首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method has been developed to assess the minimum complexity and relationships of those pathways (developmental timers) which time the consecutive stages of a developing system (Soll, 1983). This method has been applied to the morphogenetic program of Dictyostelium discoideum and has resulted in (1) a minimum estimate of the number of components comprising the timers for the first seven stages of morphogenesis, (2) a characterization of the temperature sensitivities of these components including demonstration of a reversible timer component, (3) detailed temporal definition of a number of transition points between rate-limiting components including a major branch point for the onset of several independent timer components coincident with the onset of aggregation, and (4) a temporal model for the relationships between the timers of the seven consecutive morphogenetic stages, including several examples of parallel timers.  相似文献   

2.
A number of genes encoding developmentally regulated mRNAs in the cellular slime mold, Dictyostelium discoideum, have been described. Many of these are regulated by cAMP. Analysis of the earliest time at which elevated levels of cAMP can induce the expression of these mRNAs reveals a more complex pattern of regulation in which genes change in their ability to be induced in response to cAMP with developmental stage. A prestalk mRNA (C1/D11) previously thought not be regulated by elevated levels of cAMP is inducible by cAMP between aggregation and loose mound stage; later in development its expression becomes independent of elevated cAMP. The early prespore genes (prespore class I) also show two modes of regulation; early in development they are induced independently of continuous elevated levels of cAMP, while later in development their expression is dependent upon elevated cAMP. The period during development when the prestalk genes are cAMP inducible precedes by 2 hr the first time at which either the early prespore class I or late prespore class II mRNAs are inducible by continuous elevated levels of cAMP. Previous analysis of these mRNAs has been carried out using Dictyostelium cells grown axenically. In this report we have studied the developmental expression of these mRNAs in cells grown on bacteria. A substantial shutoff of the class I prestalk and early prespore (class I) mRNAs not seen in axenically grown cells is observed when bacterially grown cells are plated for development. Less than 10% of the maximal level of these mRNAs remains in the cells at the time of mature spore and stalk differentiation. Additionally, in the bacterially grown cells two distinct patterns of developmental regulation are observed for mRNAs which in axenically growing cells appear to be constitutively expressed throughout growth and development.  相似文献   

3.
It was previously shown [K. Okamoto, J. Gen. Microbiol. 127, 301 (1981)] that Dictyostelium discoideum cells dissociated from early aggregates, but not aggregation competent cells obtained in a suspension culture, undergo prespore differentiation, when transferred into a medium containing glucose, albumin, and cAMP. Therefore, the former, but not the latter, is considered to have been acquired "differentiation competence." In the present work, the requirements for cells to acquire the differentiation competence are investigated with D. discoideum NC4 strain. On solid substratum, the incubation above a threshold density is absolutely required for this process, while cell aggregation itself is not essential. In suspension cultures, the competence is acquired only under hypertonic conditions. Inhibition of protein synthesis or depletion of cAMP does not affect the acquisition process of the competence. The requirement of hypertonic treatment was also investigated with several other D. discoideum strains.  相似文献   

4.
5.
We have identified a cellular efflux pump, RhT, with the properties of an MDR transporter-a type of ATP-binding cassette transporter whose substrates include small hydrophobic molecules. RhT transports rhodamine 123 (Rh123) and is inhibited by low temperature, energy poisons, and several MDR transport inhibitors, such as verapamil. All vegetative cells have RhT activity, but during development prestalk cells lose RhT activity while prespore cells retain it. We also identified several RhT inhibitors. The most effective inhibitor is the stalk cell-inducing chlorinated alkyl phenone, DIF-1. The RhT inhibitors disrupted development, to varying degrees, and induced stalk cell formation in submerged culture. The inhibitors displayed the same rank order of pharmacological efficacy for stalk cell induction as they did for Rh123 transport inhibition. We also found that cerulenin, a specific inhibitor of DIF-1 biosynthesis (R. R. Kay, 1998, J. Biol. Chem. 273, 2669-2675), abolished the induction of stalk cells by each of the RhT inhibitors, and this effect could be reversed by DIF-1. Thus, DIF-1 synthesis appears to be required for the induction of stalk cells by the RhT inhibitors. Since DIF-1 is the most potent inhibitor of RhT activity, and thus a likely transport substrate itself, we propose that RhT inhibitors induce stalk cell differentiation by blocking DIF-1 export, causing DIF-1 to build up within cells. Our results provide evidence for a prespore-specific efflux pump that regulates cell fate determination, perhaps by regulating the cellular concentration of DIF-1.  相似文献   

6.
7.
Abstract. Differentiation of Dictyostelium discoideum cells in submerged monolayers was studied and compared with in vivo development. The accumulation patterns of three developmentally regulated enzymes in cells of strain V12M2 differentiating in vivo on Millipore Filters or in vitro in monolayers at high cell-densities were found to be similar. Moreover, stalk cell formation occurred at approximately the same time in high or low cell density monolayers as it did during normal differentiation. These observations suggest that the timing of differentiation in vitro and in vivo is similar.
In vitro stalk cell formation requires exogenous cyclic AMP, and in its absence, the accumulation patterns of the three developmentally regulated enzymes are alterd. At low cell densities, in vitro stalk cell induction also requires a differentiation-inducing factor (DIF). The addition or removal of cyclic AMP or DIF during development under these conditions revealed the sequence of these two requirements. Cyclic AMP is not required for stalk cell induction for the first 8 hours of incubation, but thereafter, a gradually increasing proportion of cells are induced by cyclic AMP. After a brief delay there is a period of induction by DIF, and this period corresponds approximately to the period of DIF accumulation during in vivo development. The two induction events are clearly separate, in that each inducer can act in the absence of the other, as long as cyclic AMP induction precedes DIF induction. Cyclic AMP is only required at a concentration of 40 μM when added 8 hours after the beginning of the differentiation period.  相似文献   

8.
Extracellular cyclic AMP-phosphodiesterase accelerates the development of aggregation competence in Dictyostelium discoideum when present during the preaggregation stage. The effect on development appears to depend only on hydrolysis of extracellular cyclic AMP and not on other properties of the phosphodiesterase molecule. Extracellular cyclic AMP-phosphodiesterase, as a promoter of differentiation, acts mainly throughout the first half of interphase. Our evidence supports the proposal that cyclic AMP oscillations control the rate and possibly the initiation of development. Since extracellular cyclic AMP-phosphodiesterase acts from the beginning of interphase cyclic AMP oscillations may also occur from early interphase, at least in the presence of this enzyme. This would imply that the cyclic AMP oscillator is a determinant, but not a product, of the developmental programme.  相似文献   

9.
We have produced two monoclonal antibodies specific to the stalk cells of Dictyostelium discoideum fruiting bodies. Both monoclonal antibodies react with high molecular weight proteins previously found to be stalk-specific by two-dimensional gel analysis. One antibody (JAb 1) is specific for a single protein of apparent molecular weight 310 000 which first appears when overt stalk differentiation begins at 20 h. The other monoclonal antibody (JAb 2) is also stalk-specific, though earlier in development it binds to proteins extracted from both prestalk and prespore cells of the migrating slug. It reacts with two proteins in stalks, one of apparent molecular weight 430 000 which is first detected during tip formation at 12 h and a lower molecular weight protein (310 000) detected from 20 h. Although several markers are available for the investigation of prespore/spore differentiation there is a distinct lack of suitable prestalk/stalk markers. The monoclonal antibodies described here are highly specific stalk markers and should prove useful in the study of cell proportioning and terminal differentiation.  相似文献   

10.
We are studying cell differentiation in Dictyostelium discoideum by examining the regulation of genes that are preferentially expressed in different cell types. A system has been established in which prestalk- and prespore-cell-specific genes are expressed in single cells in response to culture conditions. We confirm our previous results showing that cyclic AMP induces prestalk genes and now show that it is also required for prespore gene induction. The expression of both classes of genes is additionally dependent on the presence of a factor(s) secreted by developing cells which we call conditioned medium factor(s). An assay for conditioned medium factor(s) shows that it is detectable within 2.5 h after the onset of development. Conditioned medium factor(s) also promotes the expression of genes induced early in development, but has no detectable effect on the expression of actin genes and a gene expressed maximally in vegetative cells. In the presence of conditioned medium factor(s), exogenous cyclic AMP at the onset of starvation fails to induce the prespore and prestalk genes. The addition of cyclic AMP between 2 and 12 h of starvation results in rapid prestalk gene expression, whereas prespore genes are induced at an invarient time (approximately 18 h after the onset of starvation). These data suggest that cyclic AMP and conditioned medium factor(s) are sufficient for prestalk gene induction, whereas an additional parameter(s) is involved in the control of prespore gene induction. In contrast to several previous studies, we show that multicellularity is not essential for the expression of either prespore or prestalk genes. These data indicate that prespore and prestalk genes have cell-type-specific as well as shared regulatory factors.  相似文献   

11.
The prestalk and prespore cells from the Dictyostelium discoideummulticellular slug stage of development differ in assembly ofglycoconjugates. Prespore cells are 2- to 3-fold more activethan prestalk cells in the assembly of N-linked glycans and20-fold more active in their fucosylation. Only prespore cellssynthesize an O-linked glycan consisting in part of Fuc -linkedto N-acetylglucosamine. Incorporation of fucose, glucosamine,mannose and galactose into large pronase-resistant glycoconjugateswas almost exclusively into prespore cells. Such glucosamine-labelledglycoconjugates resist fragmentation by ß-eliminationand include a glycoantigen dependent on the modB genetic locus.In contrast, large fucose-labelled glycoconjugates consistedof multiple, small, O-linked oligosaccharides on carrier peptides.The spore coat protein SP96 has several fucosylated O-linkedoligosaccharides, one of which correlates with a fucose epitopepreviously shown to localize in prespore vesicles and the outerlayer of the spore coat. Dictyostelium discoideum glycoconjugates glycoproteins prespore prestalk  相似文献   

12.
Abstract Using a shaking culture system, we have previously shown that both cell contact and cAMP are required for pre-spore differentiation in Dictyostelium discoideum [2]. In the present study, cAMP was removed from the medium by the use of a hydrolysing enzyme after cells had formed agglomerates. This treatment left the agglomerates unchanged, but caused a rapid decrease in the activity of UDP galactose transferase, a pre-spore-specific enzyme. This result indicates that cAMP is required even after agglomerate formation to maintain pre-spore differentiation.  相似文献   

13.
14.
Developing Dictyostelium discoideum amoebae form a stalked fruiting body in which individual cells differentiate into either stalk cells or spores. The major known inducer of stalk cell differentiation is the chlorinated polyketide DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one); however a mutant blocked in the terminal step of DIF-1 biosynthesis still produces one of the prestalk cell subtypes - the pstA cells - as well as some mature stalk cells. We therefore searched for additional stalk cell-inducing factors in the medium supporting development of this mutant. These factors were purified by solvent extraction and HPLC and identified by mass spectroscopy and NMR. The mutant lacked detectable DIF-2 and DIF-3 (the pentanone and deschloro homologues of DIF-1) but four major stalk cell-inducing activities were detected, of which three were identified. Two compounds were predicted intermediates in DIF-1 biosynthesis: the desmethyl, and desmethyl-monochloro analogues of DIF-1 (dM-DIF-1 and Cl-THPH, respectively), supporting the previously proposed pathway of DIF-1 biosynthesis. The third compound was a novel factor and was identified as 4-methyl-5-pentylbenzene-1,3-diol (MPBD) with the structure confirmed by chemical synthesis. To investigate the potential roles of these compounds as signal molecules, their effects on morphological stalk and spore differentiation were examined in cell culture. All three induced morphological stalk cell differentiation. We found that synthetic MPBD also stimulated spore cell differentiation. Now that these factors are known to be produced and released during development, their biological roles can be pursued further.  相似文献   

15.
王一铮  张敏  侯连生 《生命科学》2006,18(5):457-461
本文综述了盘基网柄菌(Dictyosteliumdiscoideum)发育过程中调控细胞分化及细胞比例的一些信号分子,包括分化诱导因子(DIF-1、SDF-2)、糖原合成酶激酶(GSK-3)、环状亮氨酸拉链蛋白(rZIP)等,介绍了这些信号分子的功能及其作用机制。  相似文献   

16.
A central problem in developmental biology is to understand how morphogenetic fields are created and how they act to direct regionalized cellular differentiation. This goal is being pursued in organisms as diverse as moulds, worms, flies, frogs and mice. Each organism has evolved its own solution to the challenge of multicellularity but there appear to be common underlying principles and, once pattern formation is fully understood in any system, some general truths seem certain to be revealed. As a non-obligate metazoan, Dictyostelium discoideum has proven a particularly tractable system in which to identify and characterize cellular morphogens. Cyclic AMP and ammonia stimulate prespore cell differentiation and ammonia plays an additional role in repressing terminal cellular differentiation. Differentiation Inducing Factor (DIF) acts to direct prestalk cell differentiation and adenosine may play a synergistic role in repressing prespore cell differentiation. This review summarizes the evidence for these interactions and describes a number of models which show how this small repertoire of diffusible molecules, acting in concert, may direct the formation of a differentiated structure.  相似文献   

17.
Despite the fact that there are only relatively slight changes in lipid composition during the differentiation of Dictyostelium discoideum, the rates of lipid synthesis were found to vary considerably. Polar lipid synthesis declined markedly during aggregation and pseudoplasmodium formation and then increased during the terminal stages of differentiation. Several neutral lipid classes (sterol, the diacylglycerols and triacylglycerol) exhibited similar changes in synthetic rates, although the effects were somewhat less pronounced. In contrast, the rates of synthesis of steryl ester and free fatty acid increased slightly throughout the differentiation period, so that, by the end of the later stages of fruiting body culmination, the rates were essentially doubled. Finally, the synthesis of an unknown component increases at least 10-fold during differentiation. Of the newly synthesized lipid, only triacylglycerol and polar lipid exhibited marked turnover. Accumulation of radioactivity in steryl ester and free fatty acid continued after the removal of radioactive acetate, presumably due to the incorporation of fatty acid produced by polar lipid degradation.  相似文献   

18.
19.
By the use of a shake culture system, we have previously shown (Oyama, M., Okamoto, K., & Takeuchi, I. (1982) J. Cell Sci. 56, 223-232) that both cAMP and cAMP-dependent cell contact are required for prespore differentiation in Dictyostelium discoideum. The present study was undertaken to examine changes of the plasma membrane proteins during prespore differentiation in the shake culture system. Rabbit antibodies prepared against the plasma membrane fraction of the differentiated cells inhibited the reaggregation of the differentiated cells but not that of aggregation-competent cells. This result indicates that new contact sites are formed in the differentiated cells. By the combined use of the antibody-conjugated immuno-adsorbent with sodium dodecyl sulfate-polyacrylamide gel electrophoresis, changes of membrane proteins were analyzed with the cells incubated under various conditions. Three proteins were found to be present specifically in the differentiated cells only in the presence of cAMP, one of which (105K protein) appeared when cells became adhesive, but before prespore specific proteins were detected. Two others (80K and 58K proteins) appeared during prespore differentiation after cells formed agglomerates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号