首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The polled locus has been mapped by genetic linkage analysis to the proximal region of bovine chromosome 1. As an intermediate step in our efforts to identify the polled locus and the underlying causative mutation for the polled phenotype, we have constructed a BAC-based physical map of the interval containing the polled locus. Clones containing genes and markers in the critical interval were isolated from the TAMBT (constructed from Angus and Longhorn genomic DNA) and CHORI-240 (constructed from horned Hereford genomic DNA) BAC libraries and ordered based on fingerprinting and the presence or absence of 80 STS markers. A single contig spanning 2.5 Mb was assembled. Comparison of the physical order of STSs to the corresponding region of human chromosome 21 revealed the same order of genes within the polled critical interval. This contig of overlapping BAC clones from horned and polled breeds is a useful resource for SNP discovery and characterization of positional candidate genes.  相似文献   

3.
4.
A bacterial artificial chromosome (BAC) and P1 contig of the proximal part of chromosome 9p centromeric of markers D9S165 and D9S304 is described. This 1.1- to 1.7-Mb portion of chromosome 9p13 was previously not physically mapped. It contains 24 genes or expressed sequence tags, five polymorphic AC repeats, and three new polymorphic single-strand conformation polymorphism variants. Several of the genes thus mapped are excellent candidates for disease-causing genes whose loci have previously been assigned to proximal 9p. Our primary interest is in the cartilage-hair hypoplasia gene (CHH) that resides within the contig between markers D9S163 and D9S1791 based on linkage evidence.  相似文献   

5.
Urofacial (Ochoa) syndrome is an autosomal recessive disease characterized by distorted facial expression and urinary abnormalities. Previously, we mapped the UFS gene to chromosome 10q23-q24 and narrowed the interval to one YAC clone of 1410 kb. Here, we have constructed a BAC/PAC contig of the 1-Mb region using STS content mapping with 42 BAC/PAC-end sequences, 9 previously reported and 16 newly identified microsatellite markers, and 14 EST markers. A total of 26 polymorphic microsatellite markers were genotyped for 31 UFS patients from Colombia and 2 patients from the United States. Haplotype analyses suggest that the UFS gene is located within two overlapping BAC clones, a region of <360 kb of DNA sequence. We tested 42 EST markers previously mapped to the D10S1709-D10S603 interval against the BAC/PAC contig and identified 11 ESTs located in the 1-Mb region. Four of the 11 ESTs mapped to the 360-kb UFS critical region. Shotgun sequencing of the two BAC clones and BLASTN search of the EST databases revealed 3 other ESTs contained in the UFS critical region. These results will facilitate the cloning and identification of the UFS gene.  相似文献   

6.
Autistic disorder (AD) is a neurodevelopmental disorder that affects approximately 2-10/10,000 individuals. Chromosome 15q11-q13 has been implicated in the genetic etiology of AD based on (1) cytogenetic abnormalities; (2) increased recombination frequency in this region in AD versus non-AD families; (3) suggested linkage with markers D15S156, D15S219, and D15S217; and (4) evidence for significant association with polymorphisms in the gamma-aminobutyric acid receptor subunit B3 gene (GABRB3). To isolate the putative 15q11-q13 candidate AD gene, a genomic contig and physical map of the approximately 1.2-Mb region from the GABA receptor gene cluster to the OCA2 locus was generated. Twenty-one bacterial artificial chromosome (BAC) clones, 32 P1-derived artificial chromosome (PAC) clones, and 2 P1 clones have been isolated using the markers D15S540, GABRB3, GABRA5, GABRG3, D15S822, and D15S217, as well as 34 novel markers developed from the end sequences of BAC/PAC clones. In contrast to previous findings, the markers D15S822 and D15S975 have been localized within the GABRG3 gene, which we have shown to be approximately 250 kb in size. NotI and numerous EagI restriction enzyme cut sites were identified in this region. The BAC/PAC genomic contig can be utilized for the study of genomic structure and the identification and characterization of genes and their methylation status in this autism candidate gene region on human chromosome 15q11-q13.  相似文献   

7.
Autistic disorder (AD) is a neurodevelopmental disorder that affects approximately 2–10/10,000 individuals. Chromosome 15q11–q13 has been implicated in the genetic etiology of AD based on (1) cytogenetic abnormalities; (2) increased recombination frequency in this region in AD versus non-AD families; (3) suggested linkage with markers D15S156, D15S219, and D15S217; and (4) evidence for significant association with polymorphisms in the γ-aminobutyric acid receptor subunit B3 gene (GABRB3). To isolate the putative 15q11–q13 candidate AD gene, a genomic contig and physical map of the approximately 1.2-Mb region from the GABA receptor gene cluster to the OCA2 locus was generated. Twenty-one bacterial artificial chromosome (BAC) clones, 32 P1-derived artificial chromosome (PAC) clones, and 2 P1 clones have been isolated using the markers D15S540, GABRB3, GABRA5, GABRG3, D15S822, and D15S217, as well as 34 novel markers developed from the end sequences of BAC/PAC clones. In contrast to previous findings, the markers D15S822 and D15S975 have been localized within the GABRG3 gene, which we have shown to be approximately 250 kb in size. NotI and numerous EagI restriction enzyme cut sites were identified in this region. The BAC/PAC genomic contig can be utilized for the study of genomic structure and the identification and characterization of genes and their methylation status in this autism candidate gene region on human chromosome 15q11–q13.  相似文献   

8.

Background

The absence of horns, called polled phenotype, is the favored trait in modern cattle husbandry. To date, polled cattle are obtained primarily by dehorning calves. Dehorning is a practice that raises animal welfare issues, which can be addressed by selecting for genetically hornless cattle. In the past 20 years, there have been many studies worldwide to identify unique genetic markers in complete association with the polled trait in cattle and recently, two different alleles at the POLLED locus, both resulting in the absence of horns, were reported: (1) the Celtic allele, which is responsible for the polled phenotype in most breeds and for which a single candidate mutation was detected and (2) the Friesian allele, which is responsible for the polled phenotype predominantly in the Holstein-Friesian breed and in a few other breeds, but for which five candidate mutations were identified in a 260-kb haplotype. Further studies based on genome-wide sequencing and high-density SNP (single nucleotide polymorphism) genotyping confirmed the existence of the Celtic and Friesian variants and narrowed down the causal Friesian haplotype to an interval of 145 kb.

Results

Almost 6000 animals were genetically tested for the polled trait and we detected a recombinant animal which enabled us to reduce the Friesian POLLED haplotype to a single causal mutation, namely a 80-kb duplication. Moreover, our results clearly disagree with the recently reported perfect co-segregation of the POLLED mutation and a SNP at position 1 390 292 bp on bovine chromosome 1 in the Holstein-Friesian population.

Conclusion

We conclude that the 80-kb duplication, as the only remaining variant within the shortened Friesian haplotype, represents the most likely causal mutation for the polled phenotype of Friesian origin.  相似文献   

9.
We screened a porcine bacterial artificial chromosome (BAC) and a P1 derived artificial chromosome (PAC) library to construct a sequence-ready approximately 1.2-Mb BAC/PAC contig of the ryanodine receptor-1 gene (RYR1) region on porcine chromosome (SSC) 6q1.2. This genomic segment is of special interest because it harbors the locus for stress susceptibility in pigs and a putative quantitative trait locus for muscle growth. Detailed physical mapping of this gene-rich region allowed us to assign to this contig 17 porcine genes orthologous to known human chromosome 19 genes. Apart from the relatively well-characterized porcine gene RYR1, the other 16 genes represent novel chromosomal assignments and 14 genes have been cloned for the first time in pig. Comparative analysis of the porcine BAC/PAC contig with the human chromosome (HSA) 19q13.13 map revealed a completely conserved gene order of this segment between pig and human. A detailed porcine-human-mouse comparative map of this region was constructed.  相似文献   

10.
The availability of high-density anchored markers is a prerequisite for reliable construction of a deep coverage BAC contig, which leads to creation of a sequence-ready map in the target chromosomal region. Unfortunately, such markers are not available for most plant species, including woody perennial plants. Here, we report on an efficient approach to build a megabase-size sequence-ready map in the apple genome for the Vf region containing apple scab resistance gene(s) by targeting AFLP-derived SCAR markers to this specific genomic region. A total of 11 AFLP-derived SCAR markers, previously tagged to the Vf locus, along with three other Vf-linked SCAR markers have been used to screen two apple genome BAC libraries. A single BAC contig which spans the Vf region at a physical distance of approximately 1,100 kb has been constructed by assembling the recovered BAC clones, followed by closure of inter-contig gaps. The contig is 4 ×deep, and provides a minimal tiling path of 16 contiguous and overlapping BAC clones, thus generating a sequence-ready map. Within the Vf region, duplication events have occurred frequently, and the Vf locus is restricted to the ca. 290 kb region covered by a minimum of three overlapping BAC clones.  相似文献   

11.
Polledness has been shown to have autosomal Mendelian inheritance, with the polled locus being dominant to the horned locus. This trait was mapped to the BTA1 centromeric end in several breeds. One of the distinctive attributes of Creole cattle, such as the Argentinean Creole, is the presence of long, lyre‐shaped horns. However, polled native animals were reported before the introduction of modern selected European breeds. Here, we studied the origin of the polled mutation, either independent or introgressed, in a Creole line from the Creole cattle founder group at the IIACS‐INTA Leales Experimental Station (northwest Argentina). The study sample (65 animals: 26 horned and 39 polled) was genotyped using high‐density SNP microarrays and three previously reported genetic markers (P202ID, P80kbID and PG). A genome‐wide association study, selection signatures, linkage disequilibrium analysis and copy number variations were used to detect the responsible region and the segregating haplotypes/alleles. The interval mapped in the Leales herd (1.23–2.13 Mb) overlapped with the region previously reported in several European cattle breeds, suggesting that the same locus could be segregating in this population. The previously reported variants PF and PG were not detected, thus dismissing the Holstein‐Friesian and Nellore origins of the polled phenotype in this native breed. Conversely, the presence of the Celtic variant PC suggests an almost complete co‐segregation. The cluster analysis rejected the hypothesis of recent introgression, which is compatible with the historical record of polled Creole cattle in northwest Argentina.  相似文献   

12.
The genetic and cytogenetic map around the chromosome 1 region shown to be linked with polledness and intersexuality (PIS) in the domestic goat (Capra hircus) was refined. For this purpose, a goat BAC library was systematically screened with primers from human coding sequences, scraped chromosome 1 DNA, bovine microsatellites from the region, and BAC ends. All the BACs (n = 30) were mapped by fluorescence in situ hybridization (FISH) on goat chromosome 1q41-q45. The genetic mapping of 30 new goat polymorphic markers, isolated from these BACs, made it possible to reduce the PIS interval to a region of less than 1 cM on goat chromosome 1q43. The PIS locus is now located between the two genes ATP1B and COP, which both map to 3q23 in humans. Genetic, cytogenetic, and comparative data suggest that the PIS region is now probably circumscribed to an approximately 1-Mb DNA segment for which construction of a BAC contig is in progress. In addition, a human YAC contig encompassing the blepharophimosis-ptosis-epicanthus-inversus region was mapped by FISH to goat chromosome 1q43. This human disease, mapped to HSA 3q23 and affecting the development and maintenance of ovarian function, could be a potential candidate for goat PIS.  相似文献   

13.
Approaches utilizing microlinearity between related species allow for the identification of syntenous regions and orthologous genes. Within the barley Chromosome 7H(1) is a region of high recombination flanked by molecular markers cMWG703 and MWG836. We present the constructed physical contigs linked to molecular markers across this region using bacterial artificial chromosomes (BAC) from the cultivar Morex. Barley expressed sequence tags (EST), identified by homology to rice chromosome 6 between the rice molecular markers C425A and S1434, corresponded to the barley syntenous region of Chromosome 7H(1) Bins 2–5 between molecular markers cMWG703-MWG836. Two hundred and thirteen ESTs were genetically mapped yielding 267 loci of which 101 were within the target high recombination region while 166 loci mapped elsewhere. The 101 loci were joined by 43 other genetic markers resulting in a highly saturated genetic map. In order to develop a physical map of the region, ESTs and all other molecular markers were used to identify Morex BAC clones. Seventy-four BAC contigs were formed containing 2–102 clones each with an average of 19 and a median of 13 BAC clones per contig. Comparison of the BAC contigs, generated here, with the Barley Physical Mapping Database contigs, resulted in additional overlaps and a reduction of the contig number to 56. Within cMWG703-MWG836 are 24 agriculturally important traits including the seedling spot blotch resistance locus, Rcs5. Genetic and physical analysis of this region and comparison to rice indicated an inversion distal of the Rcs5 locus. Three BAC clone contigs spanning the Rcs5 locus were identified. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
To generate sequence-ready templates for the gene-rich Xp11.23 region, we have constructed a 1.5-Mb bacterial artificial chromosome (BAC) contig spanning the interval between the DNA markers OATL1 and DXS255. The contig includes 28 BACs, ranging in size from 58 to 285 kb with an average size of 135 kb, which provide 2.5-fold coverage of the region. The BAC contig was constructed based entirely on the content of 40 DNA markers from a previously established YAC contig and 11 new markers developed from BAC-end DNA sequences, 4 of which were required to close gaps in the map. There was no evidence of rearrangement, instability, or chimerism in any of the BAC clones. The BAC cloning system appears to provide robust and total physical coverage of this gene-rich region with clones that are suitable for DNA sequencing.  相似文献   

15.
Winter A  Alzinger A  Fries R 《Genomics》2004,83(1):172-180
As a first step towards verifying the candidate status of DGAT1 as the causal gene for milk fat percentage in cattle, we constructed a bovine BAC contig spanning 576 kb of the chromosomal region containing DGAT1. High content of NotI sites (21 within the contig) indicated that the region is gene-rich. Twenty-three genes neighboring DGAT1 were mapped, including two bovine cDNA sequences that have no orthologous sequences within the NCBI sequence databases. On average, 2015 bp for each of the 23 neighboring genes were sequenced and entered into EMBL. Likewise, 10 new STS markers were established by BAC-end sequencing. Within the genes and STS markers, 55 polymorphisms were discovered. These will form the basis of future linkage disequilibrium studies to test whether any genes neighboring DGAT1 are associated with variation in milk fat percentage, thereby testing the candidate status of DGAT1.  相似文献   

16.
A fine physical map of the rice (Oryza sativa spp. Japonica var. Nipponbare) chromosome 5 with bacterial artificial chromosome (BAC) and PI-derived artificial chromosome (PAC) clones was constructed through integration of 280 sequenced BAC/PAC clones and 232 sequence tagged site/expressed sequence tag markers with the use of fingerprinted contig data of the Nipponbare genome. This map consists of five contigs covering 99% of the estimated chromosome size (30.08 Mb). The four physical gaps were estimated at 30 and 20 kb for gaps 1–3 and gap 4, respectively. We have submitted 42.2-Mb sequences with 29.8 Mb of nonoverlapping sequences to public databases. BAC clones corresponding to telomere and centromere regions were confirmed by BAC-fluorescence in situ hybridization (FISH) on a pachytene chromosome. The genetically centromeric region at 54.6 cM was covered by a minimum tiling path spanning 2.1 Mb with no physical gaps. The precise position of the centromere was revealed by using three overlapping BAC/PACs for ~150 kb. In addition, FISH results revealed uneven chromatin condensation around the centromeric region at the pachytene stage. This map is of use for positional cloning and further characterization of the rice functional genomics. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Chia-Hsiung Cheng and Mei-Chu Chung have equal contributions.  相似文献   

17.
We constructed a rice Bacterial Artificial Chromosome (BAC) library from green leaf protoplasts of the cultivar Shimokita harboring the rice blast resistance gene Pi-ta. The average insert size of 155 kb and the library size of seven genome equivalents make it one of the most comprehensive BAC libraries available, and larger than many plant YAC libraries. The library clones were plated on seven high density membranes of microplate size, enabling efficient colony identification in colony hybridization experiments. Seven percent of clones carried chloroplast DNA. By probing with markers close to the blast resistance genes Pi-ta 2 (closely linked to Pi-ta) and Pi-b, respectively located in the centromeric region of chromosome 12 and near the telomeric end of chromosome 2, on average 2.2?±?1.3 and 8.0?±?2.6 BAC clones/marker were isolated. Differences in chromosomal structures may contribute to this wide variation in yield. A contig of about 800 kb, consisting of 19 clones, was constructed in the Pi-ta 2 region. This region had a high frequency of repetitive sequences. To circumvent this difficulty, we devised a “two-step walking” method. The contig spanned a 300 kb region between markers located at 0 cM and 0.3 cM from Pi-ta 2 . The ratio of physical to genetic distances (>?1,000 kb/cM) was more than three times larger than the average of rice (300 kb/cM). The low recombination rate and high frequency of repetitive sequences may also be related to the near centromeric character of this region. Fluorescent in situ hybridization (FISH) with a BAC clone from the Pi-b region yielded very clear signals on the long arm of chromosome 2, while a clone from the Pi-ta 2 region showed various cross-hybridizing signals near the centromeric regions of all chromosomes.  相似文献   

18.
Previous research has mapped an ovulation rate quantitative trait locus (QTL) to bovine chromosome 19. In an effort to enhance comparative mapping information and develop additional markers for refined QTL mapping, microsatellite markers were developed in a targeted approach. A bovine bacterial artificial chromosome (BAC) library was screened for loci with either known or predicted locations on bovine chromosome 19. An average of 6.4 positive BAC were identified per screened locus. A total of 10 microsatellite markers were developed for five targeted loci with heterozygosity of 7-83% in a sample of reference family parents. The newly developed markers were typed on reference families along with four previously mapped marker loci and used to create a linkage map. Comparison of locus order between human and cattle provides support for previously observed rearrangement. One of the mapped loci myotubularin related protein 4 (MTMR4) potentially extends the proximal boundary of a conserved linkage group.  相似文献   

19.
Familial combined hyperlipidemia (FCHL) is a common genetic dyslipidemia predisposing to premature coronary heart disease (CHD). We previously identified a locus for FCHL on human Chromosome (Chr) 1q21-q23 in 31 Finnish FCHL families. We also mapped a gene for combined hyperlipidemia (Hyplip1) to a potentially orthologous region of mouse Chr 3 in the HcB-19/Dem mouse model of FCHL. The human FCHL locus was, however, originally mapped about 5 Mb telomeric to the synteny border, the centromeric part of which is homologous to mouse Chr 3 and the telomeric part to mouse Chr 1. To further localize the human Hyplip1 homolog and estimate its distance from the peak linkage markers, we fine-mapped the Hyplip1 locus and defined the borders of the region of conserved synteny between human and mouse. This involved establishing a physical map of a bacterial artificial chromosome (BAC) contig across the Hyplip1 locus and hybridizing a set of BACs to both human and mouse chromosomes by fluorescence in situ hybridization (FISH). We narrowed the location of the mouse Hyplip1 gene to a 1.5-cM region that is homologous only with human 1q21 and within approximately 5–10 Mb of the peak marker for linkage to FCHL. FCHL is a complex disorder and this distance may, thus, reflect the well-known problems hampering the mapping of complex disorders. Further studies identifying and sequencing the Hyplip1 gene will show whether the same gene predisposes to hyperlipidemia in human and mouse. Received: 9 September 2000 / Accepted: 30 October 2000  相似文献   

20.
Polled, or the absence of horns, is a desirable trait for many cattle breeders. However, the presence of scurs, which are small horn-like structures that are not attached to the skull, can lower the value of an animal. The scurs trait has been reported as sex influenced. Using a genome scan with 162 autosomal microsatellite markers genotyped across three full-sib families, the scurs locus was mapped near BMS2142 on cattle chromosome 19 (LOD = 4.21). To more precisely map scurs, the families from the initial analysis and three additional families were genotyped for 16 microsatellite markers and SNPs in three genes on chromosome 19. In this subsequent analysis, the scurs locus was mapped 4 cM distal of BMS2142 (LOD = 4.46) and 6 cM proximal to IDVGA46 (LOD = 2.56). ALOX12 and MFAP4 were the closest genes proximal and distal, respectively, to the scurs locus. Three microsatellite markers on the X chromosome were genotyped across these six families but were not linked to scurs, further demonstrating that this trait was not sex linked. Because the polled locus has been mapped to the centromeric end of chromosome 1 and scurs has now been mapped to chromosome 19, these two traits are not linked in Bos taurus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号