynthesis, morphology and for the regulation of asexual development.  相似文献   

3.
The affordability of next generation sequencing (NGS) is transforming the field of mutation analysis in bacteria. The genetic basis for phenotype alteration can be identified directly by sequencing the entire genome of the mutant and comparing it to the wild-type (WT) genome, thus identifying acquired mutations. A major limitation for this approach is the need for an a-priori sequenced reference genome for the WT organism, as the short reads of most current NGS approaches usually prohibit de-novo genome assembly. To overcome this limitation we propose a general framework that utilizes the genome of relative organisms as mediators for comparing WT and mutant bacteria. Under this framework, both mutant and WT genomes are sequenced with NGS, and the short sequencing reads are mapped to the mediator genome. Variations between the mutant and the mediator that recur in the WT are ignored, thus pinpointing the differences between the mutant and the WT. To validate this approach we sequenced the genome of Bdellovibrio bacteriovorus 109J, an obligatory bacterial predator, and its prey-independent mutant, and compared both to the mediator species Bdellovibrio bacteriovorus HD100. Although the mutant and the mediator sequences differed in more than 28,000 nucleotide positions, our approach enabled pinpointing the single causative mutation. Experimental validation in 53 additional mutants further established the implicated gene. Our approach extends the applicability of NGS-based mutant analyses beyond the domain of available reference genomes.  相似文献   

4.
5.
Mutation mapping in mice can be readily accomplished by genome wide segregation analysis of polymorphic DNA markers. In this study, we showed the efficacy of Ion Torrent next generation sequencing for conducting genome-wide scans to map and identify a mutation causing congenital heart disease in a mouse mutant, Bishu, recovered from a mouse mutagenesis screen. The Bishu mutant line generated in a C57BL/6J (B6) background was intercrossed with another inbred strain, C57BL/10J (B10), and the resulting B6/B10 hybrid offspring were intercrossed to generate mutants used for the mapping analysis. For each mutant sample, a panel of 123 B6/B10 polymorphic SNPs distributed throughout the mouse genome was PCR amplified, bar coded, and then pooled to generate a single library used for Ion Torrent sequencing. Sequencing carried out using the 314 chip yielded >600,000 usable reads. These were aligned and mapped using a custom bioinformatics pipeline. Each SNP was sequenced to a depth >500×, allowing accurate automated calling of the B6/B10 genotypes. This analysis mapped the mutation in Bishu to an interval on the proximal region of mouse chromosome 4. This was confirmed by parallel capillary sequencing of the 123 polymorphic SNPs. Further analysis of genes in the map interval identified a splicing mutation in Dnaic1 c.204+1G>A, an intermediate chain dynein, as the disease causing mutation in Bishu. Overall, our experience shows Ion Torrent amplicon sequencing is high throughput and cost effective for conducting genome-wide mapping analysis and is easily scalable for other high volume genotyping analyses.  相似文献   

6.
Massively Parallel Sequencing (MPS) allows sequencing of entire exomes and genomes to now be done at reasonable cost, and its utility for identifying genes responsible for rare Mendelian disorders has been demonstrated. However, for a complex disease, study designs need to accommodate substantial degrees of locus, allelic, and phenotypic heterogeneity, as well as complex relationships between genotype and phenotype. Such considerations include careful selection of samples for sequencing and a well-developed strategy for identifying the few "true" disease susceptibility genes from among the many irrelevant genes that will be found to harbor rare variants. To examine these issues we have performed simulation-based analyses in order to compare several strategies for MPS sequencing in complex disease. Factors examined include genetic architecture, sample size, number and relationship of individuals selected for sequencing, and a variety of filters based on variant type, multiple observations of genes and concordance of genetic variants within pedigrees. A two-stage design was assumed where genes from the MPS analysis of high-risk families are evaluated in a secondary screening phase of a larger set of probands with more modest family histories. Designs were evaluated using a cost function that assumes the cost of sequencing the whole exome is 400 times that of sequencing a single candidate gene. Results indicate that while requiring variants to be identified in multiple pedigrees and/or in multiple individuals in the same pedigree are effective strategies for reducing false positives, there is a danger of over-filtering so that most true susceptibility genes are missed. In most cases, sequencing more than two individuals per pedigree results in reduced power without any benefit in terms of reduced overall cost. Further, our results suggest that although no single strategy is optimal, simulations can provide important guidelines for study design.  相似文献   

7.
Large-scale mutant libraries have been indispensable for genetic studies, and the development of next-generation genome sequencing technologies has greatly advanced efforts to analyze mutants. In this work, we sequenced the genomes of 660 Chlamydomonas reinhardtii acetate-requiring mutants, part of a larger photosynthesis mutant collection previously generated by insertional mutagenesis with a linearized plasmid. We identified 554 insertion events from 509 mutants by mapping the plasmid insertion sites through paired-end sequences, in which one end aligned to the plasmid and the other to a chromosomal location. Nearly all (96%) of the events were associated with deletions, duplications, or more complex rearrangements of genomic DNA at the sites of plasmid insertion, and together with deletions that were unassociated with a plasmid insertion, 1470 genes were identified to be affected. Functional annotations of these genes were enriched in those related to photosynthesis, signaling, and tetrapyrrole synthesis as would be expected from a library enriched for photosynthesis mutants. Systematic manual analysis of the disrupted genes for each mutant generated a list of 253 higher-confidence candidate photosynthesis genes, and we experimentally validated two genes that are essential for photoautotrophic growth, CrLPA3 and CrPSBP4. The inventory of candidate genes includes 53 genes from a phylogenomically defined set of conserved genes in green algae and plants. Altogether, 70 candidate genes encode proteins with previously characterized functions in photosynthesis in Chlamydomonas, land plants, and/or cyanobacteria; 14 genes encode proteins previously shown to have functions unrelated to photosynthesis. Among the remaining 169 uncharacterized genes, 38 genes encode proteins without any functional annotation, signifying that our results connect a function related to photosynthesis to these previously unknown proteins. This mutant library, with genome sequences that reveal the molecular extent of the chromosomal lesions and resulting higher-confidence candidate genes, will aid in advancing gene discovery and protein functional analysis in photosynthesis.  相似文献   

8.
The rise of Next Generation Sequencing (NGS) technologies has transformed de novo genome sequencing into an accessible research tool, but obtaining high quality eukaryotic genome assemblies remains a challenge, mostly due to the abundance of repetitive elements. These also make it difficult to study nucleotide polymorphism in repetitive regions, including certain types of structural variations. One solution proposed for resolving such regions is Sequence Assembly aided by Mutagenesis (SAM), which relies on the fact that introducing enough random mutations breaks the repetitive structure, making assembly possible. Sequencing many different mutated copies permits the sequence of the repetitive region to be inferred by consensus methods. However, this approach relies on molecular cloning in order to isolate and amplify individual mutant copies, making it hard to scale-up the approach for use in conjunction with high-throughput sequencing technologies. To address this problem, we propose NG-SAM, a modified version of the SAM protocol that relies on PCR and dilution steps only, coupled to a NGS workflow. NG-SAM therefore has the potential to be scaled-up, e.g. using emerging microfluidics technologies. We built a realistic simulation pipeline to study the feasibility of NG-SAM, and our results suggest that under appropriate experimental conditions the approach might be successfully put into practice. Moreover, our simulations suggest that NG-SAM is capable of reconstructing robustly a wide range of potential target sequences of varying lengths and repetitive structures.  相似文献   

9.
He  Feifei  Li  Yang  Tang  Yu-Hang  Ma  Jian  Zhu  Huaiqiu 《BMC genomics》2016,17(1):141-151
Background

The identification of inversions of DNA segments shorter than read length (e.g., 100 bp), defined as micro-inversions (MIs), remains challenging for next-generation sequencing reads. It is acknowledged that MIs are important genomic variation and may play roles in causing genetic disease. However, current alignment methods are generally insensitive to detect MIs. Here we develop a novel tool, MID (Micro-Inversion Detector), to identify MIs in human genomes using next-generation sequencing reads.

Results

The algorithm of MID is designed based on a dynamic programming path-finding approach. What makes MID different from other variant detection tools is that MID can handle small MIs and multiple breakpoints within an unmapped read. Moreover, MID improves reliability in low coverage data by integrating multiple samples. Our evaluation demonstrated that MID outperforms Gustaf, which can currently detect inversions from 30 bp to 500 bp.

Conclusions

To our knowledge, MID is the first method that can efficiently and reliably identify MIs from unmapped short next-generation sequencing reads. MID is reliable on low coverage data, which is suitable for large-scale projects such as the 1000 Genomes Project (1KGP). MID identified previously unknown MIs from the 1KGP that overlap with genes and regulatory elements in the human genome. We also identified MIs in cancer cell lines from Cancer Cell Line Encyclopedia (CCLE). Therefore our tool is expected to be useful to improve the study of MIs as a type of genetic variant in the human genome. The source code can be downloaded from: http://cqb.pku.edu.cn/ZhuLab/MID.

  相似文献   

10.
Improving genome assemblies by sequencing PCR products with PacBio   总被引:1,自引:0,他引:1  
Advances in sequencing technologies have dramatically reduced costs in producing high-quality draft genomes. However, there are still many contigs and possible misassembled regions in those draft genomes. Improving the quality of these genomes requires an efficient and economical means to close gaps and resequence some regions. Sequencing pooled gap region PCR products with Pacific Biosciences (PacBio) provides a significantly less expensive means for this need. We have developed a genome improvement pipeline with this strategy after decreasing a loading bias against larger PCR products in the PacBio process. Compared with Sanger technology, this approach is not only cost-effective but also can close gaps greater than 2.5 kb in a single round of reactions, and sequence through high GC regions as well as difficult secondary structures such as small hairpin loops.  相似文献   

11.
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease such as simple steatosis, nonalcoholic steatohepatitis (NASH), cirrhosis and fibrosis. However, the molecular pathogenesis and genetic variations causing NAFLD are poorly understood. The high prevalence and incidence of NAFLD suggests that genetic variations on a large number of genes might be involved in NAFLD. To identify genetic variants causing inherited liver disease, we used zebrafish as a model system for a large-scale mutant screen, and adopted a whole genome sequencing approach for rapid identification of mutated genes found in our screen. Here, we report on a forward genetic screen of ENU mutagenized zebrafish. From 250 F2 lines of ENU mutagenized zebrafish during post-developmental stages (5 to 8 days post fertilization), we identified 19 unique mutant zebrafish lines displaying visual evidence of hepatomegaly and/or steatosis with no developmental defects. Histological analysis of mutants revealed several specific phenotypes, including common steatosis, micro/macrovesicular steatosis, hepatomegaly, ballooning, and acute hepatocellular necrosis. This work has identified multiple post-developmental mutants and establishes zebrafish as a novel animal model for post-developmental inherited liver disease.  相似文献   

12.
The advent of next generation sequencing has influenced every aspect of biological research. Many labs are now using whole genome sequencing in Arabidopsis thaliana as a means to quickly identify EMS-generated mutations present in isolated mutants. Following identification of these mutations, examination of T-DNA insertional alleles defective in candidate genes or complementation of the mutant phenotype with a wild type copy of candidate genes can be used to verify which mutation is causative for the phenotype of interest. Here, we discuss the benefits and pitfalls of using this method to identify mutations underlying phenotypes.  相似文献   

13.
Forward genetic screens provide a powerful approach for inferring gene function on the basis of the phenotypes associated with mutated genes. However, determining the causal mutation by traditional mapping and candidate gene sequencing is often the rate-limiting step, especially when analyzing many mutants. We report two genomic approaches for more rapidly determining the identity of the affected genes in Caenorhabditis elegans mutants. First, we report our use of restriction site-associated DNA (RAD) polymorphism markers for rapidly mapping mutations after chemical mutagenesis and mutant isolation. Second, we describe our use of genomic interval pull-down sequencing (GIPS) to selectively capture and sequence megabase-sized portions of a mutant genome. Together, these two methods provide a rapid and cost-effective approach for positional cloning of C. elegans mutant loci, and are also applicable to other genetic model systems.  相似文献   

14.
Genome sequencing reveals agronomically important loci in rice using MutMap   总被引:11,自引:0,他引:11  
The majority of agronomic traits are controlled by multiple genes that cause minor phenotypic effects, making the identification of these genes difficult. Here we introduce MutMap, a method based on whole-genome resequencing of pooled DNA from a segregating population of plants that show a useful phenotype. In MutMap, a mutant is crossed directly to the original wild-type line and then selfed, allowing unequivocal segregation in second filial generation (F(2)) progeny of subtle phenotypic differences. This approach is particularly amenable to crop species because it minimizes the number of genetic crosses (n = 1 or 0) and mutant F(2) progeny that are required. We applied MutMap to seven mutants of a Japanese elite rice cultivar and identified the unique genomic positions most probable to harbor mutations causing pale green leaves and semidwarfism, an agronomically relevant trait. These results show that MutMap can accelerate the genetic improvement of rice and other crop plants.  相似文献   

15.
复杂基因组测序技术研究进展   总被引:1,自引:0,他引:1  
复杂基因组指的是无法使用常规测序和组装手段直接解析的一类基因组,通常指包含高比例重复序列、高杂合度、极端GC含量、存在难消除异源DNA污染的基因组。为了解决复杂基因组的测序和组装问题,需要分别从基因组测序实验方法、测序技术平台、组装算法与策略3个方面进行深入研究。本文详细介绍了复杂基因组测序组装相关的现有技术与方法,并结合复杂基因组经典实例介绍了复杂基因组测序的技术解决途径和发展历程,可为制订合适的复杂基因组测序策略提供参考。  相似文献   

16.
We used a genetic screen based on tRNA-mediated suppression (TMS) in a Schizosaccharomyces pombe La protein (Sla1p) mutant. Suppressor pre-tRNA(Ser)UCA-C47:6U with a debilitating substitution in its variable arm fails to produce tRNA in a sla1-rrm mutant deficient for RNA chaperone-like activity. The parent strain and spontaneous mutant were analyzed using Solexa sequencing. One synonymous single-nucleotide polymorphism (SNP), unrelated to the phenotype, was identified. Further sequence analyses found a duplication of the tRNA(Ser)UCA-C47:6U gene, which was shown to cause the phenotype. Ninety percent of 28 isolated mutants contain duplicated tRNA(Ser)UCA-C47:6U genes. The tRNA gene duplication led to a disproportionately large increase in tRNA(Ser)UCA-C47:6U levels in sla1-rrm but not sla1-null cells, consistent with non-specific low-affinity interactions contributing to the RNA chaperone-like activity of La, similar to other RNA chaperones. Our analysis also identified 24 SNPs between ours and S. pombe 972h- strain yFS101 that was recently sequenced using Solexa. By including mitochondrial (mt) DNA in our analysis, overall coverage increased from 52% to 96%. mtDNA from our strain and yFS101 shared 14 mtSNPs relative to a 'reference' mtDNA, providing the first identification of these S. pombe mtDNA discrepancies. Thus, strain-specific and spontaneous phenotypic mutations can be mapped in S. pombe by Solexa sequencing.  相似文献   

17.
High‐density genome‐wide sequencing increases the likelihood of discovering genes of major effect and genomic structural variation in organisms. While there is an increasing availability of reference genomes across broad taxa, the greatest limitation to whole‐genome sequencing of multiple individuals continues to be the costs associated with sequencing. To alleviate excessive costs, pooling multiple individuals with similar phenotypes and sequencing the homogenized DNA (Pool‐Seq) can achieve high genome coverage, but at the loss of individual genotypes. Although Pool‐Seq has been an effective method for association mapping in model organisms, it has not been frequently utilized in natural populations. To extend bioinformatic tools for rapid implementation of Pool‐Seq data in nonmodel organisms, we developed a pipeline called PoolParty and illustrate its effectiveness in genetic association mapping. Alignment expectations based on five pooled Chinook salmon (Oncorhynchus tshawytscha) libraries showed that approximately 48% genome coverage per library could be achieved with reasonable sequencing effort. We additionally examined male and female O. tshawytscha libraries to illustrate how Pool‐Seq techniques can successfully map known genes associated with functional differences among sexes such as growth hormone 2. Finally, we compared pools of individuals of different spawning ages for each sex to discover novel genes involved with age at maturity in O. tshawytscha such as opsin4 and transmembrane protein19. While not appropriate for every system, Pool‐Seq data processed by the PoolParty pipeline is a practical method for identifying genes of major effect in nonmodel organisms when high genome coverage is necessary and cost is a limiting factor.  相似文献   

18.
Forward genetics and map-based cloning approaches   总被引:16,自引:0,他引:16  
Whereas reverse genetics strategies seek to identify and select mutations in a known sequence, forward genetics requires the cloning of sequences underlying a particular mutant phenotype. Map-based cloning is tedious, hampering the quick identification of candidate genes. With the unprecedented progress in the sequencing of whole genomes, and perhaps even more with the development of saturating marker technologies, map-based cloning can now be performed so efficiently that, at least for some plant model systems, it has become feasible to identify some candidate genes within a few months. This, in turn, will boost the use of forward genetics approaches, as applied (for example) to isolating genes involved in natural variation and genes causing phenotypic mutations as derived from (second-site) mutagenesis screens.  相似文献   

19.
The advent of Next Generation Sequencing Technology (NGST) has revolutionized molecular biology research, allowing for rapid gene/genome sequencing from a multitude of diverse species. As high throughput sequencing becomes more accessible, more efficient workflows must be developed to deal with the amounts of data produced and better assemble the genomes of de novo lineages. We combine traditional laboratory methods with Illumina NGST to amplify and sequence the largest mammalian multigene family, the Olfactory Receptor gene family, for species with and without a reference genome. We develop novel assembly methods to annotate and filter these data, which can be utilized for any gene family or any species. We find no significant difference between the ratio of genes within their respective gene families of our data compared with available genomic data. Using simulated data we explore the limitations of short‐read sequence data and our assembly in recovering this gene family. We highlight the benefits and shortcomings of these methods. Compared with data generated from traditional polymerase chain reaction, cloning and Sanger sequencing methodologies, sequence data generated using our pipeline increases yield and sequencing efficiency without reducing the number of unique genes amplified. A cloning step is not required, therefore shortening data generation time. The novel downstream methodologies and workflows described provide a tool to be utilized by many fields of biology, to access and analyze the vast quantities of data generated. By combining laboratory and in silico methods, we provide a means of extracting genomic information for multigene families without complete genome sequencing.  相似文献   

20.
A number of techniques have been developed as primary screens to scan for DNA sequence variants, including denaturing gradient gel electrophoresis, denaturing high-performance liquid chromatography, single-strand conformation polymorphism and heteroduplex analysis. Variant alleles detected by these assays are subsequently characterised by DNA sequencing. Sequencing itself is rarely used as a primary screen because of labour intensity, cost, and, upon automation, occasional inaccuracy in identifying heterozygous sites. We have previously developed an approach based on coupling long-distance PCR (LD-PCR) to long-read direct sequencing to allow the detection of mutations in the approximately 1.1 kb exon 3 of MECP2. Our use of dye-labelled primers generated high-quality bi-directional sequence runs > 650 bp and allowed easy discrimination of heterozygous bases. We now describe the application of this approach to the detection of mutations in a considerably larger 6.35 kb LD-PCR fragment spanning 10 exons (exons 32-41) of the structurally complex, but genomically compact, TSC2 gene. In a blind analysis, 15/15 previously characterised mutations were successfully identified using seven overlapping bi-directional sequencing reactions. Our approach of long-read sequencing of long-distance PCR products may allow rapid sequencing of multiple exons of compact genes and may be appropriate as a highly sensitive primary screen for mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号