首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

Treadmill pre-training can ameliorate blood brain barrier (BBB) dysfunction in ischemia-reperfusion injury, however, its role in ischemic brain edema remains unclear. This study assessed the neuroprotective effects induced by treadmill pre-training, particularly on brain edema in transient middle cerebral artery occluded model.

Methods

Transient middle cerebral artery occlusion to induce stroke was performed on rats after 2 weeks of treadmill pre-training. Magnetic resonance imaging (MRI) was used to evaluate the dynamic impairment of cerebral edema after ischemia-reperfusion injury. In addition, measurements of wet and dry brain weight, Evans Blue assay and Garcia scores were performed to investigate the cerebral water content, BBB permeability and neurologic deficit, respectively. Moreover, during ischemia-reperfusion injury, the expression of Aquaporin 4 (AQP4) was detected using immunofluorescence and Western bloting analyses.

Results

Treadmill pre-training improved the relative apparent diffusion coefficient (rADC) loss in the ipsilateral cortex and striatum at 1 hour and 2.5 hours after cerebral ischemia. In the treadmill pre-training group, T2W1 values of the ipsilateral cortex and striatum increased less at 7.5 hours, 1 day, and 2 days after stroke while the brain water content decreased at 2 days after ischemia. Regarding the BBB permeability, the semi-quantitative amount of contrast agent leakage of treadmill pre-training group significantly decreased. Less Evans Blue exudation was also observed in treadmill pre-training group at 2 days after stroke. In addition, treadmill pre-training mitigated the Garcia score deficits at 2 days after stroke. Immunofluorescence staining and Western blotting results showed a significant decrease in the expression of AQP4 after treadmill ischemia following pre-training.

Conclusions

Treadmill pre-training may reduce cerebral edema and BBB dysfunction during cerebral ischemia/reperfusion injury via the down-regulation of AQP4.  相似文献   

2.

Background

Stroke is one of the leading causes of neuronal death. Sesamin is known for neuroprotection by its antioxidant and anti-inflammatory properties but it lacks blood–brain barrier (BBB) activity. A panel of sesamin derivatives was screened and 3-bis (3-methoxybenzyl) butane-1,4-diol (BBD) was selected for high BBB activity and tested for its neuroprotective effect.

Methods

The focal cerebral ischemia of Sprague–Dawley rats and hypoxia models of murine BV-2 microglia or PC12 cells under oxygen/glucose deprivation were used for in vivo and in vitro test, respectively. Lipid peroxidation and superoxide dismutase (SOD) activity from the ischemic brain were tested and reactive oxygen species (ROS), cytokine production, prostaglandin (PGE2) and related signaling pathways from hypoxic cells were examined by ELISA or Western blot assay, respectively.

Results

BBD showed a protective effect when given 90 min after the focal cerebral ischemia. It also reduced lipid peroxidation and preserved SOD activity from the ischemic brain. The mechanism of BBD was further confirmed by attenuating ROS, cytokine production, and PGE2 release from hypoxic BV-2 or PC12 cells. BBD significantly reduced hypoxia-induced c-Jun N-terminal kinases (JNK) and modulated AKT-1 and caspase-3 (survival and apoptotic pathways) in BV-2 cells, and inhibited hypoxia-induced JNK and cyclooxygenase-2 activation in PC12 cells.

Conclusions

The neuroprotective effect of BBD on ischemia/hypoxia models was involved with antioxidant and anti-inflammatory effects. The result would help the development of new CNS drug for protection of ischemia/hypoxia injury.  相似文献   

3.

Background

Rabies is known to be lethal in human. Treatment with passive immunity for the rabies is effective only when the patients have not shown the central nerve system (CNS) signs. The blood–brain barrier (BBB) is a complex functional barrier that may compromise the therapeutic development in neurological diseases. The goal of this study is to determine the change of BBB integrity and to assess the therapeutic possibility of enhancing BBB permeability combined with passive immunity in the late stage of rabies virus infection.

Methods

The integrity of BBB permeability in rats was measured by quantitative ELISA for total IgG and albumin levels in the cerebrospinal fluid (CSF) and by exogenously applying Evans blue as a tracer. Western blotting of occludin and ZO-1, two tight junction proteins, was used to assess the molecular change of BBB structure.The breakdown of BBB with hypertonic arabinose, recombinant tumor necrosis factor-alpha (rTNF-γ), and focused ultrasound (FUS) were used to compare the extent of BBB disruption with rabies virus infection. Specific humoral immunity was analyzed by immunofluorescent assay and rapid fluorescent focus inhibition test. Virus-neutralizing monoclonal antibody (mAb) 8-10E was administered to rats with hypertonic breakdown of BBB as a passive immunotherapy to prevent the death from rabies.

Results

The BBB permeability was altered on day 7 post-infection. Increased BBB permeability induced by rabies virus infection was observed primarily in the cerebellum and spinal cord. Occludin was significantly decreased in both the cerebral cortex and cerebellum. The rabies virus-specific antibody was not strongly elicited even in the presence of clinical signs. Disruption of BBB had no direct association with the lethal outcome of rabies. Passive immunotherapy with virus-neutralizing mAb 8-10E with the hypertonic breakdown of BBB prolonged the survival of rabies virus-infected rats.

Conclusions

We demonstrated that the BBB permeability was altered in a rat model with rabies virus inoculation. Delivery of neutralizing mAb to the infected site in brain combined with effective breakdown of BBB could be an aggressive but feasible therapeutic mode in rabies when the CNS infection has been established.  相似文献   

4.

Background and Purpose

Retinal swelling, leading to irreversible visual impairment, is an important early complication in retinal ischemia/reperfusion (I/R) injury. Diosmin, a naturally occurring flavonoid glycoside, has been shown to have antioxidative and anti-inflammatory effects against I/R injury. The present study was performed to evaluate the retinal microvascular protective effect of diosmin in a model of I/R injury.

Methods

Unilateral retinal I/R was induced by increasing intraocular pressure to 110 mm Hg for 60 min followed by reperfusion. Diosmin (100 mg/kg) or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. Rats were evaluated for retinal functional injury by electroretinogram (ERG) just before sacrifice. Retinas were harvested for HE staining, immunohistochemistry assay, ELISA, and western blotting analysis. Evans blue (EB) extravasation was determined to assess blood–retinal barrier (BRB) disruption and the structure of tight junctions (TJ) was examined by transmission electron microscopy.

Results

Diosmin significantly ameliorated the reduction of b-wave, a-wave, and b/a ratio in ERG, alleviated retinal edema, protected the TJ structure, and reduced EB extravasation. All of these effects of diosmin were associated with increased zonular occluden-1 (ZO-1) and occludin protein expression and decreased VEGF/PEDF ratio.

Conclusions

Maintenance of TJ integrity and reduced permeability of capillaries as well as improvements in retinal edema were observed with diosmin treatment, which may contribute to preservation of retinal function. This protective effect of diosmin may be at least partly attributed to its ability to regulate the VEGF/PEDF ratio.  相似文献   

5.

Background

Blood brain barrier (BBB) dysfunction is a common facet of cerebral ischemia, and the alteration of drug transporter, P-glycoprotein (P-gp), has been documented.

Aims

This study explores influence of damaged BBB and elevated P-gp on cerebral verapamil penetration after ischemia both in vivo and in vitro.

Methods

Middle cerebral artery occlusion (MCAO) induced ischemia/reperfusion (I/R) of rats, and Na2S2O4 induced hypoxia/reoxygenation (H/R) damage of rat brain mirovessel endothelial cells (RBMECs) respectively, served as BBB breakdown model in vivo and in vitro. Evans-Blue (EB) extravagation and 125I-albumin were used to quantify BBB dysfunction; UPLC–MS/MS analytical method was performed to determine accurately the concentration of verapamil in brain tissue and cell. Flow cytometry, immunohistochemistry and western blotting were applied to evaluate transport function and protein expression of P-gp.

Results

Overexpressed ICAM-1 and MMP-9 mediated BBB dysfunction after ischemia, which induced EB leakage and 125I-albumin uptake increase. Enhanced accumulation of verapamil in brain tissue, but intracellular concentration reduced evidently after H/R injury. Transcellular transportation of verapamil elevated when P-gp function or expression was inhibited after H/R injury.

Conclusion

These data indicated that BBB penetration of verapamil under ischemia condition was not only depending on BBB breakdown, but also regulated by P-gp.  相似文献   

6.

Background

Hypoglycemia-induced brain edema is a severe clinical event that often results in death. The mechanisms by which hypoglycemia induces brain edema are unclear.

Methods

In a hypoglycemic injury model established in adult rats, brain edema was verified by measuring brain water content and visualizing water accumulation using hematoxylin and eosin staining. Temporal expression of aquaporin 4 (AQP4) and the integrity of the blood-brain barrier (BBB) were evaluated. We assessed the distribution and expression of AQP4 following glucose deprivation in astrocyte cultures.

Results

Brain edema was induced immediately after severe hypoglycemia but continued to progress even after recovery from hypoglycemia. Upregulation of AQP4 expression and moderate breakdown of the BBB were observed 24 h after recovery. In vitro, significant redistribution of AQP4 to the plasma membrane was induced following 6 h glucose deprivation.

Conclusion

Hypoglycemia-induced brain edema is caused by cytotoxic and vasogenic factors. Changes in AQP4 location and expression may play a protective role in edema resolution.  相似文献   

7.

Background and Purpose

Complications due to brain edema and breakdown of blood brain barrier are an important factor affecting the treatment effects of patients with severe carotid stenosis. In this study, we investigated the protective effects of ischemic postconditioning on brain edema and disruption of blood brain barrier via establishing rat model of hypoperfusion due to severe carotid stenosis.

Methods

Wistar rat model of hypoperfusion due to severe carotid stenosis was established by binding a stainless microtube to both carotid arteries. Ischemic postconditioning procedure consisted of three cycles of 30 seconds ischemia and 30 seconds reperfusion. Brain edema was evaluated by measuring cerebral water content, and blood brain barrier permeability was assayed by examining cerebral concentration of Evans'' Blue (EB) and fluorescein sodium (NaF). ELISA was used to analyze the expression of MMP-9, claudin-5 and occludin. The activity and location of MMP-9 was analyzed by gelatin zymography and in situ zymography, respectively. The distribution of tight junction proteins claudin-5 and occludin was observed by immunohistochemistry.

Results

The increased brain water content and cerebral concentration of EB and NaF were suppressed by administration of ischemic postconditioning prior to relief of carotid stenosis. Zymographic studies showed that MMP-9 was mainly located in the cortex and its activity was significantly improved by relief of carotid stenosis and, but the elevated MMP-9 activity was inhibited markedly by ischemic postconditioning. Immunohistochemistry revealed that ischemic postconditioning improved the discontinuous distribution of claudin-5 and occludin. ELISA detected that the expression of up-regulated MMP-9 and down-regulated claudin-5 and occludin caused by carotid relief were all attenuated by ischemic postconditioning.

Conclusions

Ischemic postconditioning is an effective method to prevent brain edema and improve BBB permeability and could be used during relief of severe carotid stenosis.  相似文献   

8.

Background and Purpose

Mitochondrial dysfunction has been implicated in the cell death observed after cerebral ischemia, and several mechanisms for this dysfunction have been proposed. Reperfusion after transient cerebral ischemia may cause continued and even more severe damage to the brain. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. The purpose of this study was to observe the features of mitochondrial dysfunction in isolated mitochondria during the reperfusion period following focal cerebral ischemia.

Methods

Male Wistar rats were subjected to focal cerebral ischemia. Mitochondria were isolated using Percoll density gradient centrifugation. The isolated mitochondria were fixed for electron microscopic examination; calcium-induced mitochondrial swelling was quantified using spectrophotometry. Cyclophilin D was detected by Western blotting. Fluorescent probes were used to selectively stain mitochondria to measure their membrane potential and to measure reactive oxidative species production using flow cytometric analysis.

Results

Signs of damage were observed in the mitochondrial morphology after exposure to reperfusion. The mitochondrial swelling induced by Ca2+ increased gradually with the increasing calcium concentration, and this tendency was exacerbated as the reperfusion time was extended. Cyclophilin D protein expression peaked after 24 hours of reperfusion. The mitochondrial membrane potential was decreased significantly during the reperfusion period, with the greatest decrease observed after 24 hours of reperfusion. The surge in mitochondrial reactive oxidative species occurred after 2 hours of reperfusion and was maintained at a high level during the reperfusion period.

Conclusions

Reperfusion following focal cerebral ischemia induced significant mitochondrial morphological damage and Ca2+-induced mitochondrial swelling. The mechanism of this swelling may be mediated by the upregulation of the Cyclophilin D protein, the destruction of the mitochondrial membrane potential and the generation of excessive reactive oxidative species.  相似文献   

9.

Background/Purpose

Ischemic stroke is characterized by high morbidity and mortality worldwide. Matrix metalloproteinase 2 (MMP2), aquaporin (AQP) 4, and AQP9 are linked to permeabilization of the blood-brain barrier (BBB) in cerebral ischemia/reperfusion injury (CIRI). BBB disruption, tissue inflammation, and MMP/AQP upregulation jointly provoke brain edema/swelling after CIRI, while acupuncture and electroacupuncture can alleviate CIRI symptoms. This study evaluated the hypothesis that acupuncture and electroacupuncture can similarly exert neuroprotective actions in a rat model of middle cerebral artery occlusion (MCAO) by modulating MMP2/AQP4/APQ9 expression and inflammatory cell infiltration.

Methods

Eighty 8-week-old Sprague-Dawley rats were randomly divided into sham group S, MCAO model group M, acupuncture group A, electroacupuncture group EA, and edaravone group ED. The MCAO model was established by placement of a suture to block the middle carotid artery, and reperfusion was triggered by suture removal in all groups except group S. Acupuncture and electroacupuncture were administered at acupoints GV20 (governing vessel-20) and ST36 (stomach-36). Rats in groups A, EA, and ED received acupuncture, electroacupuncture, or edaravone, respectively, immediately after MCAO. Neurological function (assessed using the Modified Neurological Severity Score), infarct volume, MMP2/AQP4/AQP9 mRNA and protein expression, and inflammatory cell infiltration were all evaluated at 24 h post-reperfusion.

Results

Acupuncture and electroacupuncture significantly decreased infarct size and improved neurological function. Furthermore, target mRNA and protein levels and inflammatory cell infiltration were significantly reduced in groups A, EA, and ED vs. group M. However, MMP2/AQP levels and inflammatory cell infiltration were generally higher in groups A and EA than in group ED except MMP2 mRNA levels.

Conclusions

Acupuncture and electroacupuncture at GV20 and ST36 both exercised neuroprotective actions in a rat model of MCAO, with no clear differences between groups A and EA. Therefore, acupuncture and electroacupuncture might find utility as adjunctive and complementary treatments to supplement conventional therapy for ischemic stroke.  相似文献   

10.

Purpose

To introduce a model for the time evolution of active caspase-3 protein expression in albino rat lens up to 24 hours after in vivo exposure to low dose UVR in the 300 nm wavelength region (UVR-300 nm).

Methods

Forty Sprague-Dawley rats were unilaterally exposed in vivo to 1 kJ/m2 UVR-300 nm for 15 minutes. At 0.5, 8, 16, and 24 hours after the UVR exposure, the exposed and contralateral not-exposed lenses were removed and processed for immunohistochemistry. The differences in the probability of active caspase-3 expression at four different time points after exposure were used to determine the time evolution of active caspase-3 expression. A logistic model was introduced for the expression of active caspase-3. The parameters for the exposed and the not exposed lenses were estimated for the observation time points.

Results

The exposure to UVR-300 nm impacted on the parameters of the logistic model. Further, the parameters of the model varied with time after exposure to UVR-300 nm.

Conclusion

The logistic model predicts the impact of exposure to UVR-300 nm on the spatial distribution of probability of active caspase-3 protein expression, depending on time.  相似文献   

11.

Background

An inducible release of soluble junctional adhesion molecule-A (sJAM-A) under pro-inflammatory conditions was described in cultured non-CNS endothelial cells (EC) and increased sJAM-A serum levels were found to indicate inflammation in non-CNS vascular beds. Here we studied the regulation of JAM-A expression in cultured brain EC and evaluated sJAM-A as a serum biomarker of blood-brain barrier (BBB) function.

Methodology/Principal Findings

As previously reported in non-CNS EC types, pro-inflammatory stimulation of primary or immortalized (hCMEC/D3) human brain microvascular EC (HBMEC) induced a redistribution of cell-bound JAM-A on the cell surface away from tight junctions, along with a dissociation from the cytoskeleton. This was paralleled by reduced immunocytochemical staining of occludin and zonula occludens-1 as well as by increased paracellular permeability for dextran 3000. Both a self-developed ELISA test and Western blot analysis detected a constitutive sJAM-A release by HBMEC into culture supernatants, which importantly was unaffected by pro-inflammatory or hypoxia/reoxygenation challenge. Accordingly, serum levels of sJAM-A were unaltered in 14 patients with clinically active multiple sclerosis compared to 45 stable patients and remained unchanged in 13 patients with acute ischemic non-small vessel stroke over time.

Conclusion

Soluble JAM-A was not suited as a biomarker of BBB breakdown in our hands. The unexpected non-inducibility of sJAM-A release at the human BBB might contribute to a particular resistance of brain EC to inflammatory stimuli, protecting the CNS compartment.  相似文献   

12.

Background

Characteristic symptoms of malaria include recurrent fever attacks and neurodegeneration, signs that are also found in patients with a hyperactive Nalp3 inflammasome. Plasmodium species produce a crystal called hemozoin that is generated by detoxification of heme after hemoglobin degradation in infected red blood cells. Thus, we hypothesized that hemozoin could activate the Nalp3 inflammasome, due to its particulate nature reminiscent of other inflammasome-activating agents.

Methodology/Principal Findings

We found that hemozoin acts as a proinflammatory danger signal that activates the Nalp3 inflammasome, causing the release of IL-1β. Similar to other Nalp3-activating particles, hemozoin activity is blocked by inhibiting phagocytosis, K+ efflux and NADPH oxidase. In vivo, intraperitoneal injection of hemozoin results in acute peritonitis, which is impaired in Nalp3-, caspase-1- and IL-1R-deficient mice. Likewise, the pathogenesis of cerebral malaria is dampened in Nalp3-deficient mice infected with Plasmodium berghei sporozoites, while parasitemia remains unchanged.

Significance/Conclusions

The potent pro-inflammatory effect of hemozoin through inflammasome activation may possibly be implicated in plasmodium-associated pathologies such as cerebral malaria.  相似文献   

13.

Background

Currently available methods for diagnosis and staging of prostate cancer lack the sensitivity to distinguish between patients with indolent prostate cancer and those requiring radical treatment. Alterations in key adherens (AJ) and tight junction (TJ) components have been hailed as potential biomarkers for prostate cancer progression but the majority of research has been carried out on individual molecules.

Objective

To elucidate a panel of biomarkers that may help distinguish dormant prostate cancer from aggressive metastatic disease.

Methods

We analysed the expression of 7 well known AJ and TJ components in cell lines derived from normal prostate epithelial tissue (PNT2), non-invasive (CAHPV-10) and invasive prostate cancer (LNCaP, DU145, PC-3) using gene expression, western blotting and immunofluorescence techniques.

Results

Claudin 7, α –catenin and β-catenin protein expression were not significantly different between CAHPV-10 cells and PNT2 cells. However, in PC-3 cells, protein levels for claudin 7, α –catenin were significantly down regulated (−1.5 fold, p = <.001) or undetectable respectively. Immunofluoresence showed β-catenin localisation in PC-3 cells to be cytoplasmic as opposed to membraneous.

Conclusion

These results suggest aberrant Claudin 7, α – and β-catenin expression and/or localisation patterns may be putative markers for distinguishing localised prostate cancer from aggressive metastatic disease when used collectively.  相似文献   

14.

Background and Purpose

Good reliability of methods to assess the extent of ischemia in acute stroke is important for implementation in clinical practice, especially between observers with varying experience. Our aim was to determine inter- and intra-observer reliability of the 1/3 middle cerebral artery (MCA) rule and the Alberta Stroke Program Early CT Score (ASPECTS) for different CT modalities in patients suspected of acute ischemic stroke.

Methods

We prospectively included 105 patients with acute neurological deficit due to suspected acute ischemic stroke within 9 hours after symptom onset. All patients underwent non-contrast CT, CT perfusion and CT angiography on admission. All images were evaluated twice for presence of ischemia, ischemia with >1/3 MCA involvement, and ASPECTS. Four observers evaluated twenty scans twice for intra-observer agreement. We used kappa statistics and intraclass correlation coefficient to calculate agreement.

Results

Inter-observer agreement for the 1/3 MCA rule and ASPECTS was fair to good for non-contrast CT, poor to good for CT angiography source images, but excellent for all CT perfusion maps (cerebral blood volume, mean transit time, and predicted penumbra and infarct maps). Intra-observer agreement for the 1/3 MCA rule and ASPECTS was poor to good for non-contrast CT, fair to moderate for CT angiography source images, and good to excellent for all CT perfusion maps.

Conclusion

Between observers with a different level of experience, agreement on the radiological diagnosis of cerebral ischemia is much better for CT perfusion than for non-contrast CT and CT angiography source images, and therefore CT perfusion is a very reliable addition to standard stroke imaging.  相似文献   

15.

Background and Purpose

The Down syndrome candidate region 1 (DSCR1) gene is located on human chromosome 21 and its protein is over-expressed in brains of Down syndrome individuals. DSCR1 can modulate the activity of calcineurin, a phosphatase abundant in the brain, but its influence on stroke outcome is not clear. We compared stroke outcome in wildtype (WT) and transgenic (DSCR1-TG) mice which over-express isoform 1 of human DSCR1.

Methods

Transient cerebral ischemia was produced by occlusion of the middle cerebral artery for 0.5 h. After 23.5 h reperfusion, we assessed neurological impairment, brain infarct and edema volume, leukocyte infiltration and markers of inflammation. Intrinsic resistance to apoptosis following glucose deprivation was also assessed in primary cultures of WT and DSCR1-TG neurons.

Results

In contrast to WT, DSCR1-TG mice had an improved neurological deficit score, greater grip strength, attenuated infarct volume and brain swelling, and lacked hippocampal lesions after stroke. Expression of mouse DSCR1-1, but not DSCR1-4, mRNA and protein was increased by ischemia in both WT and DSCR1-TG. Brain calcineurin activity was increased to a similar degree after ischemia in each genotype. DSCR1-TG mice had fewer infiltrating neutrophils and activated microglia compared with WT, in association with an attenuated upregulation of several pro-inflammatory genes. Neurons from DSCR1-TG mice were more resistant than WT neurons to apoptotic cell death following 24 h of glucose deprivation.

Conclusions

Over-expression of DSCR1 in mice improves outcome following stroke. Mechanisms underlying this protection may involve calcineurin-independent, anti-inflammatory and anti-apoptotic effects mediated by DSCR1 in neurons.  相似文献   

16.
Yang D  Li SY  Yeung CM  Chang RC  So KF  Wong D  Lo AC 《PloS one》2012,7(3):e33596

Background and Purpose

Ischemic stroke is a destructive cerebrovascular disease and a leading cause of death. Yet, no ideal neuroprotective agents are available, leaving prevention an attractive alternative. The extracts from the fruits of Lycium barbarum (LBP), a Chinese anti-aging medicine and food supplement, showed neuroprotective function in the retina when given prophylactically. We aim to evaluate the protective effects of LBP pre-treatment in an experimental stroke model.

Methods

C57BL/6N male mice were first fed with either vehicle (PBS) or LBP (1 or 10 mg/kg) daily for 7 days. Mice were then subjected to 2-hour transient middle cerebral artery occlusion (MCAO) by the intraluminal method followed by 22-hour reperfusion upon filament removal. Mice were evaluated for neurological deficits just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, immunohistochemical analysis, and Western blot experiments. Evans blue (EB) extravasation was determined to assess blood-brain barrier (BBB) disruption after MCAO.

Results

LBP pre-treatment significantly improved neurological deficits as well as decreased infarct size, hemispheric swelling, and water content. Fewer apoptotic cells were identified in LBP-treated brains by TUNEL assay. Reduced EB extravasation, fewer IgG-leaky vessels, and up-regulation of occludin expression were also observed in LBP-treated brains. Moreover, immunoreactivity for aquaporin-4 and glial fibrillary acidic protein were significantly decreased in LBP-treated brains.

Conclusions

Seven-day oral LBP pre-treatment effectively improved neurological deficits, decreased infarct size and cerebral edema as well as protected the brain from BBB disruption, aquaporin-4 up-regulation, and glial activation. The present study suggests that LBP may be used as a prophylactic neuroprotectant in patients at high risk for ischemic stroke.  相似文献   

17.
18.

Purpose

To determine if applying an arrival time correction (ATC) to dynamic susceptibility contrast (DSC) based permeability imaging will improve its ability to identify contrast leakage in stroke patients for whom the shape of the measured curve may be very different due to hypoperfusion.

Materials and Methods

A technique described in brain tumor patients was adapted to incorporate a correction for delayed contrast delivery due to perfusion deficits. This technique was applied to the MRIs of 9 stroke patients known to have blood-brain barrier (BBB) disruption on T1 post contrast imaging. Regions of BBB damage were compared with normal tissue from the contralateral hemisphere. Receiver operating characteristic (ROC) analysis was performed to compare the detection of BBB damage before and after ATC.

Results

ATC improved the area under the curve (AUC) of the ROC from 0.53 to 0.70. The sensitivity improved from 0.51 to 0.67 and the specificity improved from 0.57 to 0.66. Visual inspection of the ROC curve revealed that the performance of the uncorrected analysis was worse than random guess at some thresholds.

Conclusions

The ability of DSC permeability imaging to identify contrast enhancing tissue in stroke patients improved considerably when an ATC was applied. Using DSC permeability imaging in stroke patients without an ATC may lead to false identification of BBB disruption.  相似文献   

19.

Aims

Our previous studies have found that bone-marrow-stromal cells (BMSC) therapy improves functional recovery after stroke in non-diabetic rats while increases brain hemorrhage and induces arteriosclerosis-like changes in type-one-diabetic (T1DM) rats. Niaspan treatment of stroke increases vascular stabilization, decreases brain hemorrhage and blood-brain-barrier (BBB) leakage in T1DM rats. We therefore tested the hypothesis that combination therapy of BMSC with Niaspan attenuates the side effects of BMSC monotherapy in T1DM rats.

Methods

T1DM-rats induced by streptozotocin were subjected to 2 hours of middle-cerebral-artery occlusion (MCAo) and treated with: 1) PBS; 2) BMSC (5×106); 3) Niaspan (40 mg/kg) daily for 14 days; 4) BMSC (5×106) +Niaspan (40 mg/kg, daily for 14 days) combination starting at 24 hours after MCAo. All rats were monitored for 14 days.

Results

Combination BMSC+Niaspan treatment of T1DM-MCAo rats did not increase brain hemorrhage, and significantly decreased BBB leakage and vascular arteriosclerosis-like changes as well as decreased Angiogenin, matrix metalloproteinase 9 (MMP9) and ED1 expression in ischemic brain and internal-carotid-artery compared to non-treatment control and BMSC monotherapy animals.

Conclusions

Combination therapy using BMSC with Niaspan decreases BBB leakage and cerebral arteriosclerosis-like changes. These beneficial effects may be attributed to the decreased expression of Angiogenin, MMP9 and ED1.  相似文献   

20.

Background

Intestinal ischemia/reperfusion (I/R) induces the desquamation of the intestinal epithelium, increases the intestinal permeability, and in patients often causes fatal conditions including sepsis and multiple organ failure. Keratinocyte growth factor (KGF) increases intestinal growth, although little is known about KGF activity on intestinal function after intestinal I/R. We hypothesized that KGF administration would improve the intestinal function in a mouse model of intestinal I/R.

Methods

Adult C57BL/6J mice were randomized to three groups: Sham, I/R group and I/R+KGF group. Mice were killed on day 5, and the small bowel was harvested for histology, wet weight, RNA and protein content analysis. Epithelial cell (EC) proliferation was detected by immunohistochemistry for PCNA, and apoptosis was determined by TUNEL staining. The expressions of Claudin-1 and ZO-1 were detected by immunohistochemistry. Epithelial barrier function was assessed with transepithelial resistance (TER).

Results

KGF significantly increased the intestinal wet weight, contents of intestinal protein and RNA, villus height, crypt depth and crypt cell proliferation, while KGF resulted in the decrease of epithelial apoptosis. KGF also stimulated the recovery of mucosal structures and attenuated the disrupted distribution of TJ proteins. Moreover, KGF attenuated the intestinal I/R-induced decrease in TER and maintained the intestinal barrier function.

Conclusion

KGF administration improves the epithelial structure and barrier function in a mouse model of intestinal I/R. This suggests that KGF may have clinical applicability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号