首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m(-2)). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.  相似文献   

2.
Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem.  相似文献   

3.
On rocky shores, cover of macroalgae is often greater growingepibiotically on mussels compared to algae growing directlyattached to rock. A survey of two shores on the east coast ofIreland confirmed that mussel beds contained greater percentagealgal cover and more diverse algal assemblages compared to thoseon rock. The reasons for this difference are not clear. It hasbeen suggested that mussel beds provide a refuge for algae fromgrazing gastropods. Surprisingly, we found no evidence to supportthis. Using wax discs, gastropod grazing patterns were foundto be similar within the mussel beds as on rock. The musselbeds do not appear to provide a refuge for algae from grazingactivity at this scale and we suggest other possible mechanismsfor the prevalence of epibiotic algal cover on mussels. Intertidalgrazers may in fact affect the epibiotic algae on mussels andthereby affect indirectly the persistence of mussel beds. (Received 14 May 2007; accepted 20 October 2007)  相似文献   

4.
In contrast to ecosystems that change smoothly and continuously in response to various stressors, some transitions between states with radically different properties can occur abruptly. An example are the sea urchin barrens and canopy algae (e.g. kelp beds) which represent alternative stable states. More precisely, the variation in grazing intensity in coastal rocky system may drive switches between one complex state into the barren state, the former dominated by erect algae and the latter by encrusting coralline algae and bare rock. Identifying the causes that drive a complex system towards a phase-shift becomes crucial for implementing strategies for the successful conservation and/or recovery of marine forests. Mathematical models that aim to assess effects of fisheries and sea urchins-seaweeds interaction may contribute to understand mechanisms driving transitions between alternative states. Fisheries exploitation has been considered the main driver of urchin population density transitions, with consequent effects on canopy algae distribution. The major novelty of the model here presented is the incorporation of habitat structural complexity, which explains the effect of algal biomass loss on coastal fish assemblages and the strong irreversibility of the system. We have found that as some critical parameters change macroalgae are more resilient and this may give rise to new scenarios, such as the emergence of new stationary states.  相似文献   

5.
Several biological and physical factors change the rocky shore communities. The desiccation time and the tolerance of the intertidal species produce the vertical zonation. In many studies around the world, a temporal change in this zonation is presented.In Costa Rica, only studies that include temporal trends were carried out in Punta Mala and Montezuma, Pacific coast in 80's. The rocky intertidal of the Cocos Island National Park, Costa Rica were surveyed photographically. The Chatham bay was sampled in three expeditions (January 2007, October 2007 and April 2008). Photos corresponding to 25x25cm quadrats were taken with the goal to determine diversity and composition differences in rocky shore organisms between sampling dates. The Wafer bay was sampled in January and October 2007. The intertidal of Chatham consists of basaltic rock, while Wafer has basaltic and ignimbrite boulders. The main difference between sites were the higher algae cover (erect-frondose forms) and number of organism bands at Chatham bay. Temporal change was not found in the total cover of sessile fauna and autotrophs. The barnacle Tetraclita stalactifera, that occurs above the algal fringe (lower intertidal), was the invertebrate with the highest coverage. The mobile fauna biodiversity presented no significant trend between sampled months. However, the identity of species, their cover and their abundance showed a moderate temporal change. In October 2007, when the sea surface temperature was 23 degrees C the infralittoral zone had an increase in green algae cover. The red algae (crust and erect-frondose forms) were dominant in January and April. The pulmonate limpet, Siphonaria gigas and a bacterial biofilm at mid littoral showed a negative association. The snails of the high littoral and the supralittoral zone showed a temporal change in their abundance, but with contrasting patterns between sites. The temporal variation in the assemblages increased from the supralittoral to the infralittoral possibly due to changes in the water temperature and climatic conditions, that could influence the intertidal zone during the high and low tide, respectively.  相似文献   

6.
1. Positive effects of fish on algal biomass have variously been attributed to cascading top‐down effects and to nutrient enrichment by fish excretion. 2. Here, we used a combination of field and laboratory approaches to test an additional hypothesis, namely that the physical resuspension of settled algal cells by fish enhances algal biomass and alters community composition. 3. A multi‐lake survey showed that phytoplankton biomass and the fraction of motile algae increased with the concentration of inorganic suspended solids. This correlation could not be explained by wind‐induced resuspension because of the small size of the lakes. 4. In an enclosure experiment, chlorophyll‐a concentration, phytoplankton abundance and inorganic suspended solids increased significantly in the presence of Cyprinus carpio (common carp), but only if the fish had access to the sediment. No such effects were seen when a net prevented carp reaching the sediment. 5. The effects of enhanced nutrients and reduced zooplankton grazing as a result of fish feeding could not (fully) explain these observations, suggesting that the resuspension by carp of settled algae from a surface film on the sediment was the major factor in the outcome of the experiment. 6. An increase in diatoms and green algae (organisms with a relatively large sedimentation velocity) only in enclosures where carp could reach the sediment supported this view. 7. Several lines of evidence indicate that fish‐induced resuspension of algal cells from the sediment is an important mechanism that affects phytoplankton biomass and community composition in shallow lakes.  相似文献   

7.
Artificial rest reefs were set on sandy and rocky bottoms at 5–10 m depth along the coast of southern Japan. Mature thalli ofSargassum, Gelidium and other seaweds were transported from other coastal areas, packed in mesh bags and attached to the reefs to start the beds. After one year, the seaweed flora on the reef on a sandy bottom consisted of more than 20 species, includingSargassum spp. andGelidium amansii, which are important animal food species. Coralline algae were the dominants on the rocky bottom reefs. The lower biomass on reefs on the rocky bottom was due to grazing by urchins. The same number of species was present in the first and second years on reefs on sandy bottoms, but there were moreSargassum thalli the second year.Maximum algal biomass of the artificial reef in May of the second year was 9998 g wet wt m–2 in sandy areas, 441 g wet wt m–2 in boulder areas and 228 g wet wt m–2 in rocky areas. Reefs on rocky bottoms continued to be covered by coralline algae and several species ofCodium andDictyota.  相似文献   

8.
Sea urchins are widely considered to be the major grazers in temperate subtidal systems, with herbivorous fish being browsers of minor importance. This paper reviews spatial and temporal patterns in these herbivores on rocky reels in temperate Australasia, with the aim of assessing their relative impacts on patch structure and dynamics. Herbivorous fishes are widespread and make up a significant numerical component the reel fish fauna. Sea urchins are also abundant, but not all geographic locations support actively grazing species. Both fish and sea urchins exhibit distinct patterns of distribution among depth strata. Within depth strata, all herbivores are restricted to (sea urchins) or forage preferentially in (fish) particular habitat patches, causing a mosaic of different feeding activities. These patches are either related to specific features of the habitat (e.g. Kelp patches, topography) or behavioural interactions. Foraging by sea urchins and demersal-nesting damselfishes is intense and persistent, whereas in the kelp-feeding fish Odax cyanomelas, foraging reaches greatest intensity at predictable locations during a few months of every year. Many fish and sea urchins consume some algae in preference to others. However, feeding preferences may determine the nature of the impact only in fishes. For sea urchins, preference may occasionally determine the order in which algae are consumed, but at high densities they consume all available macroalgae. Impacts of both types of herbivore on the abundance of algae have been recorded. Some sea urchins (e.g. Evechinus chloroticus, Centrostephanus rodgersii) appear to severely modify biogenic habitat structure by maintaining ‘barrens’ (areas devoid of macroalgae) over long periods. In contrast to this, the effects of fishes may be more transitory (e.g. seasonal impact of Odax cyanomelas on brown algae) or occur at smaller spatial scales (e.g. nest sites maintained by male Parma victoriae) Herbivorous and other fishes appear to respond to spatial patterns in algal distributions, rallier than having it major impact upon them. The relative effects of fish and sea urchins on the long-term dynamics of kelp forests are unknown, hut temporal patterns in herbivore abundance and behaviour, and algal demography arc urgent targets for research.  相似文献   

9.
Algal zonation patterns were studied in two sites (Caloura, south coast and Ribeirinha, north coast) of the island of Sao Miguel, Azores. At each site two stations were studied and the transects revealed the occurrence of two distinct and well established algal zones. In the first zone, daily immersed and emersed by the tide, the algae were growing in a dense and short tangle forming a mat, referred to as algal turf. In the second zone, which was wet most of the time, the algae were larger and frondose. A list of the species of benthic marine algae occurring on the algal turf of each station is given. Of the total of 47 species found, eight are new for the Azores and another 13 species are recorded for the first time for Sao Miguel. Gigartina acicularis (Roth) Lamouroux and articulate coralline algae (Corallina oficinalis Linnaeus and Jania spp.) were the more common species. Seasonal variation of the algal turf was studied and related to mean monthly values of air and sea water temperatures, insolation and hours of light. The zonation patterns and composition of algal species were compared with those from other open rocky shores.  相似文献   

10.
Interest is growing in algae as sources of medicinal and other potentially useful compounds, as well as their use in fish rearing. We are interested in their production of polyunsaturated fatty acids (PUFA). Photoautotrophic growth gives the highest levels of unsaturation in the fatty acid pool, but biomass concentrations are low. Heterotrophy on sugars gives higher biomass but seems to give more saturation in the fatty acids. In freshwater algae acetate has proved to be a good carbon source for photoheterotrophic growth, giving a crop with reasonably high levels of PUFA. In addition it is possible to regulate acetic acid addition through the pH change as acetate is used up in a well-aerated system, so achieving high biomass yields in the presence of relatively low acetate concentration. When we attempted to extend this to marine algae (principally species used in fish farming), we found that acetic acid was ineffective or sometimes toxic to most species tested, even at high pH. However, glycerol stimulated growth in a number of the algae. We report on this stimulation, and on the fatty acid composition of the resulting algal crop, discuss the problems in regulating the addition of this metabolite to algal cultures, and speculate on applications in the production of other useful algal metabolites. We also show that some of these algae used in fish farming grow best when the salinity of the water is rather less than that found in standard sea water.  相似文献   

11.
The vertical distribution of algal biomass in the bed sediment and the seasonal development of benthic algae on stones and fine-grained sediments were studied in a small unshaded stream. In addition, field experiments were conducted on the role of irradiance and phosphorus in regulating algal biomass. We found that algal biomass was high at a sediment depth of ten centimetres. Comparison of studies on algal biomass where different depths of the sediment are used should therefore be made with caution. Substrata-dependent differences in algal biomass development were substantial. While algal biomass development on stones was controlled by macroinvertebrate grazing, that on the fine-grained sediment followed the dynamics of incident irradiance, but was attenuated by sediment rebedding. Because of the high grazing pressure on algal biomass on stony substrata, no significant response to phosphorus enrichment was attained. In contrast, algal biomass development on fine-grained sediments was phosphorus-limited. Heavy shading of the fine-grained sediments did not significantly affect algal biomass development, thus suggesting that phosphorus limitation prevents algae from fully utilizing the light resource in this stream. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Predicting the impacts of ocean acidification on coastal ecosystems requires an understanding of the effects on macroalgae and their grazers, as these underpin the ecology of rocky shores. Whilst calcified coralline algae (Rhodophyta) appear to be especially vulnerable to ocean acidification, there is a lack of information concerning calcified brown algae (Phaeophyta), which are not obligate calcifiers but are still important producers of calcium carbonate and organic matter in shallow coastal waters. Here, we compare ecological shifts in subtidal rocky shore systems along CO2 gradients created by volcanic seeps in the Mediterranean and Papua New Guinea, focussing on abundant macroalgae and grazing sea urchins. In both the temperate and tropical systems the abundances of grazing sea urchins declined dramatically along CO2 gradients. Temperate and tropical species of the calcifying macroalgal genus Padina (Dictyoaceae, Phaeophyta) showed reductions in CaCO3 content with CO2 enrichment. In contrast to other studies of calcified macroalgae, however, we observed an increase in the abundance of Padina spp. in acidified conditions. Reduced sea urchin grazing pressure and significant increases in photosynthetic rates may explain the unexpected success of decalcified Padina spp. at elevated levels of CO2. This is the first study to provide a comparison of ecological changes along CO2 gradients between temperate and tropical rocky shores. The similarities we found in the responses of Padina spp. and sea urchin abundance at several vent systems increases confidence in predictions of the ecological impacts of ocean acidification over a large geographical range .  相似文献   

13.
Summary The hypothesis that sea urchin grazing and interactions with turf-forming red algae prevent large brown algae from forming an extensive canopy in the low intertidal zone of southern California was tested with field experiments at two study sites. Experimental removal of sea urchins resulted in rapid algal recruitment. Crustose coralline algae which typically dominate the substratum in areas with dense urchin populations were quickly overgrown by several species of short-lived green, brown and red algae. The removal of urchins also significantly increased the recruitment of two long-lived species of large brown algae (Egregia laevigata and Cystoseira osmundacea at one study site and E. laevigata and Halidrys dioica at the other). The experimental plots at both sites were eventually dominated by perennial red algae.A two-factorial experiment demonstrated that sea urchin grazing and preemption of space by red algae in areas where urchins are less abundant are responsible for the rarity of large brown algae in the low intertidal of southern California. The three dominant perennial red algae, Gigartina canaliculata, Laurencia pacifica and Gastroclonium coulteri, recruit seasonally from settled spores but can rapidly fill open space with vigorous vegetative growth throughout the year. These species encroach laterally into space created by the deaths of large brown algae or by other disturbances. Once extensive turfs of these red algae are established further invasion is inhibited. This interaction of algae which proliferate vegetatively with algae which recruit only from settled spores is analogous to those which occur between solitary and colonial marine invertebrates and between solitary and cloning terrestrial plants.It is suggested that a north-south gradient in the abundance of vegetatively propagating species, in grazing intensity and in the frequency of space-clearing disturbances, may account for latitudinal variation in intertidal algal community structure along the Pacific coast of North America.  相似文献   

14.
In this study of a rocky intertidal habitat in northern Japan, feeding by avian consumers had significant effects on algal assemblages and small herbivorous invertebrates. The effects of the birds on algae were different from those of invertebrate grazers such as urchins and gastropods. The abundance of the dominant algal species decreased during the grazing period, increased again after the grazing period, and indirectly affected algal species richness and evenness. Avian grazing also decreased the density of tube-dwelling amphipods on the dominant alga, but did not change the density of mobile and free-living isopods. These results suggest that avian grazers may act as habitat modifiers rather than exploitative competitors for the small herbivorous crustaceans. Avian herbivores consumed only the upper parts of large algal fronds, apparently reducing the amount of suitable microhabitat for the small herbivorous crustaceans, which are subject to a variety of physical or biological stress. Thus, avian herbivores function as ecosystem engineers, regulating community structure in a manner different to invertebrate herbivores in rocky intertidal habitats.  相似文献   

15.
An August 1987 benthic survey of otter-free and otter-occupied areas along the outer coast of Washington State's Olympic Peninsula confirms that this area has been as profoundly influenced by sea otters as other rocky, nearshore communities studied in California, Canada, and Alaska. Prey density, size, and biomass were found to be negatively correlated with sea otter abundance, suggesting that the re-introduction of sea otters to this area in 1969–1970 has profoundly affected invertebrate prey abundance and distribution, particularly that of the red sea urchin, Strongylocentrotus franciscanus. Red urchin distribution appears to influence algal groups differently and in a manner consistent with current otter/urchin/kelp theory. Foliose red algal abundance was negatively related to urchin numbers and coralline crusts were positively correlated. Aerial photographs of Macrocystis integrifolia cover at Cape Alava suggest an increase since the introduction of sea otters. Given the present distribution of prey along the Olympic Peninsula coast, we conclude that as the sea otter population continues to grow, range expansion is more likely to occur to the north, which may also lead to possible conflicts with an increasing sea urchin fishery and Native American set net activity.  相似文献   

16.
Subtropical seagrass beds can be subject to relatively high levels of direct herbivory and large blooms of drift algae, both of which can have important effects on the floral and faunal components of the community. Caging experiments were used to investigate these factors in a Thalassia testudinum bed in Biscayne Bay, Florida. Abundance of sea urchins, Lytechinus variegatus, and drift algae was manipulated within the cages. Naturally occurring levels of urchin grazing do not appear to affect the T. testudinum population. With experimentally increased urchin densities in the winter, seagrass shoot density and aboveground biomass decreased significantly. Similar effects were not detected in the summer, indicating that the impact of grazing on T. testudinum is lessened during this time of year. Shoot density was more vulnerable to grazing than aboveground biomass. This may be a result of grazing-induced increases in seagrass productivity, in which the remaining shoots produce more or longer leaves. In the winter, drift algal blooms form large mats that cover the seagrass canopy. Under the normal grazing regime these algal blooms do not have significant negative effects on the seagrass. With increased grazing pressure, however, there is a synergistic effect of grazing and drift algae on seagrass shoot density. At intermediate urchin density (10 per m(-2)), cages without algae did not undergo significant decreases in shoot density, while those with algae did. At the high density of urchins, the number of seagrass shoots in cages both with and without algae decreased, but the effect was more pronounced for cages with algae. Invertebrate abundance at the field site was low relative to other seagrass beds. There were no discernible effects, either positive or negative, of urchin and algae manipulations on the sampled invertebrate community.  相似文献   

17.
1. Anthropogenic activities in prairie streams are increasing nutrient inputs and altering stream communities. Understanding the role of large consumers such as fish in regulating periphyton structure and nutritional content is necessary to predict how changing diversity will interact with nutrient enrichment to regulate stream nutrient processing and retention. 2. We characterised the importance of grazing fish on stream nutrient storage and cycling following a simulated flood under different nutrient regimes by crossing six nutrient concentrations with six densities of a grazing minnow (southern redbelly dace, Phoxinus erythrogaster) in large outdoor mesocosms. We measured the biomass and stoichiometry of overstory and understory periphyton layers, the stoichiometry of fish tissue and excretion, and compared fish diet composition with available algal assemblages in pools and riffles to evaluate whether fish were selectively foraging within or among habitats. 3. Model selection indicated nutrient loading and fish density were important to algal composition and periphyton carbon (C): nitrogen (N). Nutrient loading increased algal biomass, favoured diatom growth over green algae and decreased periphyton C : N. Increasing grazer density did not affect biomass and reduced the C : N of overstory, but not understory periphyton. Algal composition of dace diet was correlated with available algae, but there were proportionately more diatoms present in dace guts. We found no correlation between fish egestion/excretion nutrient ratios and nutrient loading or fish density despite varying N content of periphyton. 4. Large grazers and nutrient availability can have a spatially distinct influence at a microhabitat scale on the nutrient status of primary producers in streams.  相似文献   

18.
Mayer  Tim 《Hydrobiologia》2020,847(20):4145-4160

Protecting and restoring shallow tropical lakes and wetlands requires a knowledge of what shapes and controls algal dynamics and primary productivity in these systems. Algal community structure and composition can be regulated either through biotic or abiotic controls. Large-scale changes in fish populations can affect algal communities by altering food web dynamics and the physical and chemical properties of the aquatic environment. A reduction in fish biomass can lead to a reduction in algal biomass because of increased grazing by zooplankton and reduced availablity of nutrients. However, the omnivorous fish common in tropical systems often consume algae, and their reduction can increase algal biomass. There is a need for more information on the effect of fish removals/reductions in tropical systems. In a five-year study of a shallow, tropical pond in Hawaii, I investigated the water quality effects of tilapia removal following the occurrence of two natural fish die-offs. I describe the concurrent impacts of water-level fluctuations and the fish die-offs on the physical and chemical conditions of the pond and the subsequent changes in the algal community. Overall, nutrients, suspended sediment, organic matter, and algal biomass were significantly reduced and light availability significantly increased in the absence of tilapia.

  相似文献   

19.
We investigated how the relative availability of solar radiation in the presence or absence of grazing alters the ability of benthic algae to respond to nutrient enrichment in an Alaskan marsh. We used a factorial mesocosm experiment that included nutrient enrichment (enriched or control), grazing (grazed or ungrazed), and light (unshaded or shaded) to simulate shading by macrophytes early and late in the growing season, respectively. We found stronger effects of grazers and nutrients compared to light on benthic algal biomass and taxonomic composition. Algal biomass increased in nutrient‐enriched treatments and was reduced by grazing. Shading did not have an effect on algal biomass or taxonomic composition, but the concentration of chl a per algal biovolume increased with shading, demonstrating the ability of algae to compensate for changes in light availability. Algal taxonomic composition was more affected by grazer presence than nutrients or light. Grazer‐resistant taxa (basal filaments of Stigeoclonium) were replaced by diatoms (Nitzschia) and filamentous green algae (Ulothrix) when herbivores were removed. The interacting and opposing influences of nutrients and grazing indicate that the algal community is under dual control from the bottom‐up (nutrient limitation) and from the top‐down (consumption by herbivores), although grazers had a stronger influence on algal biomass and taxonomic composition than nutrient enrichment. Our results suggest that low light availability will not inhibit the algal response to elevated nutrient concentrations expected with ongoing climate change, but grazers rapidly consume algae following enrichment, masking the effects of elevated nutrients on algal production.  相似文献   

20.
The effects of grazing on fleshy algal turfs by large herbivorous fishes and by the black spiny urchin, Diadema antillarum (Philippi), were investigated in three shallow (<3 m), moderately exposed, reef flat habitats in the San Blas Islands on the Caribbean coast of Panama. Grazing by Diadema was found to be a primary determinant of the biomass of fleshy algae in this shallow reef environment, and its impact was exposure-dependent. Feeding activity of Diadema was inhibited during the protracted periods of heavy wave action that characterize the dry season when strong north winds (24–27 kph) are typical. In the shallowest, most exposed elkhorn bluff habitats urchin grazing was minimal even during calm periods due to the effects of waves generated by unpredictable, light winds. In a relatively protected backreef habitat, water movement was inadequate to discourage grazing significantly, even during the turbulent dry season. As a result, algal biomass (decalcified dry weight) was typically three-fold greater in the elkhorn bluff habitat than on the ackreef. In habitats of intermediate exposure (elkhorn fields) algal biomass was reduced during calm periods, but increased to the level characteristic of the elkhorn bluff habitat during protracted rough periods that inhibited grazing by Diadema.A caging experiment in the backreef habitat demonstrated a relatively minor effect of grazing by herbivorous fishes in comparison to that of grazing by Diadema. Observations on the distributions and abundances of herbivorous fishes also indicated a relatively minor role for these grazers as determinants of algal biomass in the more exposed habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号