首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four isozymes of cytochrome P-450 were purified to varying degrees of homogeneity from liver microsomes of cod, a marine teleost fish. The cod were treated with beta-naphthoflavone by intraperitoneal injection, and liver microsomes were prepared by calcium aggregation. After solubilization of cytochromes P-450 with the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio]-1-propansulfonate, chromatography on Phenyl-Sepharose CL-4B, and subsequently on DEAE-Sepharose, resulted in two cytochrome P-450 fractions. These were further resolved on hydroxyapatite into a total of four fractions containing different isozymes of cytochromes P-450. One fraction, designated cod cytochrome P-450c, was electrophoretically homogeneous, was recovered in the highest yield and constituted the major form of the isozymes. The relative molecular mass of this form (58 000) corresponds well with a protein band appearing in cod liver microsomes after treatment with beta-naphthoflavone. Both cytochrome P-450c and a minor form called cytochrome P-450d (56000) showed activity towards 7-ethoxyresorufin in a reconstituted system containing rat liver NADPH-cytochrome P-450 reductase and phospholipid. Differences between these two forms were observed in the rate and optimal pH for conversion of this substrate, and in optical properties. Rabbit antiserum to cod cytochrome P-450c did not show any cross-reactions with cod cytochrome P-450a (Mr 55000) or cytochrome P-450d in Ouchterlony immunodiffusion, but gave a precipitin line of partial identity with cod cytochrome P-450b (Mr 54000), possibly as a result of contaminating cytochrome P-450c in this fraction.  相似文献   

2.
Constitutive testosterone 6 beta-hydroxylase in rat liver   总被引:1,自引:0,他引:1  
The cytochrome P-450 that was purified from hepatic microsomes of male rats treated with phenobarbital and designated P450 PB-1 (Funae and Imaoka (1985) Biochim. Biophys. Acta 842, 119-132) had high testosterone 6 beta-hydroxylation activity (turnover rate, 13.5 nmol of product/min/nmol of P-450) in a reconstituted system consisting of cytochrome P-450, NADPH-cytochrome P-450 reductase, cytochrome b5, and a 1:1 mixture of lecithin and phosphatidylserine in the presence of sodium cholate. In ordinary conditions in the reconstituted system with cytochrome P-450, reductase, and dilauroylphosphatidylcholine, P450 PB-1 had little 6 beta-hydroxylase activity. The catalytic activities toward testosterone of two major constitutive forms, P450 UT-2 and P450 UT-5, were not affected by cytochrome b5, phospholipid, or sodium cholate. P450 PB-1 in rat liver microsomes was assayed by immunoblotting with specific antibody to P450 PB-1. P450 PB-1 accounted for 24.4 +/- 5.6% (mean +/- SD) of the total spectrally-measured cytochrome P-450 in hepatic microsomes of untreated adult male rats, and was not found in untreated adult female rats. P450 PB-1 was induced twofold with phenobarbital in male rats. P450 PB-1 was purified from untreated male rats and identified as P450 PB-1 from phenobarbital-treated rats by its NH2-terminal sequence, peptide mapping, and immunochemistry. These results showed that P450 PB-1 is a constitutive male-specific form in rat liver. There was a good correlation (r = 0.925) between the P450 PB-1 level and testosterone 6 beta-hydroxylase activity in rat liver microsomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have studied the activation of aflatoxin B1 by hamster liver microsomes and purified hamster cytochrome P-450 isozymes using a umu mutagen test. The hamster liver microsomes or S-9 fractions were much more active than rat liver microsomes or S-9 fractions in the activation of umu gene expression by aflatoxin B1 metabolites. 3-Methyl-cholanthrene treatment increased aflatoxin B1 activation by hamster liver microsomes. Two major 3-methylcholanthrene-inducible cytochrome P-450 isozymes, P-450 MC1 (IIA) and P-450 MC4 (IA2), were purified from 3-methylcholanthrene-treated hamster liver microsomes, and the metabolism of aflatoxin B1 by these two cytochromes was studied. In the reconstituted enzyme system, both P-450 MC1 and P-450 MC4 were highly active in the activation of aflatoxin B1, and antibodies against these P-450s specifically inhibited these activities. Antibody against P-450 MC1 inhibited the activation of aflatoxin B1 by 20% in the presence of 3-methyl-cholanthrene-treated hamster liver microsomes. In contrast, antibody against P-450 MC4 stimulated the activity by 175%. These results indicated that hamster P-450 MC1 might convert aflatoxin B1 to more toxic metabolite(s), whereas P-450 MC4 might convert aflatoxin B1 to less toxic metabolite(s), than aflatoxin B1 in liver microsomes. The metabolite(s) produced by both hamster cytochrome P-450 MC1 and MC4 were genotoxic in the umu mutagen test.  相似文献   

4.
1. Six cytochrome P-450 species have been purified to varying extents from microsomes obtained from ecdysone-induced house fly larvae by the use of octylamino Sepharose-4B, Synchropak AX-300, Synchropak CM-300 and TSK-DEAE-5 PW column chromatography. 2. One of the fractions apparently corresponded to a mixture of low- and high-spin cytochrome P-450 as judged by spectral characteristics. 3. Molecular weights of the cytochrome P-450 species ranged from 50,000 to 57,000. 4. In a reconstituted system, all the microsomal species hydroxylated ecdysone at rates within the range of microsomal suspensions, as it occurs with mitochondrial fractions 1, 2, 3, 5, and 6 (Srivatsan et al., 1990, Biochem, biophys. Res. Commun. 166, 1372-1377); whereas, mitochondrial fraction 4 hydroxylates ecdysone at significantly higher rates. 5. It is postulated that the 20-monooxygenation of ecdysone is a mitochondrial event which requires the induction of a low-Km cytochrome P-450 species by ecdysone. 6. Microsomal hydroxylation of ecdysone may not be of physiological significance, as Km values for the reaction are above the normal concentrations of the hormone and the activity is not inducible by ecdysone (Agosin et al., 1988, Arch. Insect Biochem. Physiol. 9, 107-117).  相似文献   

5.
A form of cytochrome P-450 generally catalyzing benzo[a]pyrene (B[a]P) hydroxylation was purified from liver microsomes of untreated rats on the basis of the catalytic activity. The purification procedures consisted of cholate solubilization and chromatography in 3 steps, on DEAE-Toyopearl (at room temperature), hydroxylapatite, and CM-Toyopearl columns. Cytochrome P-450 purified in this way (named P-450/B[a]P) was homogeneous on SDS-polyacrylamide gel electrophoresis, and the molecular weight was estimated to be 51,000. The absorption spectra of the oxidized form of P-450/B[a]P showed a Soret peak at 417 nm, characteristic of low-spin hemoprotein, and the Soret peak of the reduced cytochrome P-450-CO complex was at 451 nm. Immunochemical analysis of P-450/B[a]P indicated that P-450/B[a]P is immunologically distinct from P-450b (a major phenobarbital-inducible form of P-450) and P-450c (a major 3-methylcholanthrene-inducible form of P-450, which highly catalyzes the hydroxylation of B[a]P). B[a]P hydroxylase activity in liver microsomes of untreated rats was inhibited to about 20% by the P-450/B[a]P antibody. These results demonstrate that P-450/B[a]P is a different form of P-450 from P-450b and P-450c, and generally catalyzes B[a]P hydroxylation in liver microsomes of untreated rats.  相似文献   

6.
Multiple forms of cytochrome P-450 in liver microsomes of untreated male and female rats could be divided into several fractions by the use of ω-amino-n-octyl Seph. 4B and DE-52 columns. Male cytochrome P-450 fractions (I-b - I-e) differed from female fractions (I-b - I-e) with respect to absorption peaks in carbon monoxide difference spectra and 7-prop-oxycoumarin O-depropylation activities. Although male and female I-a fractions showed quite similar protein bands on SDS-polyacrylamide gel electrophoresis, some protein bands in other male fractions (I-b - I-e) were absent in corresponding female fractions. Immunochemical examinations using immunoglobulin G raised to cytochrome P-450 purified from untreated male rats also showed that liver microsomes from male and female rats contain different forms of cytochrome P-450. Based on these results, we propose that sex-related differences of drug metabolizing activities in liver microsomes are caused by multiple forms of cytochrome P-450.  相似文献   

7.
A form of cytochrome P-450 highly active in inducing mutagenicity of aflatoxin B1 was purified to a specific content of 15.1 nmol/mg of protein from 3-methylcholanthrene-treated hamster liver. This species of cytochrome P-450, having its absorption maximum at 448.5 nm in carbon monoxide-complex of reduced form and low spin ferric ion, is of molecular weight of 56,000 and distinctly different in physicochemical and catalytic properties from major forms of cytochrome P-450 purified from phenobarbital- or 3-methylcholanthrene-treated rat liver. In the induction of aflatoxin B1 mutagenicity, this hamster cytochrome P-450 is 50 times more potent than those from rat liver.  相似文献   

8.
Metabolism of the environmental pollutant and weak carcinogen benzo[c]-phenanthrene (B[c]Ph) by rat liver microsomes and by a purified and reconstituted cytochrome P-450 system is examined. B[c]Ph proved to be one of the best polycyclic aromatic hydrocarbon substrates for rat liver microsomes. It is metabolized by microsomes from control rats and by rats treated with phenobarbital or 3-methylcholanthrene at 3.9, 4.2 and 7.8 nmol/nmol cytochrome P-450/min, respectively. Principal metabolites are dihydrodiols along with small amounts (less than 10%) of phenols. The K-region 5,6-dihydrodiol is the major metabolite and accounts for 77-89% of the total metabolites. The 3,4-dihydrodiol with a bay-region 1,2-double bond is formed in much smaller amounts and accounts for only 6-17% of the total metabolites, the highest percentage being formed by microsomes from control rats. Highly purified monooxygenase systems reconstituted with cytochrome P-450a, P-450b and P-450c and epoxide hydrolase form predominantly the 5,6-dihydrodiol (95-97% of total metabolites) and only a small percentage of the 3,4-dihydrodiol (3-5% of total metabolites). The 3,4-dihydrodiol is formed with higher enantiomeric purity by microsomes from 3-methylcholanthrene-treated rats (88%) than by microsomes from control rats (78%) or phenobarbital-treated rats (60%). In each case the (3R,4R)-enantiomer predominates. B[c]Ph 5,6-dihydrodiol formed by all three microsomal preparations is nearly racemic.  相似文献   

9.
Two new cytochrome P-450 forms were purified from liver microsomes of the marine fish Stenotomus chrysops (scup). Cytochrome P-450A (Mr = 52.5K) had a CO-ligated, reduced difference spectrum lambda max at 447.5 nm, and reconstituted modest benzo[a]pyrene hydroxylase activity (0.16 nmol/min/nmol P-450) and ethoxycoumarin O-deethylase activity (0.42 nmol/min/nmol P-450). Cytochrome P-450A reconstituted under optimal conditions catalyzed hydroxylation of testosterone almost exclusively at the 6 beta position (0.8 nmol/min/nmol P-450) and also catalyzed 2-hydroxylation of estradiol. Cytochrome P-450A is active toward steroid substrates and we propose that it is a major contributor to microsomal testosterone 6 beta-hydroxylase activity. Cytochrome P-450A had a requirement for conspecific (scup) NADPH-cytochrome P-450 reductase and all reconstituted activities examined were stimulated by the addition of purified scup cytochrome b5. Cytochrome P-450B (Mr = 45.9K) had a CO-ligated, reduced difference spectrum lambda max at 449.5 nm and displayed low rates of reconstituted catalytic activities. However, cytochrome P-450B oxidized testosterone at several different sites including the 15 alpha position (0.07 nmol/min/nmol P-450). Both cytochromes P-450A and P-450B were distinct from the major benzo[a]pyrene hydroxylating form, cytochrome P-450E, by the criteria of spectroscopic properties, substrate profiles, minimum molecular weights on NaDodSO4-polyacrylamide gels, peptide mapping and lack of cross-reaction with antibody raised against cytochrome P-450E. Cytochrome P-450E shares epitopes with rat cytochrome P-450c indicating it is the equivalent enzyme, but possible homology between scup cytochromes P-450A or P-450B and known P-450 isozymes in other vertebrate groups is uncertain, although functional analogs exist.  相似文献   

10.
Two forms of cytochrome P-450 (P-450), designated P-450MP-1 and P-450MP-2, were purified to electrophoretic homogeneity from human liver microsomes on the basis of mephenytoin 4-hydroxylase activity. Purified P-450MP-1 and P-450MP-2 contained 12-17 nmol of P-450/mg of protein and had apparent monomeric molecular weights of 48,000 and 50,000, respectively. P-450MP-1 and P-450MP-2 were found to be very similar proteins as judged by chromatographic behavior on n-octylamino-Sepharose 4B, hydroxylapatite, and DEAE- and CM-cellulose columns, spectral properties, amino acid composition, peptide mapping, double immunodiffusion analysis, immunoinhibition, and N-terminal amino acid sequences. In vitro translation of liver RNA yielded polypeptides migrating with P-450MP-1 or P-450MP-2, depending upon which form was in each sample, indicating that the two P-450s are translated from different mRNAs. When reconsituted with NADPH-cytochrome-P-450 reductase and L-alpha-dilauroyl-sn-glyceryo-3-phosphocholine, P-450MP-1 and P-450MP-2 gave apparently higher turnover numbers for mephenytoin 4-hydroxylation than did the P-450 in the microsomes. The addition of purified rat or human cytochrome b5 to the reconstituted system caused a significant increase in the hydroxylation activity; the maximum stimulation was obtained when the molar ratio of cytochrome b5 to P-450 was 3-fold. Rabbit anti-human cytochrome b5 inhibited NADH-cytochrome-c reductase and S-mephenytoin 4-hydroxylase activities in human liver microsomes. In the presence of cytochrome b5, the Km value for S-mephenytoin was 1.25 mM with all five purified cytochrome P-450s preparations, and Vmax values were 0.8-1.25 nmol of 4-hydroxy product formed per min/nmol of P-450. P-450MP is a relatively selective P-450 form that metabolizes substituted hydantoins well. Reactions catalyzed by purified P-450MP-1 and P-450MP-2 preparations and inhibited by anti-P-450MP in human liver microsomes include S-mephenytoin 4-hydroxylation, S-nirvanol 4-hydroxylation, S-mephenytoin N-demethylation, and diphenylhydantoin 4-hydroxylation. Thus, at least two very similar forms of human P-450 are involved in S-mephenytoin 4-hydroxylation, an activity which shows genetic polymorphism.  相似文献   

11.
We have purified two distinct isoforms of mitochondrial cytochrome P-450 from beta-naphthoflavone (beta-NF)-induced rat liver to greater than 85% homogeneity and characterized their molecular and catalytic properties. One of these isoforms showing an apparent molecular mass of 52 kDa is termed P-450mt1 and the second isoform with 54-kDa molecular mass is termed P-450mt2. Cytochrome P-450mt2 comigrates with similarly induced microsomal P-450c (the major beta-NF-inducible form) on sodium dodecyl sulfate-polyacrylamide gels and cross-reacts with polyclonal antibody monospecific for cytochrome P-450c. Cytochrome P-450mt2, however, represents a distinct molecular species since it failed to react with a monoclonal antibody to P-450c and produced V8 protease fingerprints different from P-450c. Cytochrome P-450mt1, on the other hand, did not show any immunochemical homology with P-450c or P-450mt2 as well as partially purified P-450 from control mitochondria. Electrophoretic comparisons and Western blot analysis show that both P-450mt1 and P-450mt2 are induced forms not present in detectable levels in control liver mitochondria. A distinctive property of mitochondrial P-450mt1 and P-450mt2 was that their catalytic activities could be reconstituted with both NADPH-cytochrome P-450 reductase as well as mitochondrial specific ferredoxin and ferredoxin reductase electron transfer systems, while P-450c showed exclusive requirement for NADPH-cytochrome P-450 reductase. Cytochromes P-450mt1 and P-450mt2 were able to metabolize xenobiotics like benzo(a)pyrene and dimethyl benzanthracene at rates only one-tenth with cytochrome P-450c. Furthermore, P-450mt1, P-450mt2, as well as partially purified P-450 from control liver, but not P-450c, showed varying activities for 25- and 26-hydroxylation of cholesterol and 25-hydroxylation of vitamin D3. These results provide evidence for the presence of at least two distinct forms of beta-NF-inducible cytochrome P-450 in rat hepatic mitochondria.  相似文献   

12.
Hybridomas were prepared from myeloma cells and spleen cells of BALB/c female mice immunized with hepatic cytochrome P-450E purified from the marine fish, Stenotomus chrysops (scup). Nine independent hybrid clones produced MAbs, either IgG1, IgG2b, or IgM, that bound to purified cytochrome P-450E in radioimmunoassay. Antibodies from one clone MAb (1-12-3), also strongly recognized rat cytochrome P-450MC-B (P-450BNF-B; P-450c). The nine antibodies inhibited reconstituted aryl hydrocarbon hydroxylase (AHH) and ethoxycoumarin O-deethylase of scup cytochrome P-450E to varying degrees, and inhibited AHH activity of beta-naphthoflavone-induced scup liver microsomes in a pattern similar to that in reconstitutions, indicating that cytochrome P-450E is identical to the AHH catalyst induced in this fish by beta-naphthoflavone. MAb 1-12-3 also inhibited the reconstituted AHH activity of the major BNF-induced rat isozyme. Conversely, MAb 1-7-1 to rat cytochrome P-450MC-B had little effect on AHH activity of scup cytochrome P-450E, and did not recognize cytochrome P-450E in radioimmunoassay nor in an immunoblot. Scup cytochrome P-450E and rat cytochrome P-450MC-B thus have at least one common epitope recognized by MAb 1-12-3, but the epitope recognized by Mab 1-7-1 is absent or recognized with low affinity in cytochrome P-450E. The various assays indicate that the nine MAbs against cytochrome P-450E are directed to different epitopes of the molecule. These MAbs should be useful in determining phylogenetic relationships of the BNF- or MC-inducible isozymes and their regulation by other environmental factors.  相似文献   

13.
Metabolic activation by several forms of purified cytochrome P-450 of aflatoxin B1 to a product(s) mutagenic to Salmonella typhimurium TA100 was examined. Of the 5 forms of cytochrome P-450 purified from liver microsomes of untreated and PCB-treated male rats, a constitutive form purified from untreated male rats, P-450-male, and a high-spin form of cytochrome P-450, P-448-H, from PCB-treated rats were highly active.  相似文献   

14.
A form of cytochrome P-450 which comigrates with cytochrome P-450LM4 (molecular weight, 55 000) on SDS-polyacrylamide gel was purified from liver microsomes of cholestyramine-treated rabbits. This form of cytochrome P-450 catalyzed the 7 alpha-hydroxylation of cholesterol with an activity of 37.5 pmol/min per nmol cytochrome P-450 in the reconstituted enzyme system containing cytochrome P-450 and NADPH-cytochrome P-450 reductase. The substrate specificity of this form of cytochrome P-450 was compared with cytochrome P-450LM4 isolated from phenobarbital- and beta-naphthoflavone-treated rabbit liver microsomes. The latter two isoenzymes do not catalyze 7 alpha-hydroxylation of cholesterol, but are more active in O-deethylation of 7-ethoxycoumarin and p-nitrophenetole. Ouchterlony double diffusion revealed cross-reactivity between anti-P-450LM4 (phenobarbital) IgG and cytochrome P-450 isolated from cholestyramine- or beta-naphthoflavone-treated rabbit liver microsomes. A two-dimensional iodinated tryptic peptide fingerprint indicated only minor structural differences among these three cytochrome P-450LM4 preparations.  相似文献   

15.
14 microsomal cytochromes P-450 were purified from the liver of untreated and phenobarbital- or 3-methylcholanthrene-treated male rats. Following solubilization of microsomes with sodium cholate, poly(ethylene glycol) fractionation and aminohexyl-Sepharose 4B chromatography, cytochromes P-450 were purified by high-performance liquid chromatography (HPLC), using a preparative DEAE-anion-exchange column. The pass-through fraction was further purified by HPLC using a cation-exchange column. Other fractions eluted on preparative DEAE-HPLC were further applied onto an HPLC using a DEAE-column. Five kinds (P-450UT-2-6), four kinds (P-450PB-1,2,4 and 5) and five kinds (P-450MC-1-5) of cytochromes P-450 were purified from untreated rats or rats treated with phenobarbital or 3-methylcholanthrene, respectively. HPLC profiles of tryptic peptides of cytochromes P-450UT-2 and P-450MC-2 were identical and the other profiles obtained from seven purified cytochromes P-450 were distinct from each other. Amino-terminal sequences of eight forms of cytochrome P-450 (UT-2, UT-5, PB-1, PB-2, PB-4, PB-5, MC-1 and MC-5) were distinct except for cytochromes P-450PB-4 and P-450PB-5.  相似文献   

16.
Two forms of cytochrome P-450 (P-450 human-1 and P-450 human-2) have been purified from human liver microsomes to electrophoretic homogeneity. P-450 human-1 and P-450 human-2 differ in their apparent molecular weights (52,000 and 56,000, respectively) and Soret peak maxima in the CO-binding reduced difference spectrum (447.6 and 450.3 nm, respectively). In the reconstituted system using rat liver NADPH-cytochrome c (P-450) reductase, P-450 human-2 more effectively oxidized benzo(a)pyrene (80-fold), ethylmorphine (2-fold), and 7-ethoxycoumarin (2-fold) than did P-450 human-1. However, P-450 human-1 showed higher testosterone 6 beta-hydroxylase activity, and the activity was markedly increased by the inclusion of cytochrome b5 or spermine in the reconstituted system. Antibodies raised against P-450 human-1 inhibited more than 80% of microsomal testosterone 6 beta-hydroxylase activity in human liver. Immunoblotting analysis using anti-P-450 human-1 IgG revealed a single immuno-staining band near Mr 52,000 in all human liver samples examined. The amount of immunochemically determined P-450 human-1 varied in parallel with the testosterone 6 beta-hydroxylase activity in human liver. These results indicate that P-450 human-1 is a major form of cytochrome P-450 responsible for microsomal testosterone 6 beta-hydroxylation. Thus, this paper is the first report on human cytochrome P-450 responsible for testosterone 6 beta-hydroxylation, which is the major hydroxylation pathway in human liver microsomes.  相似文献   

17.
Chromatography on 1.8-diaminooctyl-Sepharose and DEAE-Sephacel resulted in 4 fractions of cytochrome P-450 from liver microsomes of 3-methylcholanthrene-induced Wistar rats. All the four fractions differed in terms of their absorption maxima in the CO-reduced state, Mr and catalytic activity. Only one cytochrome fraction (cytochrome P-450 C) possessed a high activity upon benz(a)pyrene hydroxylation. All cytochrome P-450 forms were characterized by a low rate of aminopyrine N-demethylation. Antibodies against cytochrome P-450 C (P-448) (anti-P-448) were raised. Cytochromes of fractions A, B1 and B2 in the Ouchterlony reaction of double immunodiffusion did not give precipitation bands with anti-P-448. Neither of the four cytochrome P-450 forms interacted with the antibodies raised against cytochrome P-450 isolated from liver microsomes of rats induced with phenobarbital. The procedure developed is applicable to the isolation of multiple forms of cytochrome P-450 from liver microsomes of 3-methylcholanthrene-induced rats. Using rocket immunoelectrophoresis, cytochrome P-450 C possessing a high (as compared to benz(a)pyrene metabolism) activity (18 nmol/min/nmol cytochrome) and a high (60-70%) content in 3-methylcholanthrene-induced rat liver microsomes was shown to give a relatively high yield.  相似文献   

18.
Cytochrome P-450-dependent prostaglandin omega-hydroxylation is induced over 100-fold during late gestation in rabbit pulmonary microsomes (Powell, W.S. (1978) J. Biol. Chem. 253, 6711-6716). Purification of cytochromes P-450 from lung microsomes of pregnant rabbits yielded three fractions. Two of these fractions correspond to rabbit lung P-450I (LM2) and P-450II (LM5), which together constitute 70-97% of total cytochrome P-450 in lung microsomes from nonpregnant rabbits. The third form, which we designate rabbit cytochrome P-450PG-omega, regioselectively hydroxylates prostaglandins at the omega-position in reconstituted systems with a turnover of 1-5 min-1. Titration with purified pig liver cytochrome b5, demonstrated a 4-fold maximum stimulation at a cytochrome b5 to a P-450 molar ratio of 1-2. Rabbit lung P-450PG-omega formed a typical type I binding spectrum upon the addition of prostaglandin E1 with a calculated K8 of 1 microM, which agreed reasonably well with the kinetically calculated Km of 3 microM. Cytochrome P-450PG-omega was isolated as a low-spin isozyme with a lambda max (450 nm) in the CO-difference spectrum distinguishable from P-450I (451 nm) and P-450II (449 nm). Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis demonstrated that although purified P-450PG-omega had a relatively low specific content (12.1 nmol mg-1), it appeared homogeneous with a calculated minimum Mr of 56,000, intermediate between rabbit LM4 and LM6. When lung microsomes from pregnant and nonpregnant rabbit were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a protein band, with a Mr identical to P-450PG-omega, was observed in the pregnant rabbit, whereas this band appeared to be very faint or absent in microsomes from the nonpregnant rabbit. Purification of cytochromes P-450 from nonpregnant rabbit lung yielded only P-450I and P-450II. P-450PG-omega appears to be a novel rabbit P-450, possessing high activity towards omega-hydroxylation of prostaglandins, and is greatly induced during pregnancy in rabbit lung.  相似文献   

19.
Three forms of cytochrome P-450 of liver microsomes of 3-methylcholanthrene-treated Golden hamsters were purified and characterized as regards their catalytic activity toward aflatoxin B1-related hepatocarcinogenic mycotoxins. These include two major forms, designated as cytochrome P-450-AFB (P-450-I) and P-450-II, and one minor form, P-450-III. Cytochromes P-450-AFB, P-450-II, and P-450-III have their absorption maximum in the carbon monoxide-complex of the reduced form at 448.5, 447.0, and 448.0 nm, have apparent molecular weights of 56,000, 58,000, and 59,500, and are in the low spin, high spin, and low spin state, respectively. Of these, cytochrome P-450-AFB was shown to be highly active in the mutagenic activation of aflatoxin B1-related hepatocarcinogens such as sterigmatocystin and O-methylsterigmatocystin. Activation of aflatoxin B1 by hepatic microsomes of 3-methylcholanthrene-treated hamsters was inhibited almost completely by the antibody against P-450-AFB but not by the antibody against P-450-II, indicating that P-450-AFB is the major component responsible for the activation of aflatoxin B1 by hamster liver. Western blot analysis demonstrated that no protein cross-reacted with the antibody to P-450-AFB in the liver microsomes from guinea pig, rat, mouse, and house musk shrew (Suncus murinus) treated with 3-methylcholanthrene, while one or two proteins cross-reacted with the antibody to P-450-II in the liver microsomes of these animals.  相似文献   

20.
Sodium cholate, Emulgen 911, and (3-[(-cholamidopropyl)-dimethyl- ammonio]-1-propanesulfonate) (CHAPS) were selected to examine the effects of ionic, nonionic, and zwitterionic detergents on testosterone hydroxylation catalyzed by four purified isozymes of rat liver microsomal cytochrome P-450, namely P-450a, P-450b, P-450c, and P-450h, in reconstituted systems containing optimal amounts of dilauroylphosphatidylcholine and saturating amounts of NADPH- cytochrome P-450 reductase (reductase). The major phenobarbital-inducible form of rat liver microsomal cytochrome P-450, designated P-450b, was extremely sensitive to the inhibitory effects of Emulgen 911, which is used in several procedures to purify this and other forms of cytochrome P-450. In contrast, sodium cholate and CHAPS had little effect on the catalytic activity of cytochrome P-450b, even at ten times the concentration of Emulgen 911 effecting 50% inhibition (IC-50). By substituting the zwitterionic detergent CHAPS for Emulgen 911, we purified cytochrome P-450b without the use of nonionic detergent. The protein is designated cytochrome P-450b* to distinguish it from cytochrome P-450b purified with the use of Emulgen 911. NADPH-cytochrome P-450 reductase was also purified both with and without the use of nonionic detergent. The absolute spectra of cytochrome P-450b and P-450b* were indistinguishable, as were the carbon monoxide (CO)- and metyrapone-difference spectra of the dithionite-reduced hemoproteins. When reconstituted with NADPH-cytochrome P-450 reductase and dilauroylphosphatidylcholine, cytochromes P-450b and P-450b* catalyzed the N-demethylation of benzphetamine and aminopyrine, the 4-hydroxylation of aniline, the O-dealkylation of 7-ethoxycoumarin, the 3-hydroxylation of hexobarbital, and the 6-hydroxylation of zoxazolamine. Both hemo-proteins catalyzed the 16α- and 16β-hydroxylation of testosterone, as well as the 17-oxidation of testosterone to androstenedione. Both hemoproteins were poor catalysts of erythromycin demethylation and benzo[a]pyrene 3-/9-hydroxylation. The rate of biotransformation catalyzed by cytochrome P-450b* was up to 50% greater than the rate catalyzed by cytochrome P-450b when reconstituted with either reductase or reductase*. The activity of cytochrome P-450b and P-450b* increased up to 50% when reconstituted with reductase* instead of reductase. In addition to establishing the feasibility of purifying an isozyme of rat liver microsomal cytochrome P-450 without the use of nonionic detergent, these results indicate that the catalytic activity of cytochrome P-450 is not unduly compromised by residual contamination with the nonionic detergent Emulgen 911.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号