首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transition from a dark-grown (etiolated) to a light-grown (de-etiolated) morphology is marked by a number of dramatic phenotypic changes such as a significant reduction in the rate of shoot elongation, opening of the apical hook, expansion of true leaves and the development of mature chloroplasts. Many of these developmental processes are also known to be regulated by plant hormones. In this review we discuss the interactions between light and plant hormones and their role in mediating phenotypic change during de-etiolation. Clear evidence exists for a light-mediated reduction in gibberellin A, GA levels and response in pea, which is thought to be responsible, at least in part, for the reduction of shoot elongation during de-etiolation. Indirect evidence from a number of species has been used to suggest that the reduction in shoot elongation could also be mediated by a reduction in brassinosteroid (BR) levels. However, direct evidence recently obtained from pea and rice demonstrates that de-etiolation is not mediated, or even accompanied, by a reduction in BR levels. Ethylene is known to play an integral role in apical hook formation and maintenance in plants. However, the physiological significance of light-induced changes in IAA and ABA levels found in some species is not clear. Recent molecular data provide evidence of interactions between light-and IAA/CK-signalling pathways. Potential mechanisms for these interactions are discussed.  相似文献   

2.
Uncoupling brassinosteroid levels and de-etiolation in pea   总被引:14,自引:1,他引:13  
The suggestion that brassinosteroids (BRs) have a negative regulatory role in de-etiolation is based largely on correlative evidence, which includes the de-etiolated phenotypes of, and increased expression of light-regulated genes in, dark-grown mutants defective in BR biosynthesis or response. However, we have obtained the first direct evidence which shows that endogenous BR levels in light-grown pea seedlings are increased, not decreased, in comparison with those grown in the dark. Similarly, we found no evidence of a decrease in castasterone (CS) levels in seedlings that were transferred from the dark to the light for 24 h. Furthermore, CS levels in the constitutively de-etiolated lip1 mutant are similar to those in wild-type plants, and are not reduced as is the case in the BR-deficient lkb plants. Unlike lip1 , the pea BR-deficient mutants lk and lkb are not de-etiolated at the morphological or molecular level, as they exhibit neither a de-etiolated phenotype or altered expression of light-regulated genes when grown in the dark. Similarly, dark-grown WT plants treated with the BR biosynthesis inhibitor, Brz, do not exhibit a de-etiolated phenotype. In addition, analysis of the lip1lkb double mutant revealed an additive phenotype indicative of the two genes acting in independent pathways. Together these results strongly suggest that BR levels do not play a negative-regulatory role in de-etiolation in pea.  相似文献   

3.
The level of gibberellin A(1) (GA(1)) in shoots of pea (Pisum sativum) dropped rapidly during the first 24 h of de-etiolation. The level then increased between 1 and 5 d after transfer to white light. Comparison of the metabolism of [(13)C(3)H] GA(20) suggested that the initial drop in GA(1) after transfer is mediated by a light-induced increase in the 2beta-hydroxylation of GA(1) to GA(8). A comparison of the elongation response to GA(1) at early and late stages of de-etiolation provided strong evidence for a change in GA(1) response during de-etiolation, coinciding with the return of GA(1) levels to the normal, homeostatic levels found in light- and dark-grown plants. The emerging picture of the control of shoot elongation by light involves an initial inhibition of elongation by a light-induced decrease in GA(1) levels, with continued inhibition mediated by a light-induced change in the plant's response to the endogenous level of GA(1). Hence the plant uses a change in hormone level to respond to a change in the environment, but over time, homeostasis returns the level of the hormone to normal once the ongoing change in environment is accommodated by a change in the response of the plant to the hormone.  相似文献   

4.
Gibberellin A(1) (GA(1)) levels drop significantly in wild-type pea (Pisum sativum) plants within 4 h of exposure to red, blue, or far-red light. This response is controlled by phytochrome A (phyA) (and not phyB) and a blue light receptor. GA(8) levels are increased in response to 4 h of red light, whereas the levels of GA(19), GA(20), and GA(29) do not vary substantially. Red light appears to control GA(1) levels by down-regulating the expression of Mendel's LE (PsGA3ox1) gene that controls the conversion of GA(20) to GA(1), and by up-regulating PsGA2ox2, which codes for a GA 2-oxidase that converts GA(1) to GA(8). This occurs within 0.5 to 1 h of exposure to red light. Similar responses occur in blue light. The major GA 20-oxidase gene expressed in shoots, PsGA20ox1, does not show substantial light regulation, but does show up-regulation after 4 h of red light, probably as a result of feedback regulation. Expression of PsGA3ox1 shows a similar feedback response, whereas PsGA2ox2 shows a feed-forward response. These results add to our understanding of how light reduces shoot elongation during de-etiolation.  相似文献   

5.
We investigated the role of auxin on stem elongation in pea (Pisum sativum L.) grown for 10d in continuous darkness or under low-irradiance blue, red, far red and white light. The third internode of treated seedlings was peeled and the tissues (epidermis and cortex+central cylinder) were separately analyzed for the concentration of free and conjugated indole-3-acetic acid (IAA). Under red, far red and white light internode elongation was linearly related with the free IAA content of all internode tissues, suggesting that phytochrome-dependent inhibition of stem growth may be mediated by a decrease of free IAA levels in pea seedlings. The correlation between IAA and internode elongation, however, did not hold for blue light-grown seedlings. The hypothesis that the growth response under low-irradiance blue light might be correlated with the lack of phytochrome B signalling and changes in gibberellin metabolism is discussed in view of current knowledge on hormonal control of stem growth.  相似文献   

6.
7.
Yang T  Davies PJ  Reid JB 《Plant physiology》1996,110(3):1029-1034
Exogenous gibberellin (GA) and auxin (indoleacetic acid [IAA]) strongly stimulated stem elongation in dwarf GA1-deficient le mutants of light-grown pea (Pisum sativum L.): IAA elicited a sharp increase in growth rate after 20 min followed by a slow decline; the GA response had a longer lag (3 h) and growth increased gradually with time. These responses were additive. The effect of GA was mainly in internodes less than 25% expanded, whereas that of IAA was in the older, elongating internodes. IAA stimulated growth by cell extension; GA stimulated growth by an increase in cell length and cell number. Dwarf lkb GA-response-mutant plants elongated poorly in response to GA (accounted for by an increase in cell number) but were very responsive to IAA. GA produced a substantial elongation in lkb plants only in the presence of IAA. Because lkb plants contain low levels of IAA, growth suppression in dwarf lkb mutants seems to be due to a deficiency in endogenous auxin. GA may enhance the auxin induction of cell elongation but cannot promote elongation in the absence of auxin. The effect of GA may, in part, be mediated by auxin. Auxin and GA control separate processes that together contribute to stem elongation. A deficiency in either leads to a dwarfed phenotype.  相似文献   

8.
Information on the involvement of elongation-controlling hormones, particularly gibberellin (GA), in UV-B modulation of stem elongation and leaf growth, is limited. We aimed to study the effect of UV-B on levels of GA and indole-3-acetic acid (IAA) as well as involvement of GA in UV-B inhibition of stem elongation and leaf expansion in pea. Reduced shoot elongation (13%) and leaf area (37%) in pea in response to a 6-h daily UV-B (0.45 W m?2) exposure in the middle of the light period for 10 days were associated with decreased levels of the bioactive GA1 in apical stem tissue (59%) and young leaves (69%). UV-B also reduced the content of IAA in young leaves (35%). The importance of modulation of GA metabolism for inhibition of stem elongation in pea by UV-B was confirmed by the lack of effect of UV-B in the le GA biosynthesis mutant. No UV-B effect on stem elongation in the la cry-s (della) pea mutant demonstrates that intact GA signalling is required. In conclusion, UV-B inhibition of shoot elongation and leaf expansion in pea depends on UV-B modulation of GA metabolism in shoot apices and young leaves and GA signalling through DELLA proteins. UV-B also affects the IAA content in pea leaves.  相似文献   

9.
10.
Growth of the roots vertical roots of 12 genotypes of peas ( Pisum sativum ), which differed in stem height because of differing gibberellin (GA) or brassinosteroid content or signal transduction, was recorded during continuous exogenous applications of differing concentrations of indoleacetic acid (IAA) and GA3, over a period of 12 h with a sensitivity of 2 μm. IAA was inhibitory to all genotypes tested at concentrations of 0.5 n M and above. The response was rapid, reaching a maximum within 20 min. There was no response to 0.1 n M IAA, and no concentration tested promoted growth. At 0.5 n M the growth rate dropped to the same extent as with higher concentrations but then recovered slowly over about 12 h. Roots of nana ( na ) plants, which have reduced levels of IAA, partially recovered slowly from the inhibition of even 1 μ M IAA, to about 20% of the non-IAA growth rate after 10 h. When IAA (even 1 μ M ) was removed the growth rate of all lines slowly recovered over about 9 h after a lag of 1 h. IAA application to horizontal roots prevented bending in response to gravity. Roots of 3-day-old pea plants of all genotypes were unresponsive to exogenous GA but 5-day-old nana plants showed a gradual increase in elongation rate in response to GA, after a lag of a few hours, possibly because of a depletion of GAs provided from the cotyledons of the young plants. Roots in liquid culture did not branch and gradually became thinner. The growth of cultured roots was about 25% of that of intact plants of the same genotype. GA produced no effect on cultured roots, except in nana where it enhanced elongation. IAA was always inhibitory to growth in culture but stimulated branching. Some shoot-provided factor is necessary for the normal growth and development of the roots.  相似文献   

11.
以甘蔗(Saccharum officinarum)优良品种桂糖42号(GT42)为研究材料, 分别于未伸长期(9-10叶龄以前) (Ls1)、伸长初期(12-13叶龄) (Ls2)和伸长盛期(15-16叶龄) (Ls3)取甘蔗第2片真叶(自顶部起)对应的节间组织, 测定其赤霉素(GA)、生长素(IAA)、油菜素甾醇(BR)、细胞分裂素(CTK)、乙烯(ETH)和脱落酸(ABA)的含量, 并通过实时荧光定量PCR (qRT-PCR)分析赤霉素合成途径关键基因GA20氧化酶基因(GA20-Oxidase1)、赤霉素受体基因(GID1)和DELLA蛋白编码基因(GAI)的差异表达。结果表明, 在甘蔗伸长期间, GA和IAA含量呈现上升趋势, CTK和ABA含量呈下降趋势, ETH含量先上升后下降, BR含量则变化不明显; GA20-Oxidase1GID1的表达呈上升趋势, 而GAI的表达则呈下降趋势, 这与相关植物激素的变化基本一致。综上, 甘蔗节间伸长过程主要与GA和IAA相关, 其次为CTK和ABA, 而ETH受到IAA的调控影响节间伸长; 植物激素间通过相互作用调控GA20-Oxidase1GID1GAI的表达, 影响GA含量和GA的信号转导过程, 进而影响甘蔗节间的伸长。该研究揭示了甘蔗节间伸长过程中赤霉素生物合成途径和信号转导关键基因的差异表达及植物激素含量的动态变化规律。  相似文献   

12.
以甘蔗(Saccharum officinarum)优良品种桂糖42号(GT42)为研究材料, 分别于未伸长期(9-10叶龄以前) (Ls1)、伸长初期(12-13叶龄) (Ls2)和伸长盛期(15-16叶龄) (Ls3)取甘蔗第2片真叶(自顶部起)对应的节间组织, 测定其赤霉素(GA)、生长素(IAA)、油菜素甾醇(BR)、细胞分裂素(CTK)、乙烯(ETH)和脱落酸(ABA)的含量, 并通过实时荧光定量PCR (qRT-PCR)分析赤霉素合成途径关键基因GA20氧化酶基因(GA20-Oxidase1)、赤霉素受体基因(GID1)和DELLA蛋白编码基因(GAI)的差异表达。结果表明, 在甘蔗伸长期间, GA和IAA含量呈现上升趋势, CTK和ABA含量呈下降趋势, ETH含量先上升后下降, BR含量则变化不明显; GA20-Oxidase1GID1的表达呈上升趋势, 而GAI的表达则呈下降趋势, 这与相关植物激素的变化基本一致。综上, 甘蔗节间伸长过程主要与GA和IAA相关, 其次为CTK和ABA, 而ETH受到IAA的调控影响节间伸长; 植物激素间通过相互作用调控GA20-Oxidase1GID1GAI的表达, 影响GA含量和GA的信号转导过程, 进而影响甘蔗节间的伸长。该研究揭示了甘蔗节间伸长过程中赤霉素生物合成途径和信号转导关键基因的差异表达及植物激素含量的动态变化规律。  相似文献   

13.
Symons GM  Smith JJ  Nomura T  Davies NW  Yokota T  Reid JB 《Planta》2008,227(5):1115-1125
De-etiolation involves a number of phenotypic changes as the plants shift from a dark-grown (etiolated) to a light-grown (de-etiolated) morphology. Whilst these light-induced, morphological changes are thought to be mediated by plant hormones, the precise mechanism/s are not yet fully understood. Here we provide further direct evidence that gibberellins (GAs) may play an important role in de-etiolation, because a similar light-induced reduction in bioactive GA levels was detected in barley (Hordeum vulgare L.), Arabidopsis (Arabidopsis thaliana L.), and pea (Pisum sativum L.). This is indicative of a highly conserved, negative-regulatory role for GAs in de-etiolation, in a range of taxonomically diverse species. In contrast, we found no direct evidence of a reduction in brassinosteroid (BR) levels during de-etiolation in any of these species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Gibberellins repress photomorphogenesis in darkness   总被引:3,自引:0,他引:3       下载免费PDF全文
Plants undergo two different developmental programs depending on whether they are growing in darkness (skotomorphogenesis) or in the presence of light (photomorphogenesis). It has been proposed that the latter is the default pathway followed by many plants after germination and before the seedling emerges from soil. The transition between the two pathways is tightly regulated. The conserved COP1-based complex is central in the light-dependent repression of photomorphogenesis in darkness. Besides this control, hormones such as brassinosteroids (BRs), cytokinins, auxins, or ethylene also have been shown to regulate, to different extents, this developmental switch. In the present work, we show that the hormone gibberellin (GA) widely participates in this regulation. Studies from Arabidopsis show that both chemical and genetic reductions of endogenous GA levels partially derepress photomorphogenesis in darkness. This is based both on morphological phenotypes, such as hypocotyl elongation and hook and cotyledon opening, and on molecular phenotypes, such as misregulation of the light-controlled genes CAB2 and RbcS. Genetic studies indicate that the GA signaling elements GAI and RGA participate in these responses. Our results also suggest that GA regulation of this response partially depends on BRs. This regulation seems to be conserved across species because lowering endogenous GA levels in pea (Pisum sativum) induces full de-etiolation in darkness, which is not reverted by BR application. Our results, therefore, attribute an important role for GAs in the establishment of etiolated growth and in repression of photomorphogenesis.  相似文献   

15.
In five-day-old etiolated pea seedlings an increase in IAA content and in L-tryptophan aminotransferase (TAT) and L-tryptophan dehydrogenase (TDH) activities in the apical part of the epicotyl was found 12 h after root excision, which was followed by a decrease up to 48 h. In ten-day-old seedlings a continuous decrease in IAA, TAT and TDH levels in the apical part of the epicotyl was recorded up to 48 h after root excision. This indicates a growth-correlative effect of the root becoming evident in dependence on plant ontogenesis in changes of IAA content and activities of the above enzymes catalysing IAA synthesis.  相似文献   

16.
An attempt has been made to uncouple the effects of the two primary components of shade light, a reduced red to far-red (R/FR) ratio and low photosynthetically active radiation (PAR), on the elongation of the youngest internode of sunflower (Helianthus annuus) seedlings. Maximal internode growth (length and biomass) was induced by a shade light having a reduced R/FR ratio (0.85) under the low PAR of 157 micromol m(-2) s(-1). Reducing the R/FR ratio under normal PAR (421 micromol m(-2) s(-1)) gave similar growth trends, albeit with a reduced magnitude of the response. Leaf area growth showed a rather different pattern, with maximal growth occurring at the higher (normal) PAR of 421 micromol m(-2) s(-1)), but with variable effects being seen with changes in light quality. Reducing the R/FR ratio (by enrichment with FR) gave significant increases in gibberellin A(1) (GA(1)) and indole-3-acetic acid (IAA) contents in both internodes and leaves. By contrast, a lower PAR irradiance had no significant effect on GA(1) and IAA levels in internodes or leaves, but did increase the levels of other GAs, including two precursors of GA(1). Interestingly, both leaf and internode hormone content (GAs, IAA) are positively and significantly correlated with growth of the internode, as are leaf levels of abscisic acid (ABA). However, changes in these three hormones bear little relationship to leaf growth. By implication, then, the leaf may be the major source of GAs and IAA, at least, for the rapidly elongating internode. Several other hormones were also assessed in leaves for plants grown under varying R/FR ratios and PARs. Leaf ethylene production was not influenced by changes in R/FR ratio, but was significantly reduced under the normal (higher) PAR, the irradiance treatment which increased leaf growth. Levels of the growth-active free base and riboside cytokinins were significantly increased in leaves under a reduced R/FR ratio, but only at the higher (normal) PAR irradiance; other light quality treatments evoked no significant changes. Taken in toto, these results indicate that both components of shade light can influence the levels of a wide range of endogenous hormones in internodes and leaves while evoking increased internode elongation and biomass accumulation. However, it is light quality changes (FR enrichment) which are most closely tied to increased hormone content, and especially with increased GA and IAA levels. Finally, the increases seen in internode and leaf GA content with a reduced R/FR ratio are consistent with FR enrichment inducing an overall increase in sunflower seedling GA biosynthesis.  相似文献   

17.
Endogenous brassinosteroids (BRs) in the dwarf mutants lka and lkb of garden pea (Pisum sativum L.) and comparable wild-type plants were quantified by gas chromatography-selected ion monitoring using deuterated internal standards. In young shoots of the lkb mutant, the levels of brassinolide, castasterone, and 6-deoxocastasterone were 23-, 22-, and 9-fold lower, respectively, than those of wild-type plants. Applications of brassinolide, castasterone, typhasterol, 3-dehydroteasterone, and teasterone normalized internode growth of lkb seedlings. These findings indicate that the lkb plants are BR-deficient mutants, probably as a consequence of a block in the BR biosynthetic pathway prior to the production of teasterone. Young shoots of lka plants contained only 50% less brassinolide and 5 times more castasterone than the equivalent wild-type tissues. The lka seedlings were approximately 100 times less responsive to brassinolide than the lkb mutant, and application of castasterone had only a marginal effect on lka internode growth, suggesting that the lka lesion results in impaired sensitivity to BR.  相似文献   

18.
The physiological characteristics of the response of excised cowpea (Vigna sinensis cv Blackeye pea No. 5) epicotyls to gibberellins (GAs) were studied. Epicotyl explants, retaining the petioles and a 2-cm portion of hypocotyl, were placed upright in small vials containing water. Plant growth substances were injected into the subapical tissues as ethanol solutions.Epicotyl elongation resulting from treatment with 0.5 g of GA ranged between 5 and 13 times that of the control, depending on the GA applied. With GA1, no differences were obtained with explants prepared from 5 to 9-day-old seedlings. The increase in elongation could be detected within 6 h of treatment, and the stimulus of a single application lasted at least 4 days. Final elongation was proportional to the logarithm of the amount of GA, applied, 0.01 to lug. The response to GA treatment was limited to the upper part, the most sensitive zone being located between 2 to 4 mm below the apex of the epicotyl; this effect was entirely due to cell elongation.The induction of epicotyl elongation by GAs seems to be specific and independent of the effect of auxin. IAA had no effect on elongation and 4-chloro-phenoxyisobutyric acid (PCIB) did not affect the response to GA1 Abbreviations ABA abscisic acid - GA gibberellin - IAA Indole-3-acetic acid - TIBA 2,3,5-triiodobenzoic acid - PCIB 4-chloro-phenoxyisobutyric acid  相似文献   

19.
Jager CE  Symons GM  Ross JJ  Smith JJ  Reid JB 《Planta》2005,221(1):141-148
The objective of this study was to increase our understanding of the relationship between brassinosteroids (BRs) and gibberellins (GAs) by examining the effects of BR deficiency on the GA biosynthesis pathway in several tissue types of pea (Pisum sativum L.). It was suggested recently that, in Arabidopsis, BRs act as positive regulators of GA 20-oxidation, a key step in GA biosynthesis [Bouquin et al. (2001) Plant Physiol 127:450–458]. However, this may not be the case in pea as GA20 levels were consistently higher in all shoot tissues of BR-deficient (lk and lkb) and BR-response (lka) mutants. The application of brassinolide (BL) to lkb plants reduced GA20 levels, and metabolism studies revealed a reduced conversion of GA19 to GA20 in epi-BL-treated lkb plants. These results indicate that BRs actually negatively regulate GA20 levels in pea. Although GA20 levels are affected by BR levels, this does not result in consistent changes in the level of the bioactive GA, GA1. Therefore, even though a clear interaction exists between endogenous BR levels and the level of GA20, this interaction may not be biologically significant. In addition to the effect of BRs on GA levels, the effect of altered GA1 levels on endogenous BR levels was examined. There was no significant difference in BR levels between the GA mutants and the wild type (wt), indicating that altered GA1 levels have no effect on BR levels in pea. It appears that the BR growth response is not mediated by changes in bioactive GA levels, thus providing further evidence that BRs are important regulators of stem elongation.  相似文献   

20.
As a second messenger, the free cytosolic calcium ion (Ca(2+)) plays important roles in many biochemical and physiological processes including photosynthesis in plants. In this study, we investigated morphological changes, chlorophyll accumulation and chloroplast development during early photomorphogenesis in etiolated seedlings of both Arabidopsis thaliana wild type (WT) and those with the antisense of CAS, a calcium sensor (CASas). Seedlings were grown at high, medium and low Ca(2+) concentrations to identify the roles of Ca(2+) and CAS in de-etiolation and chloroplast development. The results demonstrated that Ca(2+) and CAS are correlated with de-etiolation of A. thaliana after light exposure. High Ca(2+) significantly increased chlorophyll content and improved chloroplast development in both A. thaliana WT and CASas etiolated seedlings during de-etiolation. The analysis by western blot and real-time fluorescent quantitative polymerase chain reaction indicated that the expression levels of CAS mRNA and protein were upregulated by white light and external Ca(2+) significantly. Etiolated CASas plants showed much lower chlorophyll content and delay of chloroplast development as compared with WT plants, indicating that CAS functions in de-etiolation. All together, we concluded that the de-etiolation in A. thaliana was promoted by the high Ca(2+) concentration and CAS expression to a certain extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号