首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholinesterases (ChEs) are classified as either acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) based on their substrate and inhibitor specificity. Organophosphate and carbamate compounds commonly represented by herbicides, pesticides, and nerve gases irreversibly inhibit ChEs. Therefore, exposure to organophosphates and carbamates is normally assessed by measuring ChE activity in blood. There are two approaches for measuring AChE and BChE activity present in whole blood: (1) separating blood into erythrocytes, which contain only AChE, and plasma which contains only BChE, to measure their activity individually, or (2) use a BChE-specific inhibitor to measure the activity of AChE in whole blood. A number of studies have reported the use of different inhibitors for the simultaneous measurement of AChE and BChE activities. However, the inhibitors used for completely inhibiting BChE activity also inhibited AChE activity leading to errors in reported values. The goal of this study was to find the most accurate and simple method for the simultaneous determination of AChE and BChE activity in animal whole blood. Solutions containing human AChE and BChE in various proportions were prepared and AChE and BChE activities were measured using three reported methods. Results demonstrate that ethopropazine and (-) huperzine A appear to be the most specific ChE inhibitors. Preliminary results with human and animal whole blood suggest that 20muM ethopropazine and 500nM (-) huperzine A can be used for measuring AChE and BChE activities across species.  相似文献   

2.
We have described recently an acetylcholinesterase (AChE) knockout mouse. While comparing the tissue distribution of AChE and butyrylcholinesterase (BChE), we found that extraction buffers containing Triton X-100 strongly inhibited mouse BChE activity. In contrast, buffers with Tween 20 caused no inhibition of BChE. Conventional techniques grossly underestimated BChE activity by up to 15-fold. In Tween 20 buffer, the intestine, serum, lung, liver, and heart had higher BChE than AChE activity. Only brain had higher AChE than BChE activity in AChE +/+ mice. These findings contradict the dogma, based mainly on observations in Triton X-100 extracts, that BChE is a minor cholinesterase in animal tissues. AChE +/- mice had 50% of normal AChE activity and AChE -/- mice had none, but all mice had similar levels of BChE activity. BChE was inhibited by Triton X-100 in all species tested, except rat and chicken. Inhibition was reversible and competitive with substrate binding. The active site of rat BChE was unique, having an arginine in place of leucine at position 286 (human BChE numbering) in the acyl-binding pocket of the active site, thus explaining the lack of inhibition of rat BChE by Triton X-100. The generally high levels of BChE activity in tissues, including the motor endplate, and the observation that mice live without AChE, suggest that BChE has an essential function in nullizygous mice and probably in wild-type mice as well.  相似文献   

3.
All the equilibrium conformations of 34 analogues of acetylcholine (ACh) with the general formula R-C(O)O-Alk-N+(CH3)3 are calculated by the method of molecular mechanics. In the series R-C(O)O-(CH2)2-N+(CH3)3, a reliable correlation is found between the molecular volume of the substrate and the rate of its hydrolysis by acetylcholinesterase (AChE); the absence of such a correlation is demonstrated for butyrylcholinesterase (BChE). Theoretical conformational analysis confirms that the completely extended tt conformation of ACh is productive for the hydrolysis by AChE, which agrees with the results of X-ray analysis of AChE. AChE is shown to hydrolyze only those substrates that form equilibrium conformers compatible in the mutual arrangement of trimethylammonium group, carbonyl carbon, and carbonyl oxygen with the tt conformation of ACh; in this case, the rate of substrate hydrolysis depends on the total population of these conformers. A reliable correlation was found between the population of the semifolded (tg-) conformation of the choline moiety of substrate molecules and the rate of their BChE hydrolysis. In a series of CH3-C(O)O-Alk-N+(CH3)3, the rate of BChE hydrolysis is demonstrated to depend on the total population of conformations compatible in the mutual arrangement of functionally important atoms with the tg- conformation of ACh. The tg- conformation of ACh is concluded to be productive for BChE hydrolysis. Similar orientations of the substrate molecules relative to the catalytic triads of both AChE and BChE are proven to coincide upon the substrate productive sorption in their active sites. It is hypothesized that the sorption stage is rate-limiting in cholinesterase hydrolysis and the enzyme hydrolyzes the ACh molecule in its energetically favorable conformation.  相似文献   

4.
In order to identify amino acids involved in the interaction of acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; EC 3.1.1.8) with carbamates, the time course of inhibition of the recombinant mouse enzymes BChE wild-type (w.t.), AChE w.t. and of 11 site-directed AChE mutants by Ro 02-0683 and bambuterol was studied. In addition, the reversible inhibition of cholinesterases by terbutaline, the leaving group of bambuterol, was studied. The bimolecular rate constant of AChE w.t. inhibition was 6.8 times smaller by Ro 02-0683 and 16000 times smaller by bambuterol than that of BChE w.t. The two carbamates were equipotent BChE inhibitors. Replacement of tyrosine-337 in AChE with alanine (resembling the choline binding site of BChE) resulted in 630 times faster inhibition by bambuterol. The same replacement decreased the inhibition by Ro 02-0683 ten times. The difference in size of the choline binding site in the two w.t. enzymes appeared critical for the selectivity of bambuterol and terbutaline binding. Removal of the charge with the mutation D74N caused a reduction in the reaction rate constants for Ro 02-0683 and bambuterol. Substitution of tyrosine-124 with glutamine in the AChE peripheral site significantly increased the inhibition rate for both carbamates. Substitution of phenylalanine-297 with alanine in the AChE acyl pocket decreased the inhibition rate by Ro 02-0683. Computational docking of carbamates provided plausible orientations of the inhibitors inside the active site gorge of mouse AChE and human BChE, thus substantiating involvement of amino acid residues in the enzyme active sites critical for the carbamate binding as derived from kinetic studies.  相似文献   

5.
The effects of Ni2+, Co2+, and Mn2+ on human serum butyrylcholinesterase (BChE, acylcholine acylhydrolase E.C. 3.1.1.8) were investigated in this study. Inhibition kinetics of BChE were studied using butyrylthiocholine (BTCh) as substrate. The "1/v" versus "1/[BTCh]" plots in the absence (control plot) and in the presence of the metal ions intersected above 1/[BTCh]-axis for all trace elements. In addition, when the concentrations of the cations were increased at 4 mM BTCh, velocities decreased and drove to zero at high concentrations of the trace elements. These results demonstrate that Ni2+, Co2+, and Mn2+ are linear mixed-type inhibitors of BChE. alphaK(i) values have been determined as 53.20 mM,152.25 mM, and 190.24 mM for Ni2+, Mn2+, and Co2+, respectively, by using nonlinear regression analysis. From the comparison of alphaK(i) values of the trace elements, it can be said that BChE has more affinty to binding Ni2+ than Co2+ and Mn2+.  相似文献   

6.
L Zemach  D Segal  Y Shalitin 《FEBS letters》1990,263(1):166-168
The diuretic drug amiloride was found to be a powerful inhibitor of the reaction of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with their specific choline ester substrates. The inhibition constant is in the micromolar range. On the other hand, when added to a mixture of cholinesterase (AChE and BChE) and neutral substrates, amiloride, in some cases, enhanced the reaction rate. The rate of the reaction of butyrylcholinesterase with p-nitrophenyl butyrate was increased up to 12 fold by amiloride.  相似文献   

7.
Summary The phylo- and ontogenetically related enzymes butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) are expressed consecutively at the onset of avian neuronal differentiation. In order to investigate their possible co-regulation, we have studied the effect of highly selective inhibitors on each of the cholinesterases with respect to their expression in rotary cultures of the retina (retinospheroids) and stationary cultures of the embryonic chick tectum. Adding the irreversible BChE inhibitor iso-OMPA to reaggregating retinal cells has only slight morphological effects and fully inhibits BChE expression. Unexpectedly, iso-OMPA also suppresses the expression of AChE to 35%–60% of its control activity. Histochemically, this inhibition is most pronounced in fibrous regions. The release of AChE into the media of both types of cultures is inhibited by iso-OMPA by more than 85%. Control experiments show that AChE suppression by the BChE inhibitor is only partially explainable by direct cross-inhibition of iso-OMPA on AChE. In contrast, the treatment of retinospheroids with the reversible AChE inhibitor BW284C51 first accelerates the expression of AChE and then leads to a rapid decay of the spheroids. After injection of BW284C51 into living embryos, we find that AChE is expressed prematurely in cells that normally express BChE. We conclude that the cellular expression of AChE is regulated by the amount of both active BChE and active AChE within neuronal tissues. Thus, direct interaction with classical cholinergic systems is indicated for the seemingly redundant BChE.  相似文献   

8.
The pattern of molecular forms of acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) separated by density gradient centrifugation was investigated in the brain and cerebrospinal fluid in Alzheimer's disease (AD), in human embryonic brain and in rat brain after experimental cholinergic deafferentation of the cerebral cortex. While a selective loss of the AChE G4 form was a rather constant finding in AD, a small but significant increase of G1 for both AChE and BChE was found in the most severely affected cases. Both in normal human brain and in AD a significant relationship could be established between the AChE G4/G1 ratio in different brain regions and the activity of choline acetyltransferase (ChAT). A similar decrease of the AChE G4 form as observed in AD can be induced in rat by experimental cholinergic deafferentation of the cerebral cortex. The increase in G1 of both AChE and BChE in different brain regions in AD is quantitatively related to the local density of neuritic plaques which are histochemically reactive for both enzymes. In human embryonic brain, a high abundance of G1 and a low G4/G1 ratio for both AChE and BChE was found resembling the pattern observed in AD. Furthermore, both in embryonic brain and in AD AChE shows no substrate inhibition which is a constant feature of the enzyme in the adult human brain. It is, therefore, concluded that the degeneration of the cholinergic cortical afferentation in AD as reflected by a decrease of AChE G4 is accompanied by the process of a neuritic sprouting response involved in plaque formation which is probably associated with the expression of a developmental form of the enzyme.  相似文献   

9.
Red blood cell AChE (RBC-AChE) and plasma BChE can be used as sensitive biomarkers to detect exposure to OP nerve agents, pesticides, and cholinergic drugs. In a comparative study, RBC-AChE and serum BChE activities in whole blood was obtained from forty seven healthy male and female human volunteers, and then exposed separately ex vivo to three OP nerve agents (soman (GD), sarin (GB) and VX) to generate a wide range of inhibition of AChE and BChE activity (up to 90% of control). These samples were measured using four different ChE assays: (i) colorimetric microEllman (using DTNB at 412 nm), (ii) Test-mate ChE field kit (also based on the Ellman assay), (iii) Michel (delta pH), and (iv) the Walter Reed Army Institute of Research Whole Blood (WRAIR WB) cholinesterase assay. The WRAIR assay is a modified Ellman method using DTP at 324 nm (which minimizes hemoglobin interference and improves sensitivity), and determines AChE and BChE in a small whole blood sample simultaneously. Scatter plots of RBC-AChE activities were determined using the WRAIR ChE assay versus the micro-Ellman, Test-mateTM and Michel after exposure to varying concentrations of soman, sarin and VX. Regression analyses yielded mostly linear relationships with high correlations (r2 = 0.83-0.93) for RBC-AChE values in the WRAIR assay compared to the alternate methods. For the plasma BChE measurements, individual human values were significantly more variable (as expected), resulting in lower correlations using WRAIR ChE versus the alternate assays (r2 values 0.5 - 0.6). To circumvent the limitations of simple correlation analysis, Bland and Altman analysis for comparing two independent measurement techniques was performed. For example, a Bland and Altman plot of the ratio of the WRAIR whole blood AChE and Michel AChE (plotted on the y-axis) vs. the average of the two methods (x-axis) shows that the majority of the individual AChE values are within +/- 1.96 S.D. of the mean difference, indicating that the two methods may be used interchangeably with a high degree of confidence. The WRAIR ChE assay can be thus be used as a reliable inter-conversion assay when comparing results from laboratory-based (Michel) and field-based (Test-mateTM ChE kit), which use different methodology and report in different units of AChE activity.  相似文献   

10.
Central cholinergic systems are involved in a plethora of brain functions and are severely and selectively damaged in neurodegenerative diseases such as Alzheimer's disease and dementia with Lewy bodies. Cholinergic dysfunction is treated with inhibitors of acetylcholinesterase (AChE) while the role of butyrylcholinesterase (BChE) for brain cholinergic function is unclear. We have used in vivo microdialysis to investigate the regulation of hippocampal acetylcholine (ACh) levels in mice that are devoid of AChE (AChE-/- mice). Extracellular ACh levels in the hippocampus were 60-fold elevated in AChE-/- mice compared with wild-type (AChE+/+) animals. In AChE-/- mice, calcium-free conditions reduced hippocampal ACh levels by 50%, and infusion of tetrodotoxin by more than 90%, indicating continuous ACh release. Infusion of a selective AChE inhibitor (BW284c51) caused a dose-dependent, up to 16-fold increase of extracellular ACh levels in AChE+/+ mice but did not change ACh levels in AChE-/- mice. In contrast, infusion of a selective inhibitor of BChE (bambuterol) caused up to fivefold elevation of ACh levels in AChE-/- mice, but was without effect in AChE+/+ animals. These results were corroborated with two other specific inhibitors of AChE and BChE, tolserine and bis-norcymserine, respectively. We conclude that lack of AChE causes dramatically increased levels of extracellular ACh in the brain. Importantly, in the absence of AChE, the levels of extracellular ACh in the brain are controlled by the activity of BChE. These results point to a potential usefulness of BChE inhibitors in the treatment of central cholinergic dysfunction in which brain AChE activity is typically reduced.  相似文献   

11.
Red blood cell AChE (RBC-AChE) and plasma BChE can be used as sensitive biomarkers to detect exposure to OP nerve agents, pesticides, and cholinergic drugs. In a comparative study, RBC-AChE and serum BChE activities in whole blood was obtained from forty seven healthy male and female human volunteers, and then exposed separately ex vivo to three OP nerve agents (soman (GD), sarin (GB) and VX) to generate a wide range of inhibition of AChE and BChE activity (up to 90% of control). These samples were measured using four different ChE assays: (i) colorimetric microEllman (using DTNB at 412 nm), (ii) Test-mate ChE field kit (also based on the Ellman assay), (iii) Michel (delta pH), and (iv) the Walter Reed Army Institute of Research Whole Blood (WRAIR WB) cholinesterase assay. The WRAIR assay is a modified Ellman method using DTP at 324 nm (which minimizes hemoglobin interference and improves sensitivity), and determines AChE and BChE in a small whole blood sample simultaneously.Scatter plots of RBC-AChE activities were determined using the WRAIR ChE assay versus the micro-Ellman, Test-mateTM and Michel after exposure to varying concentrations of soman, sarin and VX. Regression analyses yielded mostly linear relationships with high correlations (r2 = 0.83–0.93) for RBC-AChE values in the WRAIR assay compared to the alternate methods. For the plasma BChE measurements, individual human values were significantly more variable (as expected), resulting in lower correlations using WRAIR ChE versus the alternate assays (r2 values 0.5 – 0.6).To circumvent the limitations of simple correlation analysis, Bland and Altman analysis for comparing two independent measurement techniques was performed. For example, a Bland and Altman plot of the ratio of the WRAIR whole blood AChE and Michel AChE (plotted on the y-axis) vs. the average of the two methods (x-axis) shows that the majority of the individual AChE values are within ± 1.96 S.D. of the mean difference, indicating that the two methods may be used interchangeably with a high degree of confidence. The WRAIR ChE assay can be thus be used as a reliable inter-conversion assay when comparing results from laboratory-based (Michel) and field-based (Test-mateTM ChE kit), which use different methodology and report in different units of AChE activity.  相似文献   

12.
B-esterases are serine hydrolases composed of cholinesterases, including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and carboxylesterase (CbE). These esterases, found in blood plasma, are inhibited by organophosphorus (OP) and carbamate (CB) insecticides and can be used as nondestructive biomarkers of exposure to anticholinesterase insecticides. Furthermore, B-esterases are involved in detoxification of these insecticides. In order to establish the level of these enzymes and to have reference values for their normal activities, total plasma cholinesterase (ChE), AChE and BChE activities, and plasma CbE activity were determined in 729 European raptors representing 20 species, four families, and two orders. The diurnal families of the Falconiforme order were represented by Accipitridae and Falconidae and the nocturnal families of the Strigiforme order by Tytonidae and Strigidae. Intraspecies differences in cholinesterase activities according to sex and/or age were investigated in buzzards (Buteo buteo), sparrowhawks (Accipiter nisus), kestrels (Falco tinnunculus), barn owls (Tyto alba), and tawny owls (Strix aluco). Sex-related differences affecting ChE and AChE activities were observed in young kestrels (2-3-mo-old) and age-related differences in kestrels (ChE and AChE), sparrowhawks (AChE), and tawny owls (ChE, AChE, and BChE). The interspecies analysis yielded a negative correlation between ChE activity and body mass taking into account the relative contribution of AChE and BChE to ChE activity, with the exception of the honey buzzard (Pernis apivorus). The lowest ChE activities were found in the two largest species, Bonelli's eagle (Hieraaetus fasciatus) and Egyptian vulture (Neophron percnopterus) belonging to the Accipitridae family. The highest ChE activities were found in the relatively small species belonging to the Tytonidae and Strigidae families and in honey buzzard of the Accipitridae family. Species of the Accipitridae, Tytonidae, and Strigidae families were characterized by a BChE contribution that dominated the total ChE activity, while in the species of the Falconidae family, AChE activity dominated. With the exception of the barn owl, CbE activity (eserine-insensitive alpha-naphthyl acetate esterase [alpha-NAE] activity) in all species was almost absent or very low. The values obtained in this study for ChE, AChE, and BChE activities and the AChE:BChE ratios for buzzard, kestrel, barn owl, and tawny owl provide a good estimate of the normal values in free-living individuals of these European species. They can be used as a baseline to evaluate the effect of anticholinesterase insecticides in the field.  相似文献   

13.
2-(Methacryloyloxy)ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate, is a cyclic urea derivative synthesized from urea, 2-(methacryloyloxy) ethyl acetoacetate and substituted benzaldehyde, and tested in terms of the inhibition of two physiologically relevant carbonic anhydrase (CA) isozymes I and II. Acetylcholinesterase (AChE) is found in high concentrations in the red blood cells and brain. Butyrylcholinesterase (BChE) is another enzyme abundantly present in the liver and released into blood in a soluble form. Also, they were tested for the inhibition of AChE and BChE enzymes and demonstrated effective inhibition profiles with Ki values in the range of 429.24–530.80?nM against hCA I, 391.86–530.80?nM against hCA II, 68.48–97.19?nM against AChE and 104.70–214.15?nM against BChE. On the other hand, acetazolamide clinically used as CA inhibitor, showed Ki value of 281.33?nM against hCA I, and 202.70?nM against hCA II. Also, Tacrine inhibited AChE and BChE showed Ki values of 396.03 and 209.21?nM, respectively.  相似文献   

14.
At the mouse neuromuscular junction (NMJ), there are two distinct cholinesterases (ChE): acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Until now, it has been difficult to determine the precise localization of BChE at the NMJ. In this study, we use a modification of Koelle''s method to stain AChE and BChE activity. This method does not interfere with fluorescent co-staining, which allows precise co-localization of ChE and other synaptic molecules at the NMJ. We demonstrate that AChE and BChE exhibit different localization patterns at the mouse NMJ. AChE activity is present both in the primary cleft and in the secondary folds, whereas BChE activity appears to be almost absent in the primary cleft and to be concentrated in subsynaptic folds. The same localization for BChE is observed in the AChE-knockout (KO) mouse NMJ. Collagenase treatment removed AChE from the primary cleft, but not from secondary folds in the wild-type mouse, whereas in the AChE-KO mouse, BChE remains in the secondary folds. After peripheral nerve injury and regeneration, BChE localization is not modified in either normal or KO mice. In conclusion, specific localization of BChE in the secondary folds of the NMJ suggests that this enzyme is not a strict surrogate of AChE and that the two enzymes have two different roles. (J Histochem Cytochem 58:1075–1082, 2010)  相似文献   

15.
A set of hybrid molecules were synthesized out of lipoic acid, alpha,omega-diamines of different lengths serving as spacers, and cholinesterase (ChE) inhibiting [2,1-b]quinazolinimines. Depending on the length of the alkylene spacer the amide hybrids are inhibitors of acetylcholinesterase (AChE) with inhibitory activities of 0.5-4.6microM and inhibitors of butyrylcholinesterase (BChE) with activities down to 5.7nM, therefore greatly exceeding the inhibitory activities of the parent quinazolinimines by factors of up to 1000. Due to increasing activity at BChE with increasing length of the alkylene spacer approximately 100-fold selectivity toward BChE is reached with a hepta- and an octamethylene spacer. Kinetic measurements reveal competitive and reversible inhibition of both ChEs by the hybrids. Furthermore, cell viability and antioxidant activity (using the ORAC-fluorescein assay) of several hybrids were evaluated, showing cytotoxicity at concentrations from 3.7 to 10.2microM and antioxidant properties are in the range of 0.4-0.8 Trolox equivalents (lipoic acid=0.6).  相似文献   

16.
We determined age-dependent changes in plasma and brain cholinesterase (ChE) activity for two species of passerines: house wren (Troglodytes aedon) and European starling (Sturnus vulgaris, starling). In plasma from nestlings of both species, total ChE activity increased with age, acetycholinesterase (AChE, EC 3.1.1.7) activity declined rapidly immediately after hatching, and butyrylcholinesterase (BChE, EC 3.1.1.8) activity increased steadily. For both species, total ChE and BChE activities and the BChE:AChE ratio in plasma were significantly greater in adults than nestlings suggesting trends observed in nestlings continue post fledging. In older nestlings and adults, AChE activity in plasma was significantly greater and BChE:AChE ratio less in house wrens than starlings. For house wrens as compared with starlings, ChE activity in brain increased at a significantly greater rate with age in nestlings and was significantly greater in adults. However, ChE activity in brain was similar at fledging for both species suggesting that the increase in ChE in brain is more directly related to ontogeny than chronologic age in nestlings of passerines. For both species, ChE activity increased significantly with brain weight of nestlings but not adults. House wrens hold similar patterns of age-dependent change in ChE activity in common with starlings but also exhibit differences in AChE activity in plasma that should be considered as a factor potentially affecting their relative toxicologic response to ChE inhibitors.  相似文献   

17.
Nerve agents are chiral organophosphate compounds (OPs) that exert their acute toxicity by phosphorylating the catalytic serine of acetylcholinesterase (AChE). The inhibited cholinesterases can be reactivated using oximes, but a spontaneous time-dependent process called aging alters the adduct, leading to resistance toward oxime reactivation. Human butyrylcholinesterase (BChE) functions as a bioscavenger, protecting the cholinergic system against OPs. The stereoselectivity of BChE is an important parameter for its efficiency at scavenging the most toxic OPs enantiomer for AChE. Crystals of BChE inhibited in solution or in cristallo with racemic V-agents (VX, Russian VX, and Chinese VX) systematically show the formation of the P(S) adduct. In this configuration, no catalysis of aging seems possible as confirmed by the three-dimensional structures of the three conjugates incubated over a period exceeding a week. Crystals of BChE soaked in optically pure VX(R)-(+) and VX(S)-(-) solutions lead to the formation of the P(S) and P(R) adduct, respectively. These structural data support an in-line phosphonylation mechanism. Additionally, they show that BChE reacts with VX(R)-(+) in the presence of racemic mixture of V-agents, at odds with earlier kinetic results showing a moderate higher inhibition rate for VX(S)-(-). These combined results suggest that the simultaneous presence of both enantiomers alters the enzyme stereoselectivity. In summary, the three-dimensional data show that BChE reacts preferentially with P(R) enantiomer of V-agents and does not age, in complete contrast to AChE, which is selectively inhibited by the P(S) enantiomer and ages.  相似文献   

18.
Butyrylcholinesterase (BChE; E.C. 3.1.1.8.) was 260-fold purified from soluble fraction of rat intestine. The enzyme was composed of tetrameric globular form by nonreducing electrophoresis. Optimum pH value was determined as 7.2 after zero buffer extrapolation. Optimum temperature was examined as 37 degrees C after zero time extrapolation. The enzyme showed marked substrate activation with positively charged, acyl-choline substrates. As a measure of catalytic efficiency, kcat/Km values were determined as 16,210, 25,650, and 46,150 for acetylthiocholine (ATCh), propionylthiocholine (PTCh), and butyrylthiocholine (BTCh), respectively. When the catalytic efficiencies are compared, soluble isoform of rat intestinal BChE became increasingly efficient as the size of the acyl portion of the substrate increases; BTCh > PTCh > ATCh. Differently, the enzyme showed substrate inhibition with benzoylcholine (BzCh) and a kcat/Km value of 21,190 was found. Triton X-100 inhibited more efficiently the rat intestinal BChE soluble isoform than it did the human serum BChE.  相似文献   

19.
Plasma acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity was measured repeatedly in 27 mallard (Anas platyrhynchos) ducklings between 7 and 85 days of age to determine age-dependent changes in enzyme activity. Plasma AChE, BChE, and total cholinesterase (ChE) activity decreased significantly with age. The relative proportion of AChE in total ChE activity also decreased slightly with age. Since some anti-ChE chemicals can selectively inhibit AChE or BChE activity, characterization of age-dependent changes in the activity of each enzyme may be necessary to accurately identify the occurrence of pesticide exposure.  相似文献   

20.
A comparative study is carried out on dependence of degree of activity inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) of a freshwater bony fish, the roach Rutilus rutilus L., on concentration of organophosphates: O,O-dimethyl-O-(2,2-dichlorovynyl)phosphate (DDVP) and tetraisopropylamidopyrophosphate (iso-OMPA). It has been shown that both in roach and in horse the both inhibitors are selective for BChE in comparison with AChE. Their selectivity degree was 2000-fold and 80-fold, respectively. The ranges of effective DDVP concentrations are overlapped for horse AChE and BChE, while they do not for the roach enzymes. A similar regularity is revealed at action of iso-OMPA. It is established that DDVP has a higher inhibitory potency and selectivity in relation to roach BChE, than iso-OMPA. It is suggested to use DDVP as a new selective inhibitor for separate evaluation of AChE and BChE activities in fish tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号