首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Understanding gene regulatory networks in mammalian cells requires detailed knowledge of protein-DNA interactions. Commonly used methods for genome-wide mapping of these interactions are based on chromatin immunoprecipitation. However, these methods have some drawbacks, such as the use of crosslinking reagents, the need for highly specific antibodies and relatively large amounts of starting material. We present DamID, an alternative technique to map genome-wide occupancy of interaction sites in vivo, that bypasses these limitations. DamID is based on the expression of a fusion protein consisting of a protein of interest and DNA adenine methyltransferase (Dam). This leads to methylation of adenines near sites where the protein of interest interacts with the DNA. These methylated sequences are subsequently amplified by a methylation-specific PCR protocol and identified by hybridization to microarrays. Using DamID, genome-wide maps of the binding of DNA-interacting proteins in mammalian cells can be constructed efficiently. Depending on the strategy used for expression of the Dam-fusion proteins, genome-wide binding maps can be obtained in as little as 2 weeks.  相似文献   

3.
4.
Single-strand breaks are a major form of DNA damage caused by ionizing radiation, and measurement of strand breaks has long been used as an index of overall cellular DNA damage. Most assays for DNA single-strand breaks in cells rely on measuring fractionated DNA samples following alkali denaturation. Quantification is usually achieved by prelabeling cells with radioactive DNA precursors; however, this is not possible in the situation of nondividing cells or freshly isolated tissue. It has previously been demonstrated that the alkali unwinding assay of DNA strand breaks can be quantified by blotting the recovered DNA on nylon membranes and hybridizing with radiolabeled sequence-specific probes. We report here improvements to the technique, which include hot alkali denaturation of DNA samples prior to blotting and the use of carrier DNA that is non-complementary to the radiolabeled probe. Our method allows both single- and double-stranded DNA to be quantified with the same efficiency, thereby improving the sensitivity and reproducibility of the assay, and allows calibration for determination of absolute levels of DNA strand breaks in cells. We also used this method to assay radiation-induced DNA strand breaks in freshly isolated human leukocytes and found them to have a strand break induction rate of 1815 strand breaks/cell/Gy.  相似文献   

5.
6.
Certain DNA base lesions induced by ionizing radiation or oxidative stress are repaired faster from the transcribed strand of active genes compared to the genome overall. In this study, it was investigated whether radiation-induced DNA strand breaks are preferentially repaired in active genes compared to the genome as a whole in CHO cells. The alkaline unwinding technique coupled to slot-blot hybridization with specific DNA probes was used to study the induction and repair of DNA strand breaks in defined DNA sequences. Results using this technique showed a linear dose response for the formation of radiation-induced DNA strand breaks in the dihydrofolate reductase (DHFR) gene. Furthermore, the half-life of radiation-induced strand breaks was less than 5 min in the DHFR gene, in the ribosomal genes, and in the genome as a whole. These results suggest that the repair of DNA strand breaks is fast and uniform in the genome of mammalian cells.  相似文献   

7.
Poly(ADP-ribosyl)ation is a cellular response to DNA strand breaks by which a large array of proteins becomes covalently modified for a brief period during the lifetime of the DNA breaks. Inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide after many types of DNA damage leads to a marked increase in DNA strand breakage, repair replication, cytogenetic damage, mutagenesis, and cell killing. It has been hypothesized that poly(ADP-ribose) polymerase may modify potentially degradative endogenous nucleases that can reduce cellular viability. Thus, in the presence of DNA strand breakage, the polymer would bind these enzymes to inhibit their activity. When synthesis of the polymerase is inhibited, the enzymes would act randomly to produce nonspecific damage in the DNA. We tested this hypothesis by electroporating restriction enzymes into human cells containing the shuttle vector pHAZE. Restriction enzymes cleave at specific recognition sequences in the lacZ target gene of pHAZE, and mutations result from rejoining errors at the cleavage sites. If the hypothesis were correct, enzyme-treated cells cultured with 3-aminobenzamide to inhibit synthesis of poly(ADP-ribose) polymers would result in a significant increase in mutations outside the restriction enzyme sites. The spectrum of mutations observed after electroporation of PvuII (which produces blunt-end double-strand breaks) or PvuI (which produces cohesive-end double-strand breaks) was similar in untreated and 3-aminobenzamide-treated cells. Thus, our results do not support the hypothesis that the increase in damage observed when poly(ADP-ribosyl)ation is inhibited is due to a chaotic, nonspecific attack on DNA by endogenous cellular nucleases.  相似文献   

8.
The comet assay: a method to measure DNA damage in individual cells   总被引:4,自引:0,他引:4  
We present a procedure for the comet assay, a gel electrophoresis-based method that can be used to measure DNA damage in individual eukaryotic cells. It is versatile, relatively simple to perform and sensitive. Although most investigations make use of its ability to measure DNA single-strand breaks, modifications to the method allow detection of DNA double-strand breaks, cross-links, base damage and apoptotic nuclei. The limit of sensitivity is approximately 50 strand breaks per diploid mammalian cell. DNA damage and its repair in single-cell suspensions prepared from yeast, protozoa, plants, invertebrates and mammals can also be studied using this assay. Originally developed to measure variation in DNA damage and repair capacity within a population of mammalian cells, applications of the comet assay now range from human and sentinel animal biomonitoring (e.g., DNA damage in earthworms crawling through toxic waste sites) to measurement of DNA damage in specific genomic sequences. This protocol can be completed in fewer than 24 h.  相似文献   

9.
The comet assay is a rapid, sensitive and inexpensive method for measuring DNA strand breaks. The comet assay has advantages over other DNA damage methods, such as sister chromatid exchange, alkali elution and micronucleus assay, because of its high sensitivity and that DNA strand breaks are determined in individual cells. This review describes a number of studies that used the comet assay to determine DNA strand breaks in aquatic animals exposed to genotoxicants both in vitro and in vivo, including assessment of DNA damage in aquatic animals collected from contaminated sites. One difficulty of using the comet assay in environmental work is that of comparing results from studies that used different methods, such as empirical scoring or comet tail lengths. There seems to be a consensus in more recent studies to use both the intensity of the tail and the length of the tail, i.e. DNA tail moment, percentage of DNA in the tail. The comet assay has been used to assess DNA repair and apoptosis in aquatic animals and modifications of the comet assay have allowed the detection of specific DNA lesions. There have been some recent studies to link DNA strand breaks in aquatic animals to effects on the immune system, reproduction, growth, and population dynamics. Further work is required before the comet assay can be used as a standard bio-indicator in aquatic environments, including standardization of methods (such as ASTM method E2186-02a) and measurements.  相似文献   

10.
Radiation induced damage, i.e., the induction of DNA strand breaks, was studied on the level of single, unlabeled cells. DNA strand breaks were determined by direct partial alkaline unwinding in intact cell nuclei followed by staining with acridine orange, a development of a proposal first described by B. Rydberg (Int J Radiat Biol 46:521-527, 1984). The ratio of green fluorescence (double-stranded DNA) to red fluorescence (single-stranded DNA) in single cells was taken as a measure of DNA strand breaks. CHO-K1 and M3-1 cells irradiated with X-rays show a dose dependent induction of DNA strand breaks. Incubation at 37 degrees C after irradiation leads to repair of breaks. A repair halflife of about 10-11 min can be determined. Cell cycle specific differences in the induction of DNA strand breaks or repair behavior are not detectable at the resolution achieved so far. This new method offers two major advantages: the resolution of DNA damage and repair on the level of single cells and no need for labeling, thereby allowing for DNA damage and repair to be assessed in biopsy material from tumor patients.  相似文献   

11.
Genome-wide physical mapping with bacteria-based large-insert clones (e.g., BACs, PACs, and PBCs) promises to revolutionize genomics of large, complex genomes. To accelerate rice and other grass species genome research, we developed a genome-wide BAC-based map of the rice genome. The map consists of 298 BAC contigs and covers 419 Mb of the 430-Mb rice genome. Subsequent analysis indicated that the contigs constituting the map are accurate and reliable. Particularly important to proficiency were (1) a high-resolution, high-throughput DNA sequencing gel-based electrophoretic method for BAC fingerprinting, (2) the use of several complementary large-insert BAC libraries, and (3) computer-aided contig assembly. It has been demonstrated that the fingerprinting method is not significantly influenced by repeated sequences, genome size, and genome complexity. Use of several complementary libraries developed with different restriction enzymes minimized the "gaps" in the physical map. In contrast to previous estimates, a clonal coverage of 6.0-8.0 genome equivalents seems to be sufficient for development of a genome-wide physical map of approximately 95% genome coverage. This study indicates that genome-wide BAC-based physical maps can be developed quickly and economically for a variety of plant and animal species by restriction fingerprint analysis via DNA sequencing gel-based electrophoresis.  相似文献   

12.
Gene targeting by triplex-forming oligonucleotides (TFOs) has proven useful for gene modulation in vivo. Photoreactive molecules have been conjugated to TFOs to direct sequence-specific damage in double-stranded DNA. However, the photoproducts are often repaired efficiently in cells. This limitation has led to the search for sequence-specific photoreactive reagents that can produce more genotoxic lesions. Here we demonstrate that photoactivated pyrene-conjugated TFOs (pyr-TFOs) induce DNA strand breaks near the pyrene moiety with remarkably high efficiency and also produce covalent pyrene-DNA adducts. Free radical scavenging experiments demonstrated a role for singlet oxygen activated by the singlet excited state of pyrene in the mechanism of pyr-TFO-induced DNA damage. In cultured mammalian cells, the effect of photoactivated pyr-TFO-directed DNA damage was to induce mutations, in the form of deletions, approximately 7-fold over background levels, at the targeted site. Thus, pyr-TFOs represent a potentially powerful new tool for directing DNA strand breaks to specific chromosomal locations for biotechnological and potential clinical applications.  相似文献   

13.
14.
Both DNA and the telomeric sequence are susceptible to copper-mediated reactive oxygen species (ROS) damage, particularly damage attributed to hydroxyl radicals. In this study, ROS-induced DNA double strand breaks and telomere shortening were produced by exposure to copper and ascorbic acid. Asp-Ala-His-Lys (DAHK), a specific copper chelating tetrapeptide d-analog of the N-terminus of human albumin, attenuated DNA strand breaks in a dose dependent manner. d-DAHK, at a ratio of 4:1 (d-DAHKCu), provided complete protection of isolated DNA from double strand breaks and, at a ratio of 2:1 (d-DAHKCu), completely protected DNA in Raji cells exposed to copper/ascorbate. Southern blots of DNA treated with copper/ascorbate showed severe depletion and shortening of telomeres and Raji cell treated samples showed some conservation of telomere sequences. d-DAHK provided complete telomere length protection at a ratio of 2:1 (d-DAHKCu). The human albumin N-terminus analog, d-DAHK, protects DNA and telomeres against copper-mediated ROS damage and may be a useful therapeutic adjunct in ROS disease processes.  相似文献   

15.
A method for mapping DNA sequences to specific germinal chromosomes in the ciliated protozoan Tetrahymena thermophila has been developed. This mapping technique (PCR mapping) utilizes the polymerase chain reaction and template DNA derived from nullisomic strains to directly assign micronuclear DNA sequences to specific micronuclear chromosomes. Using this technique, a number of unique sequences and short repetitive sequences flanked by unique sequences have been mapped to four of the five germinal chromosomes.  相似文献   

16.
17.
DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents.  相似文献   

18.
Yang N  Galick H  Wallace SS 《DNA Repair》2004,3(10):1323-1334
A significant proportion of cellular DNA damages induced by ionizing radiation are produced in clusters, also called multiply damaged sites. It has been demonstrated by in vitro studies and in bacteria that clustered damage sites can be converted to lethal double strand breaks by oxidative DNA glycosylases during attempted base excision repair. To determine whether DNA glycosylases could produce double strand breaks at radiation-induced clustered damages in human cells, stably transformed human lymphoblastoid TK6 cells that inducibly overexpress the oxidative DNA glycosylases/AP lyases, hNTH1 and hOGG1, were assessed for their radiation responses, including survival, mutation induction and the enzymatic production of double strand breaks post-irradiation. We found that additional double strand breaks were generated during post-irradiation incubation in uninduced TK6 control cells. Moreover, overproduction of either DNA glycosylase resulted in significantly increased double strand break formation, which correlated with an elevated sensitivity to the cytotoxic and mutagenic effects of ionizing radiation. These data show that attempted repair of radiation damage, presumably at clustered damage sites, by the oxidative DNA glycosylases can lead to the formation of potentially lethal and mutagenic double strand breaks in human cells.  相似文献   

19.
The emergence of therapy-related acute myeloid leukemia (t-AML) has been associated with DNA topoisomerase II (TOP2)-targeted drug treatments and chromosomal translocations frequently involving the MLL, or ALL-1, gene. Two distinct mechanisms have been implicated as potential triggers of t-AML translocations: TOP2-mediated DNA cleavage and apoptotic higher-order chromatin fragmentation. Assessment of the role of TOP2 in this process has been hampered by a lack of techniques allowing in vivo mapping of TOP2-mediated DNA cleavage at nucleotide resolution in single-copy genes. A novel method, extension ligation-mediated polymerase chain reaction (ELMPCR), was used here for mapping topoisomerase-mediated DNA strand breaks and apoptotic DNA cleavage across a translocation-prone region of MLL in human cells. We report the first genomic map integrating translocation breakpoints and topoisomerase I, TOP2, and apoptotic DNA cleavage sites at nucleotide resolution across an MLL region harboring a t-AML translocation hotspot. This hotspot is flanked by a TOP2 cleavage site and is localized at one extremity of a minor apoptotic cleavage region, where multiple single- and double-strand breaks were induced by caspase-activated apoptotic nucleases. This cleavage pattern was in sharp contrast to that observed approximately 200 bp downstream in the exon 12 region, which displayed much stronger apoptotic cleavage but where no double-strand breaks were detected and no t-AML-associated breakpoints were reported. The localization and remarkable clustering of the t-AML breakpoints cannot be explained simply by the DNA cleavage patterns but might result from potential interactions between TOP2 poisoning, apoptotic DNA cleavage, and DNA repair attempts at specific sites of higher-order chromatin structure in apoptosis-evading cells. ELMPCR provides a new tool for investigating the role of DNA topoisomerases in fundamental genetic processes and translocations associated with cancer treatments involving topoisomerase-targeted drugs.  相似文献   

20.
The Current State of Chromatin Immunoprecipitation   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号