首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we found that silencing suppression by the 2b protein and six mutants correlated both with their ability to bind to double-stranded (ds) small RNAs (sRNAs) in vitro and with their nuclear/nucleolar localization. To further discern the contribution to suppression activity of sRNA binding and of nuclear localization, we have characterized the kinetics of in vitro binding to a ds sRNA, a single-stranded (ss) sRNA, and a micro RNA (miRNA) of the native 2b protein and eight mutant variants. We have also added a nuclear export signal (NES) to the 2b protein and assessed how it affected subcellular distribution and suppressor activity. We found that in solution native protein bound ds siRNA, miRNA, and ss sRNA with high affinity, at protein:RNA molar ratios ~2:1. Of the four mutants that retained suppressor activity, three showed sRNA binding profiles similar to those of the native protein, whereas the remaining one bound ss sRNA at a 2:1 molar ratio, but both ds sRNAs with 1.5-2 times slightly lower affinity. Three of the four mutants lacking suppressor activity failed to bind to any sRNA, whereas the remaining one bound them at far higher ratios. NES-tagged 2b protein became cytoplasmic, but suppression activity in patch assays remained unaffected. These results support binding to sRNAs at molar ratios at or near 2:1 as critical to the suppressor activity of the 2b protein. They also show that cytoplasmically localized 2b protein retained suppressor activity, and that a sustained nuclear localization was not required for this function.  相似文献   

2.
An immunoassay was used to examine the interaction between a herpes simplex virus protein, ICP8, and various types of DNA. The advantage of this assay is that the protein is not subjected to harsh purification procedures. We characterized the binding of ICP8 to both single-stranded (ss) and double-stranded (ds) DNA. ICP8 bound ss DNA fivefold more efficiently than ds DNA, and both binding activities were most efficient in 150 mM NaCl. Two lines of evidence indicate that the binding activities were not identical: (i) ds DNA failed to complete with ss DNA binding even with a large excess of ds DNA; (ii) Scatchard plots of DNA binding with various amounts of DNA were fundamentally different for ss DNA and ds DNA. However, the two activities were related in that ss DNA efficiently competed with the binding of ds DNA. We conclude that the ds DNA-binding activity of ICP8 is probably distinct from the ss DNA-binding activity. No evidence for sequence-specific ds DNA binding was obtained for either the entire herpes simplex virus genome or cloned viral sequences.  相似文献   

3.
We previously reported ATPase, RNA unwinding, and RNA-binding activities of recombinant p68 RNA helicase that was expressed in Escherichia coli. Huang et al. The recombinant protein bound both single-stranded (ss) and double-stranded (ds) RNAs. To further characterize the substrate RNA binding by p68 RNA helicase, we expressed and purified the recombinant N-terminal and C-terminal domains of the protein. RNA-binding property and protein phosphorylation of the recombinant domains of p68 were analyzed. Our data demonstrated that the C-terminal domain of p68 RNA helicase bound ssRNA. More interestingly, the C-terminal domain was a target of protein kinase C (PKC). Phosphorylation of the C-terminal domain of p68 abolished its RNA binding. Based on our observations, we propose that the C-terminal domain is an RNA substrate binding site for p68. The protein phosphorylation by PKC regulates the RNA binding of p68 RNA helicase, which consequently controls the enzymatic activities of the protein.  相似文献   

4.
A structural protein of Rauscher oncovirus of about 8,000 to 10,000 daltons (p10), encoded by the gag gene, has been purified in high yield to apparent homogeneity by a simple three-step procedure. The purified protein was highly basic, with an isoelectric point of more than 9.0, and its immunological antigenicity was chiefly group specific. A distinctive property of the protein was the binding to nucleic acids. The stoichiometry of p10 binding to Rauscher virus RNA was analyzed using both 125I-labeled p10 and 3H-labeled RNA. The protein-RNA complex, cross-linked by formaldehyde, was separated from free RNA and free protein by velocity sedimentation and density gradient centrifugation. A maximum of about 140 mol of p10 was bound per mol of 35S RNA, or about one molecule of p10 per 70 nucleotides. This protein-RNA complex banded at a density of about 1.55 g/ml. The number of nucleic acid sites bound and the affinity of p10 binding differed significantly among the other polynucleotides tested. The protein bound to both RNA and DNA with a preference for single-stranded molecules. Rauscher virus RNA and single-stranded phage fd DNA contained the highest number of binding sites. Binding to fd DNA was saturated with about 30 mol of p10 per mol of fd DNA, an average of about one p10 molecule per 180 nucleotides. The apparent binding constant was 7.3 X 10(7) M(-1). The properties of the p10 place it in a category with other nucleic acid binding proteins that achieve a greater binding density on single-stranded than on double-stranded molecules and appear to act by facilitating changes in polynucleotide conformation.  相似文献   

5.
6.
Cellular expression of the beta(2)-adrenergic receptor (beta(2)-AR) is suppressed at the translational level by 3'-untranslated region (UTR) sequences. To test the possible role of 3'-UTR-binding proteins in translational suppression of beta(2)-AR mRNA, we expressed the full-length 3'-UTR or the adenylate/uridylate-rich (A+U-rich element (ARE)) RNA from the 3'-UTR sequences of beta(2)-AR in cell lines that endogenously express this receptor. Reversal of beta(2)-adrenergic receptor translational repression by retroviral expression of 3'-UTR sequences suggested that ARE RNA-binding proteins are involved in translational suppression of beta(2)-adrenergic receptor expression. Using a 20-nucleotide ARE RNA from the receptor 3'-UTR as an affinity ligand, we purified the proteins that bind to these sequences. T-cell-restricted intracellular antigen-related protein (TIAR) was one of the strongly bound proteins identified by this method. UV-catalyzed cross-linking experiments using in vitro transcribed 3'-UTR RNA and glutathione S-transferase-TIAR demonstrated multiple binding sites for this protein on beta(2)-AR 3'-UTR sequences. The distal 340-nucleotide region of the 3'-UTR was identified as a target RNA motif for TIAR binding by both RNA gel shift analysis and immunoprecipitation experiments. Overexpression of TIAR resulted in suppression of receptor protein synthesis and a significant shift in endogenously expressed beta(2)-AR mRNA toward low molecular weight fractions in sucrose gradient polysome fractionation. Taken together, our results provide the first evidence for translational control of beta(2)-AR mRNA by TIAR.  相似文献   

7.
Human brain S100b (beta beta) protein was purified using zinc-dependent affinity chromatography on phenyl-Sepharose. The calcium- and zinc-binding properties of the protein were studied by flow dialysis technique and the protein conformation both in the metal-free form and in the presence of Ca2+ or Zn2+ was investigated with ultraviolet spectroscopy, sulfhydryl reactivity and interaction with a hydrophobic fluorescence probe 6-(p-toluidino)naphthalene-2-sulfonic acid (TNS). Flow dialysis measurements of Ca2+ binding to human brain S100b (beta beta) protein revealed six Ca2+-binding sites which we assumed to represent three for each beta monomer, characterized by the macroscopic association constants K1 = 0.44 X 10(5) M-1; K2 = 0.1 X 10(5) M-1 and K3 = 0.08 X 10(5) M-1. In the presence of 120 mM KCl, the affinity of the protein for calcium is drastically reduced. Zinc-binding studies on human S100b protein showed that the protein bound two zinc ions per beta monomer, with macroscopic constants K1 = 4.47 X 10(7) M-1 and K2 = 0.1 X 10(7) M-1. Most of the Zn2+-induced conformational changes occurred after the binding of two zinc ions per mole of S100b protein. These results differ significantly from those for bovine protein and cast doubt on the conservation of the S100 structure during evolution. When calcium binding was studied in the presence of zinc, we noted an increase in the affinity of the protein for calcium, K1 = 4.4 X 10(5) M-1; K2 = 0.57 X 10(5) M-1; K3 = 0.023 X 10(5) M-1. These results indicated that the Ca2+- and Zn2+-binding sites on S100b protein are different and suggest that Zn2+ may regulate Ca2+ binding by increasing the affinity of the protein for calcium.  相似文献   

8.
Gill-associated virus (GAV) infects Penaeus monodon shrimp and is the type species okavirus in the Roniviridae, the only invertebrate nidoviruses known currently. Electrophoretic mobility shift assays (EMSAs) using His(6)-tagged full-length and truncated proteins were employed to examine the nucleic acid binding properties of the GAV nucleocapsid (N) protein in vitro. The EMSAs showed full-length N protein to bind to all synthetic single-stranded (ss)RNAs tested independent of their sequence. The ssRNAs included (+) and (-) sense regions of the GAV genome as well as a (+) sense region of the M RNA segment of Mourilyan virus, a crustacean bunya-like virus. GAV N protein also bound to double-stranded (ds)RNAs prepared to GAV ORF1b gene regions and to bacteriophage M13 genomic ssDNA. EMSAs using the five N protein constructs with variable-length N-terminal and/or C-terminal truncations localized the RNA binding domain to a 50 amino acid (aa) N-terminal sequence spanning Met(11) to Arg(60). Similarly to other RNA binding proteins, the first 16 aa portion of this sequence was proline/arginine rich. To examine this domain in more detail, the 18 aa peptide (M(11)PVRRPLPPQPPRNARLI(29)) encompassing this sequence was synthesized and found to bind nucleic acids similarly to the full-length N protein in EMSAs. The data indicate a fundamental role for the GAV N protein proline/arginine-rich domain in nucleating genomic ssRNA to form nucleocapsids. Moreover, as the synthetic peptide formed higher-order complexes in the presence of RNA, the domain might also play some role in protein/protein interactions stabilizing the helical structure of GAV nucleocapsids.  相似文献   

9.
V Citovsky  D Knorr  G Schuster  P Zambryski 《Cell》1990,60(4):637-647
The P30 protein of tobacco mosaic virus (TMV) is required for cell to cell movement of viral RNA, which presumably occurs through plant intercellular connections, the plasmodesmata. The mechanism by which P30 mediates transfer of TMV RNA molecules through plasmodesmata channels is unknown. We have identified P30 as an RNA and single-stranded (ss) DNA binding protein. Binding of purified P30 to ss nucleic acids is strong, highly cooperative, and sequence nonspecific with a minimal binding site of 4-7 nucleotides per P30 monomer. In-frame deletions across P30 were used to localize the ss nucleic acid binding domain to within amino acid residues 65-86 of the protein. We propose that binding of P30 to TMV RNA creates an unfolded protein-RNA complex that functions as an intermediate in virus cell to cell movement through plasmodesmata.  相似文献   

10.
The human gene ddx42 encodes a human DEAD box protein highly homologous to the p68 subfamily of RNA helicases. In HeLa cells, two ddx42 poly(A)+ RNA species were detected both encoding the nuclear localized 938 amino acid Ddx42p polypeptide. Ddx42p has been heterologously expressed and its biochemical properties characterized. It is an RNA binding protein, and ATP and ADP modulate its RNA binding affinity. Ddx42p is an NTPase with a preference for ATP, the hydrolysis of which is enhanced by various RNA substrates. It acts as a non-processive RNA helicase. Interestingly, RNA unwinding by Ddx42p is promoted in the presence of a single-strand (ss) binding protein (T4gp32). Ddx42p, particularly in the ADP-bound form (the state after ATP hydrolysis), also mediates efficient annealing of complementary RNA strands thereby displacing the ss binding protein. Ddx42p therefore represents the first example of a human DEAD box protein possessing RNA helicase, protein displacement and RNA annealing activities. The adenosine nucleotide cofactor bound to Ddx42p apparently acts as a switch that controls the two opposing activities: ATP triggers RNA strand separation, whereas ADP triggers annealing of complementary RNA strands.  相似文献   

11.
Flow dialysis measurements of calcium binding to bovine brain S100 alpha alpha, S100a (alpha beta), and S100b (beta beta) proteins in 20 mM Tris-HCl buffer at pH 7.5 and 8.3 revealed that S100 proteins bind specifically 4 Ca2+ eq/mol of protein dimer. The specific calcium-binding sites had, therefore, been assigned to typical amino acid sequences on the alpha and beta subunit. The protein affinity for calcium is much lower in the presence of magnesium and potassium. Potassium strongly antagonizes calcium binding on two calcium-binding sites responsible for most of the Ca2+-induced conformational changes on S100 proteins (probably site II alpha and site II beta). Zinc-binding studies in the absence of divalent cations revealed eight zinc-binding sites/mol of S100b protein dimer that we assumed to correspond to 4 zinc-binding sites/beta subunit. Zinc binding to S100b studied with UV spectroscopy methods showed that the occupation of the four higher affinity sites and the four lower affinity sites on the protein dimer were responsible for different conformational changes in S100b structure. Zinc binding on the higher affinity sites regulates calcium binding to S100b by increasing the protein affinity for calcium and decreasing the antagonistic effect of potassium on calcium binding. Zinc-binding studies on S100a and S100 alpha alpha protein showed that the Trp-containing S100 proteins bind zinc more weakly than S100b protein. Calcium-binding studies on zinc-bound S100a proved that calcium- and zinc-binding sites were distinct although there was no increase in zinc-bound S100a affinity for calcium, as in S100b protein. Finally we provide evidence that discrepancies between previously published results on the optical properties of S100b protein probably result from oxidation of the sulfhydryl groups in the protein.  相似文献   

12.
The extracellular domain of the 55-kDa TNF receptor (rsTNFR beta) has been expressed as a secreted protein in baculovirus-infected insect cells and Chinese hamster ovary (CHO)/dhfr- cells. A chimeric fusion protein (rsTNFR beta-h gamma 3) constructed by inserting the extracellular part of the receptor in front of the hinge region of the human IgG C gamma 3 chain has been expressed in mouse myeloma cells. The recombinant receptor proteins were purified from transfected cell culture supernatants by TNF alpha- or protein G affinity chromatography and gel filtration. In a solid phase binding assay rsTNFR beta was found to bind TNF alpha with high affinity comparable with the membrane-bound full-length receptor. The affinity for TNF beta was slightly impaired. However, the bivalent rsTNFR beta-h gamma 3 fusion protein bound both ligands with a significantly higher affinity than monovalent rsTNFR beta reflecting most likely an increased avidity of the bivalent construct. A molecular mass of about 140 kDa for both rsTNFR beta.TNF alpha and rsTNFR beta.TNF beta complexes was determined in analytical ultracentrifugation studies strongly suggesting a stoichiometry of three rsTNFR beta molecules bound to one TNF alpha or TNF beta trimer. Sedimentation velocity and quasielastic light scattering measurements indicated an extended structure for rsTNFR beta and its TNF alpha and TNF beta complexes. Multiple receptor binding sites on TNF alpha trimers could also be demonstrated by a TNF alpha-induced agglutination of Latex beads coated with the rsTNFR beta-h gamma 3 fusion protein. Both rsTNFR beta and rsTNFR beta-h gamma 3 were found to inhibit binding of TNF alpha and TNF beta to native 55- and 75-kDa TNF receptors and to prevent TNF alpha and TNF beta bioactivity in a cellular cytotoxicity assay. Concentrations of rsTNFR beta-h gamma 3 equimolar to TNF alpha were sufficient to neutralize TNF activity almost completely, whereas a 10-100-fold excess of rsTNFR beta was needed for similar inhibitory effects. In view of their potent TNF antagonizing activity, recombinant soluble TNF receptor fragments might be useful as therapeutic agents in TNF-mediated disorders.  相似文献   

13.
14.
G W Witherell  H N Wu  O C Uhlenbeck 《Biochemistry》1990,29(50):11051-11057
The binding of the R17 coat protein to synthetic RNAs containing one or two coat protein binding sites was characterized by using nitrocellulose filter and gel-retention assays. RNAs with two available sites bound coat protein in a cooperative manner, resulting in a higher affinity and reduced sensitivity to pH, ionic strength, and temperature when compared with RNAs containing only a single site. The cooperativity can contribute up to -5 kcal/mol to the overall binding affinity with the greatest cooperativity found at low pH, high ionic strength, and high temperatures. Similar solution properties for the encapsidation of the related fr and f2 phage suggest that the cooperativity is due to favorable interactions between the two coat proteins bound to the RNA. This system therefore resembles an intermediate state of phage assembly. No cooperative binding was observed for RNAs containing a single site and a 5' or 3' extension of nonspecific sequence, indicating that R17 coat protein has a very low nonspecific binding affinity. Unexpectedly weak binding was observed for several RNAs due to the presence of alternative conformational states of the RNA.  相似文献   

15.
16.
To design anti-nucleocapsid drugs, it is useful to know the affinities the protein has for its natural substrates under physiological conditions. Dissociation equilibrium constants are reported for seven RNA stem-loops bound to the mature HIV-1 nucleocapsid protein, NCp7. The loops include SL1, SL2, SL3, and SL4 from the major packaging domain of genomic RNA. The binding assay is based on quenching the fluorescence of tryptophan-37 in the protein by G residues in the single-stranded loops. Tightly bound RNA molecules quench nearly all the fluorescence of freshly purified NCp7 in 0.2 M NaCl. In contrast, when the GGAG-tetraloop of tight-binding SL3 is replaced with UUCG or GAUA, quenching is almost nil, indicating very low affinity. Interpreting fluorescence titrations in terms of a rapidly equilibrating 1:1 complex explains nearly all of the experimental variance for the loops. Analyzed in this way, the highest affinities are for 20mer SL3 and 19mer SL2 hairpin constructs (K(d) = 28 +/- 3 and 23 +/- 2 nM, respectively). The 20mer stem-UUCG-loop and GAUA-loop constructs have <0.5% of the affinity for NCp7 relative to SL3. Affinities relative to SL3 for the other stem-loops are the following: 10% for a 16mer construct to model SL4, 30% for a 27mer model of the 9-residue apical loop of SL1, and 20% for a 23mer model of a 1 x 3 asymmetric internal loop in SL1. A 154mer construct that includes all four stem-loops binds tightly to NCp7, with the equivalent of three NCp7 molecules bound with high affinity per RNA; it is also possible that two strong sites and several weaker ones combine to give the appearance of three strong sites.  相似文献   

17.
Characterization of synapsin I binding to small synaptic vesicles   总被引:34,自引:0,他引:34  
The binding of synapsin I, a synaptic vesicle-associated phosphoprotein, to small synaptic vesicles has been examined. For this study, synapsin I was purified under nondenaturing conditions from rat brain, using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), and characterized. Small synaptic vesicles were purified from rat neocortex by controlled pore glass chromatography as the last purification step, and binding was characterized at an ionic strength equivalent to 40 mM NaCl. After removal of endogenous synapsin I, exogenous dephospho-synapsin I bound with high affinity (Kd, 10 +/- 6 nM) to synaptic vesicles. The binding saturated at 76 +/- 40 micrograms synapsin I/mg of vesicle protein, which corresponded to the amount found endogenously in purified vesicles. Synapsin I binding exhibited a broad pH optimum around pH 7. Other basic proteins, specifically myelin basic protein and histone H2b, did not compete with synapsin I for binding to vesicles. Other membranes purified from rat brain and membranes derived from human erythrocytes did not show the high affinity binding site for synapsin I found in vesicles. The binding of three different forms of phosphosynapsin I to vesicles was investigated. Synapsin I, phosphorylated at sites 2 and 3 by purified calcium/calmodulin-dependent protein kinase II, bound with a 5-fold lower affinity to the vesicles than did dephospho-synapsin I. In contrast, synapsin I, phosphorylated at site 1 by purified catalytic subunit of cAMP-dependent protein kinase, bound with an affinity close to that of dephospho-synapsin I. Synapsin I phosphorylated on all three sites bound to the vesicles with an affinity comparable to that of synapsin I phosphorylated on sites 2 and 3. Under conditions of higher ionic strength (150 mM NaCl equivalent), synapsin I bound with a 5-fold lower affinity to vesicles, and no effect of phosphorylation on binding was observed under these conditions.  相似文献   

18.
We describe an affinity chromatography method to isolate specific RNAs and RNA-protein complexes formed in vivo or in vitro. It exploits the highly selective binding of the coat protein of bacteriophage R17 to a short hairpin in its genomic RNA. RNA containing that hairpin binds to coat protein that has been covalently bound to a solid support. Bound RNA-protein complexes can be eluted with excess R17 recognition sites. Using purified RNA, we demonstrate that binding to immobilized coat protein is highly specific and enables one to separate an RNA of interest from a large excess of other RNAs in a single step. Surprisingly, binding of an RNA containing non-R17 sequences to the support requires two recognition sites in tandem; a single site is insufficient. We determine optimal conditions for purification of specific RNAs by comparing specific binding (retention of RNAs with recognition sites) to non-specific binding (retention of RNAs without recognition sites) over a range of experimental conditions. These results suggest that binding of immobilized coat protein to RNAs containing two sites is cooperative. We illustrate the potential utility of the approach in purifying RNA-protein complexes by demonstrating that a U1 snRNP formed in vivo on an RNA containing tandem recognition sites is selectively retained by the coat protein support.  相似文献   

19.
Human beta-endorphin (1-31) (beta H-endorphin) was found to specifically interact with purified complement S protein from human plasma. As found by chemical cross-linking beta H-endorphin bound to both, the 65- and 75-kDa molecular mass forms of S protein. The interaction of S protein with heparin as well as the adsorption of S protein to surfaces led to an almost 10-fold increase of specific binding which was due to the exposure of further beta H-endorphin-binding sites. The interaction of beta H-endorphin with S protein bore characteristics of a ligand-receptor interaction, such as time dependence, reversibility, high affinity, saturability, and structural specificity and was mediated through the non-opioid COOH terminus of the beta H-endorphin molecule. beta H-Endorphin binding to S protein was observed at physiological pH or cation concentrations, indicating that the interaction may well occur in vivo. Our results provide conclusive evidence that interactions of S protein with very different effectors led to similar conformational changes which uniformly resulted in exposure of a highly specific beta H-endorphin binding domain on S protein. With S protein as major beta H-endorphin-binding protein in the periphery, the molecular basis of a widespread system of humoral target sites of the neuroendocrine effector appears to be established. In view of S protein involvement in processes of inflammation and wound repair and beta-endorphin effects on immunocompetent cells, the demonstrated S protein-beta H-endorphin interaction appears to be of considerable functional significance.  相似文献   

20.
Polach KJ  Uhlenbeck OC 《Biochemistry》2002,41(11):3693-3702
Unlike most DEAD/H proteins, the purified Escherichia coli protein DbpA demonstrates high specificity for its 23S rRNA substrate in vitro. Here we describe several assays designed to characterize the interaction of DbpA with its RNA and ATP substrates. Electrophoretic mobility shift assays reveal a sub-nanomolar binding affinity for a 153 nucleotide RNA substrate (R153) derived from the 23S rRNA. High affinity RNA binding requires both hairpin 92 and helix 90, as substrates lacking these structures bind DbpA with lower affinity. AMPPNP inhibition assays and ATP/ADP binding assays provide binding constants for ATP and ADP to DbpA with and without RNA substrates. These data have been used to describe a minimal thermodynamic scheme for the binding of the RNA and ATP substrates to DbpA, which reveals cooperative binding between larger RNAs and ATP with cooperative energies of approximately 1.3 kcal mol(-1). This cooperativity is lost upon removal of helix 89 from R153, suggesting this helix is either the preferred target for DbpA's helicase activity or is a necessary structural element for organization of the target site within R153.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号