首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanobacterial NAD(P)(+)-reducing reversible hydrogenases comprise five subunits. Four of them (HoxF, HoxU, HoxY, and HoxH) are also found in the well-described related enzyme from Ralstonia eutropha. The fifth one (HoxE) is not encoded in the R. eutropha genome, but shares homology with the N-terminal part of R. eutropha HoxF. However, in cyanobacteria, HoxE contains a 2Fe-2S cluster-binding motif that is not found in the related R. eutropha sequence. In order to obtain some insights into the role of HoxE in cyanobacteria, we deleted this subunit in Synechocystis PCC6803. Three types of interaction of the cyanobacterial hydrogenase with pyridine nucleotides were tested: (a) reductive activation of the NiFe site, for which NADPH was found to be more efficient than NADH; (b) H(2) production, for which NADH appeared to be a more efficient electron donor than NADPH; and (c) H(2) oxidation, for which NAD(+) was a much better electron acceptor than NADP(+). Upon hoxE deletion, the Synechocystis hydrogenase active site remained functional with artificial electron donors or acceptors, but the enzyme became unable to catalyze H(2) production or uptake with NADH/NAD(+). However, activation of the electron transfer-independent H/D exchange reaction by NADPH was still observed in the absence of HoxE, whereas activation of this reaction by NADH was lost. These data suggest different mechanisms for diaphorase-mediated electron donation and catalytic site activation in cyanobacterial hydrogenase.  相似文献   

2.
The present study was carried out in order to examine and characterize the bidirectional hydrogenase in the cyanobacterium Nostoc sp. strain PCC 73102. Southern hybridizations with the probes Av1 and Av3 (hoxY and hoxH, bidirectional hydrogenase small and large subunits, respectively) revealed the occurrence of corresponding sequences in Anabaena variabilis (control), Anabaena sp. strain PCC 7120, and Nostoc muscorum but not in Nostoc sp. strain PCC 73102. As a control, hybridizations with the probe hup2 (hupL, uptake hydrogenase large subunit) demonstrated the presence of a corresponding gene in all the cyanobacteria tested, including Nostoc sp. strain PCC 73102. Moreover, with three different growth media, a bidirectional enzyme that was functional in vivo was observed in N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis, whereas Nostoc sp. strain PCC 73102 consistently lacked any detectable in vivo activity. Similar results were obtained when assaying for the presence of an enzyme that is functional in vitro. Native polyacrylamide gel electrophoresis followed by in situ hydrogenase activity staining was used to demonstrate the presence or absence of a functional enzyme. Again, bands corresponding to hydrogenase activity were observed for N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis but not for Nostoc sp. strain PCC 73102. In conclusion, we were unable to detect a bidirectional hydrogenase in Nostoc sp. strain PCC 73102 with specific physiological and molecular techniques. The same techniques clearly showed the presence of an inducible bidirectional enzyme and corresponding structural genes in N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis. Hence, Nostoc sp. strain PCC 73102 seems to be an unusual cyanobacterium and an interesting candidate for future biotechnological applications.  相似文献   

3.
4.
A new broad-host-range plasmid, pSL1211, was constructed for the over-expression of genes in Synechocystis sp. strain PCC 6803. The plasmid was derived from RSF1010 and an Escherichia coli over-expression plasmid, pTrcHisC. Over-expressed protein is made with a removable N-terminal histidine tag. The plasmid was used to over-express the phrA gene and purify the gene product from Synechocystis sp. strain PCC 6803. PhrA is the major ultraviolet-light-resistant factor in the cyanobacterium. The purified PhrA protein exhibited an optical absorption spectrum similar to that of the cyclobutane pyrimidine dimer (CPD) DNA photolyase from Synechocuccus sp. strain PCC 6301 (Anacystis nidulans). Mass spectrometry analysis of PhrA indicated that the protein contains 8-hydroxy-5-deazariboflavin and flavin adenine dinucleotide (FADH2) as cofactors. PhrA repairs only cyclobutane pyrimidine dimer but not pyrimidine (6-4) pyrimidinone photoproducts. On the basis of these results, the PhrA protein is classified as a class I, HDF-type, CPD DNA photolyase.  相似文献   

5.
The bidirectional, NAD+-dependent hydrogenase from cyanobacteria is encoded by the structural genes hoxFUYH, which have been found to be clustered, though interspersed with different open reading frames (ORFs), in the heterocystous, N2-fixing Anabaena variabilis and in the unicellular Synechocystis PCC 6803. In another unicellular, non N2-fixing cyanobacterium, Anacystis nidulans, hoxF has now been identified as being separated by at least 16 kb from the residual structural genes hoxUYH. An ORF (termed hoxE gene) is located immediately upstream of hoxF in A. nidulans and in Synechocystis. Its deduced amino acid sequence shows similarities to the NuoE subunit of NADH dehydrogenase I of E. coli, to the homologous subunit of respiratory complex I in mitochondria, and also to the first 104 amino acids of HoxF in A. nidulans and Synechocystis. The diversity in the arrangement of hydrogenase genes in cyanobacteria is puzzling. The subunits HoxE, HoxF, and HoxU of the diaphorase part of the bidirectional hydrogenase have been discussed to be shared both by respiratory complex I and bidirectional hydrogenase in cyanobacteria. Different hoxU mutants were obtained by inserting a lacZKmR cassette into the gene both in A. nidulans and Anacystis PCC 7942. Such mutants showed reduced H2-evolution activities catalyzed by the bidirectional hydrogenase, but had nonimpaired respiratory O2-uptake. A common link between respiratory complex I and the diaphorase part of the bidirectional hydrogenase in cyanobacteria may still exist, but this hypothesis could not be verified in the present study by analyzing defined mutants impaired in one of the diaphorase genes. Received: 11 August 1997 / Accepted: 23 September 1997  相似文献   

6.
7.
R M Wynn  J Omaha  R Malkin 《Biochemistry》1989,28(13):5554-5560
Photosystem I (PSI) complexes have been isolated from two cyanobacterial strains, Synechococcus sp. PCC 7002 and 6301. These complexes contain six to seven low molecular mass subunits in addition to the two high molecular mass subunits previously shown to bind the primary reaction center components. Chemical cross-linking of ferredoxin to the complex identified a 17.5-kDa subunit as the ferredoxin-binding protein in the Synechococcus sp. PCC 6301-PSI complex. The amino acid sequence of this subunit, deduced from the DNA sequence of the gene, confirmed its identity as the psaD gene product. A 17-kDa subunit cross-links to the electron donor, cytochrome c-553, in a manner analogous to the cross-linking of plastocyanin to the higher plant PSI complex. Using antibodies raised against the spinach psaC gene product (a 9-kDa subunit which binds Fe-S centers A and B), we identified an analogous protein in the cyanobacterial PSI complex.  相似文献   

8.
报道了室温、空气环境下聚球藻Synechococcus sp.PCC7942氢酶的分离纯化.经过超声破碎、超速离心、离子交换层析、疏水层析及凝胶层析等步骤,氢酶被纯化了218倍,得率为6.5%,比活为1.46U·mg-1蛋白.纯化氢酶的SDS-PAGE图显示五条蛋白带,分子量约为83kDa,60kDa,47kDa,30kDa和27kDa.该氢酶为可溶性的双向氢酶,其催化放氢的最佳电子供体为还原态的甲基紫精,最适温度50℃,最适pH8.0.  相似文献   

9.
10.
11.
Pyruvate kinase (PK) from the cyanobacterium Synechococcus PCC 6301 was purified 1,300-fold to electrophoretic homogeneity and a final specific activity of 222 micromol of pyruvate produced/min/mg of protein. The enzyme was shown to have a pI of 5.7 and to exist as a 280-kDa homotetramer composed of 66-kDa subunits. This PK appears to be immunologically related to Bacillus PK and a green algal chloroplast PK, but not to rabbit muscle PK, or vascular plant cytosolic and plastidic PKs. The N-terminal amino acid sequence of the Synechococcus PK exhibited maximal (67%) identity with the corresponding region of a putative PK-A sequence deduced from the genome of the cyanobacterium, Synechocystis PCC 6803. Synechococcus PK was relatively heat-labile and displayed a broad pH optimum around pH 7.0. Its activity was not influenced by K(+), but required high concentrations of Mg(2+), and was relatively nonspecific with respect to the nucleoside diphosphate substrate. Potent allosteric regulation by various effectors was observed (activators: hexose monophosphates, ribose 5-phosphate, glycerol 3-phosphate, and AMP; inhibitors: fructose 1,6-bisphosphate, inorganic phosphate, ATP, and several Krebs' cycle intermediates). The enzyme exhibited marked positive cooperativity for phosphoenolpyruvate, which was eliminated or reduced by the presence of the allosteric activators. The results are discussed in terms of the phylogeny and probable central role of PK in the control of cyanobacterial glycolysis.  相似文献   

12.
13.
Cyanobacteria are able to use solar energy for the production of hydrogen. It is generally accepted that cyanobacterial NiFe-hydrogenases are reduced by NAD(P)H. This is in conflict with thermodynamic considerations, as the midpoint potentials of NAD(P)H do not suffice to support the measured hydrogen production under physiological conditions. We show that flavodoxin and ferredoxin directly reduce the bidirectional NiFe-hydrogenase of Synechocystis sp. PCC 6803 in vitro. A merodiploid ferredoxin-NADP reductase mutant produced correspondingly more photohydrogen. We furthermore found that the hydrogenase receives its electrons via pyruvate:flavodoxin/ferredoxin oxidoreductase (PFOR)-flavodoxin/ferredoxin under fermentative conditions, enabling the cells to gain ATP. These results strongly support that the bidirectional NiFe-hydrogenases in cyanobacteria function as electron sinks for low potential electrons from photosystem I and as a redox balancing device under fermentative conditions. However, the selective advantage of this enzyme is not known. No strong phenotype of mutants lacking the hydrogenase has been found. Because bidirectional hydrogenases are widespread in aquatic nutrient-rich environments that are capable of triggering phytoplankton blooms, we mimicked those conditions by growing cells in the presence of increased amounts of dissolved organic carbon and dissolved organic nitrogen. Under these conditions the hydrogenase was found to be essential. As these conditions close the two most important sinks for reduced flavodoxin/ferredoxin (CO2-fixation and nitrate reduction), this discovery further substantiates the connection between flavodoxin/ferredoxin and the NiFe-hydrogenase.  相似文献   

14.
Glutaredoxin (Grx), which has been found widely in bacteria, plant, and mammalian cells, is an electron carrier for ribonucleotide reductase and a general glutathione-disulfide reductase of importance for redox regulation. The open reading frame designated ssr2061 from cyanobacterium Synechocystis sp. PCC 6803 was found as a homologous gene coding for Grx. The amino acid sequence deduced from ssr2061 shares high identity with that of Grxs from other organisms. In the present study, the protein of Grx2061 encoded by ssr2061 was successfully overexpressed as soluble fraction in Escherichia coli BL21 (DE3). The recombinant protein was purified to near homogenity by two steps involving immobilized metal affinity chromatography and gel filtration chromatography with a yield of 22% and a specific activity of 41.5 micromol NADPH oxidized per milligram of protein in the 2-hydroxyethyl disulfide assay. The pET-2061 transformed Escherichia coli cells showed higher Grx activity and tolerance to H(2)O(2) mediated growth inhibition compared to cells transformed with the vector alone. This suggests that overexpression of Grx from Synechocystis sp. PCC 6803 may provide protection to E. coli cells against oxidative stress mediated by H(2)O(2).  相似文献   

15.
Hydrogenases are metalloenzymes that catalyze 2H+ + 2e ↔ H2. A multisubunit, bidirectional [NiFe]-hydrogenase has been identified and characterized in a number of bacteria, including cyanobacteria, where it is hypothesized to function as an electron valve, balancing reductant in the cell. In cyanobacteria, this Hox hydrogenase consists of five proteins in two functional moieties: a hydrogenase moiety (HoxYH) with homology to heterodimeric [NiFe]-hydrogenases and a diaphorase moiety (HoxEFU) with homology to NuoEFG of respiratory Complex I, linking NAD(P)H ↔ NAD(P)+ as a source/sink for electrons. Here, we present an extensive study of Hox hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. We identify the presence of HoxEFUYH, HoxFUYH, HoxEFU, HoxFU, and HoxYH subcomplexes as well as association of the immature, unprocessed large subunit (HoxH) with other Hox subunits and unidentified factors, providing a basis for understanding Hox maturation and assembly. The analysis of mutants containing individual and combined hox gene deletions in a common parental strain reveals apparent alterations in subunit abundance and highlights an essential role for HoxF and HoxU in complex/subcomplex association. In addition, analysis of individual and combined hox mutant phenotypes in a single strain background provides a clear view of the function of each subunit in hydrogenase activity and presents evidence that its physiological function is more complicated than previously reported, with no outward defects apparent in growth or photosynthesis under various growth conditions.  相似文献   

16.
l-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS) catalyzes the first rate limiting conversion of d-glucose 6-phosphate to l-myo-inositol 1-phosphate in the inositol biosynthetic pathway. In an earlier communication we have reported two forms of MIPS in Synechocystis sp. PCC6803 (Chatterjee et al. in Planta 218:989–998, 2004). One of the forms with a ~50 kDa subunit has been found to be coded by an as yet unassigned ORF, sll1722. In the present study we have purified the second isoform of MIPS as a ~65 kDa protein from the crude extract of Synechocystis sp. PCC6803 to apparent homogeneity and biochemically characterized. MALDI-TOF analysis of the 65 kDa protein led to its identification as acetolactate synthase large subunit (EC 2.2.1.6; ALS), the putatively assigned ORF sll1981 of Synechocystis sp. PCC6803. The PCR amplified ~1.6 kb product of sll1981 was found to functionally complement the yeast inositol auxotroph, FY250 and could be expressed as an immunoreactive ~65 kDa MIPS protein in the natural inositol auxotroph, Schizosaccharomyces pombe. In vitro MIPS activity and cross reactivity against MIPS antibody of purified recombinant sll1981 further consolidated its identity as the second probable MIPS gene in Synechocystis sp. PCC6803. Sequence comparison along with available crystal structure analysis of the yeast MIPS reveals conservation of several amino acids in sll1981 essential for substrate and co-factor binding. Comparison with other prokaryotic and eukaryotic MIPS sequences and phylogenetic analysis, however, revealed that like sll1722, sll1981 is quite divergent from others. It is probable that sll1981 may code for a bifunctional enzyme protein having conserved domains for both MIPS and acetolactate synthase (ALS) activities.Anirban Chatterjee and Krishnarup Ghosh Dastidar contributed equally.  相似文献   

17.
The bidirectional [NiFe] hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 was purified to apparent homogeneity by a single affinity chromatography step using a Synechocystis mutant with a Strep-tag II fused to the C terminus of HoxF. To increase the yield of purified enzyme and to test its overexpression capacity in Synechocystis the psbAII promoter was inserted upstream of the hoxE gene. In addition, the accessory genes (hypF, C, D, E, A, and B) from Nostoc sp. PCC 7120 were expressed under control of the psbAII promoter. The respective strains show higher hydrogenase activities compared with the wild type. For the first time a Fourier transform infrared (FTIR) spectroscopic characterization of a [NiFe] hydrogenase from an oxygenic phototroph is presented, revealing that two cyanides and one carbon monoxide coordinate the iron of the active site. At least four different redox states of the active site were detected during the reversible activation/inactivation. Although these states appear similar to those observed in standard [NiFe] hydrogenases, no paramagnetic nickel state could be detected in the fully oxidized and reduced forms. Electron paramagnetic resonance spectroscopy confirms the presence of several iron-sulfur clusters after reductive activation. One [4Fe4S]+ and at least one [2Fe2S]+ cluster could be identified. Catalytic amounts of NADH or NADPH are sufficient to activate the reaction of this enzyme with hydrogen.  相似文献   

18.
A Vioque 《Nucleic acids research》1992,20(23):6331-6337
The genes encoding the RNA subunit of ribonuclease P from the unicellular cyanobacterium Synechocystis sp. PCC 6803, and from the heterocyst-forming strains Anabaena sp. PCC 7120 and Calothrix sp. PCC 7601 were cloned using the homologous gene from Anacystis nidulans (Synechococcus sp. PCC 6301) as a probe. The genes and the flanking regions were sequenced. The genes from Anabaena and Calothrix are flanked at their 3'-ends by short tandemly repeated repetitive (STRR) sequences. In addition, two other sets of STRR sequences were detected within the transcribed regions of the Anabaena and Calothrix genes, increasing the length of a variable secondary structure element present in many RNA subunits of ribonuclease P from eubacteria. The ends of the mature RNAs were determined by primer extension and RNase protection. The predicted secondary structure of the three RNAs studied is similar to that of Anacystis and although some idiosyncrasies are observed, fits well with the eubacterial consensus.  相似文献   

19.
The physiological function of the type 1 NAD(P)H dehydrogenase (Ndh-1) of Synechocystis sp. PCC6803 has been investigated by inactivating the gene ndhH encoding a subunit of the complex. Molecular analysis of independent transformants revealed that all clones were heteroploid, containing both wild-type and mutant ndhH copies, whatever the metabolic conditions used during genome segregation, including high CO(2) concentration. By replacing the chromosomal copy of the ndhH gene by a plasmidial copy under the control of a temperature-controlled promoter, we induce a conditional phenotype, growth being only possible at high temperature. This clearly shows for the first time that an ndh gene is indispensable to the survival of Synechocystis sp. PCC6803.  相似文献   

20.
蓝藻NADPH脱氢酶(NDH-1)是一种重要的光合膜蛋白复合体,参与CO2吸收、围绕光系统I的循环电子传递和细胞呼吸。迄今为止,人们在蓝藻细胞中已鉴定出15种NDH-1复合体亚基(NdhA-NdhO)。然而,人们对NdhO亚基的研究尚不够,至今未见有反向遗传学等方面的研究。在通过构建同源重组载体、自然转化和多次继代筛选后,对转化子进行了PCR和蛋白免疫印迹鉴定。结果表明,卡那霉素基因已成功地插入到ndhO基因的保守区域,并完全破坏了ndhO基因的蛋白表达,从而获得了ndhO基因缺失的突变株,为进一步研究NdhO亚基对NDH-1复合体的稳定性和生理功能等奠定了实验基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号